Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aim

This study seeks to develop a prognostic risk signature for head and neck squamous cell carcinoma (HNSCC) based on cholesterol-related genes (CholRG), aiming to enhance prognostic accuracy in clinical practice.

Background

HNSCC poses significant challenges due to its aggressive behavior and limited response to standard treatments, resulting in elevated morbidity and mortality rates. In order to improve prognostic prediction in HNSCC, our study is inspired by the realization that cholesterol metabolism plays a critical role in accelerating the progression of cancer. To this end, we are developing a unique risk signature using CholRG.

Objective

The aim of this study was to create a CholRG-based risk signature to predict HNSCC prognosis, aiding in clinical decision-making accurately.

Methods

The TCGA HNSCC dataset, along with GSE41613 and GSE65858, was obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. A CholRG-based risk signature was then developed and validated across various independent HNSCC cohorts. Moreover, a nomogram model incorporating CholRG-based risk signature was established. Additionally, functional enrichment analysis was conducted, and the immune landscapes of the high- and low-risk groups were compared. Finally, experiments were performed using lipid-based transfection to deliver siRNAs targeting ACAT1 to SCC1 and SCC23 cell lines, further examining the effects of ACAT1 knockdown on these cells.

Results

Utilizing RNA-seq, microarray, and clinical data from public databases, we constructed and validated a CholRG-based risk signature that includes key genes such as , , , , , , and , which can effectively predict the clinical outcome of HNSCC. Additionally, our findings were reinforced by a nomogram model that integrates the risk score with clinical variables for more clinically practical prognostic assessment. In addition, patients at high risk show hypoxia and increased oncogenic pathways such as mTORC1 signaling, as well as a suppressed immune microenvironment marked by a reduction in the infiltration of important immune cells. Notably, experiments showed that ACAT1 depletion significantly suppressed the proliferation, colony formation, and invasion capabilities of HNSCC cells, confirming ACAT1's role in promoting malignancy.

Conclusion

Collectively, our study not only underscores the importance of cholesterol metabolism in HNSCC pathogenesis but also highlights the CholRG-based risk signature as a promising tool for enhancing prognostic accuracy and personalizing therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673336147241010065340
2024-10-15
2025-10-29
Loading full text...

Full text loading...

References

  1. MarurS. ForastiereA.A. Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment.Mayo Clin. Proc.201691338639610.1016/j.mayocp.2015.12.01726944243
    [Google Scholar]
  2. HowardJ.D. LuB. ChungC.H. Therapeutic targets in head and neck squamous cell carcinoma: Identification, evaluation, and clinical translation.Oral Oncol.2012481101710.1016/j.oraloncology.2011.09.01322020057
    [Google Scholar]
  3. CramerJ.D. BurtnessB. LeQ.T. FerrisR.L. The changing therapeutic landscape of head and neck cancer.Nat. Rev. Clin. Oncol.2019161166968310.1038/s41571‑019‑0227‑z31189965
    [Google Scholar]
  4. CastilhoR. SquarizeC. AlmeidaL. Epigenetic modifications and head and neck cancer: Implications for tumor progression and resistance to therapy.Int. J. Mol. Sci.2017187150610.3390/ijms1807150628704968
    [Google Scholar]
  5. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  6. GormleyM. CreaneyG. SchacheA. IngarfieldK. ConwayD.I. Reviewing the epidemiology of head and neck cancer: Definitions, trends and risk factors.Br. Dent. J.2022233978078610.1038/s41415‑022‑5166‑x36369568
    [Google Scholar]
  7. JohnsonD.E. BurtnessB. LeemansC.R. LuiV.W.Y. BaumanJ.E. GrandisJ.R. Head and neck squamous cell carcinoma.Nat. Rev. Dis. Primers2020619210.1038/s41572‑020‑00224‑333243986
    [Google Scholar]
  8. HudečkováM. KouckýV. RottenbergJ. GálB. Gene mutations in circulating tumour DNA as a diagnostic and prognostic marker in head and neck cancer: A systematic review.Biomedicines2021911154810.3390/biomedicines911154834829777
    [Google Scholar]
  9. HashibeM. BrennanP. BenhamouS. CastellsagueX. ChenC. CuradoM.P. MasoL.D. DaudtA.W. FabianovaE. Wunsch-FilhoV. FranceschiS. HayesR.B. HerreroR. KoifmanS. La VecchiaC. LazarusP. LeviF. MatesD. MatosE. MenezesA. MuscatJ. Eluf-NetoJ. OlshanA.F. RudnaiP. SchwartzS.M. SmithE. SturgisE.M. Szeszenia-DabrowskaN. TalaminiR. WeiQ. WinnD.M. ZaridzeD. ZatonskiW. ZhangZ-F. BerthillerJ. BoffettaP. BoffettaP. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: Pooled analysis in the international head and neck cancer epidemiology consortium.J. Natl. Cancer Inst.2007991077778910.1093/jnci/djk17917505073
    [Google Scholar]
  10. HoW.J. JaffeeE.M. ZhengL. The tumour microenvironment in pancreatic cancer - Clinical challenges and opportunities.Nat. Rev. Clin. Oncol.202017952754010.1038/s41571‑020‑0363‑532398706
    [Google Scholar]
  11. LeemansC.R. BraakhuisB.J.M. BrakenhoffR.H. The molecular biology of head and neck cancer.Nat. Rev. Cancer201111192210.1038/nrc298221160525
    [Google Scholar]
  12. MermodM. Hiou-FeigeA. BovayE. RohV. SponarovaJ. BongiovanniM. VermeerD.W. LeeJ.H. PetrovaT.V. RivalsJ.P. MonnierY. TolstonogG.V. SimonC. Mouse model of postsurgical primary tumor recurrence and regional lymph node metastasis progression in HPV-related head and neck cancer.Int. J. Cancer2018142122518252810.1002/ijc.3124029313973
    [Google Scholar]
  13. CarpA. NicolauA. MoscaluM. PopescuE. Predictive factors in the appearance and evolution of squamous cell carcinomas of the oral cavity.Medicina (Kaunas)202258557010.3390/medicina5805057035629987
    [Google Scholar]
  14. ModyM.D. RoccoJ.W. YomS.S. HaddadR.I. SabaN.F. Head and neck cancer.Lancet2021398103182289229910.1016/S0140‑6736(21)01550‑634562395
    [Google Scholar]
  15. ZhouX. HanJ. ZhenX. LiuY. CuiZ. YueZ. DingL. XuS. Analysis of genetic alteration signatures and prognostic values of m6A regulatory genes in head and neck squamous cell carcinoma.Front. Oncol.20201071810.3389/fonc.2020.0071832547941
    [Google Scholar]
  16. MestiriS. El-EllaD.M.A. FernandesQ. BedhiafiT. AlmoghrabiS. AkbarS. InchakalodyV. AssamiL. AnwarS. UddinS. GulA.R.Z. Al-MuftahM. MerhiM. RazaA. DermimeS. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers.Biomed. Pharmacother.202417111609510.1016/j.biopha.2023.11609538183744
    [Google Scholar]
  17. ParkJ.C. ShinD. Current landscape of antibody-drug conjugate development in head and neck cancer.JCO Precis. Oncol.202488e240017910.1200/PO.24.0017939151109
    [Google Scholar]
  18. LeemansC.R. SnijdersP.J.F. BrakenhoffR.H. The molecular landscape of head and neck cancer.Nat. Rev. Cancer201818526928210.1038/nrc.2018.1129497144
    [Google Scholar]
  19. FinleyL.W.S. What is cancer metabolism?Cell202318681670168810.1016/j.cell.2023.01.03836858045
    [Google Scholar]
  20. WanJ. GuoY. ChenH. SunP. ZhangX. YeT. LiL. PanF. YangL. Application and development of deuterium metabolic imaging in tumor glucose metabolism: Visualization of different metabolic pathways.Front. Oncol.202313128520910.3389/fonc.2023.128520938090478
    [Google Scholar]
  21. FaubertB. SolmonsonA. DeBerardinisR.J. Metabolic reprogramming and cancer progression.Science20203686487eaaw547310.1126/science.aaw547332273439
    [Google Scholar]
  22. KinnairdA. ZhaoS. WellenK.E. MichelakisE.D. Metabolic control of epigenetics in cancer.Nat. Rev. Cancer2016161169470710.1038/nrc.2016.8227634449
    [Google Scholar]
  23. BaiM. SunC. Determination of breast metabolic phenotypes and their associations with immunotherapy and drug- targeted therapy: Analysis of single-cell and bulk sequences.Front. Cell Dev. Biol.20221082902910.3389/fcell.2022.82902935281118
    [Google Scholar]
  24. BaoM. HuangY. LangZ. ZhaoH. SaitoY. NaganoT. KawagoeI. DivisiD. HuX. JiangG. Proteomic analysis of plasma exosomes in patients with non-small cell lung cancer.Transl. Lung Cancer Res.20221171434145210.21037/tlcr‑22‑46735958340
    [Google Scholar]
  25. GoossensP. Rodriguez-VitaJ. EtzerodtA. MasseM. RastoinO. GouirandV. UlasT. PapantonopoulouO. Van EckM. Auphan-AnezinN. BebienM. VerthuyC. Vu ManhT.P. TurnerM. DalodM. SchultzeJ.L. LawrenceT. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression.Cell Metab.201929613761389.e410.1016/j.cmet.2019.02.01630930171
    [Google Scholar]
  26. RiscalR. SkuliN. SimonM.C. Even cancer cells watch their cholesterol!Mol. Cell201976222023110.1016/j.molcel.2019.09.00831586545
    [Google Scholar]
  27. AbdullaN. VincentC.T. KaurM. Mechanistic insights delineating the role of cholesterol in epithelial mesenchymal transition and drug resistance in cancer.Front. Cell Dev. Biol.2021972832510.3389/fcell.2021.72832534869315
    [Google Scholar]
  28. ZhaoX. GuoB. SunW. YuJ. CuiL. Targeting squalene epoxidase confers metabolic vulnerability and overcomes chemoresistance in HNSCC.Adv. Sci. (Weinh.)20231027220687810.1002/advs.20220687837490552
    [Google Scholar]
  29. KansalV. BurnhamA.J. KinneyB.L.C. SabaN.F. PaulosC. LesinskiG.B. BuchwaldZ.S. SchmittN.C. Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models.J. Immunother. Cancer2023111e00594010.1136/jitc‑2022‑00594036650022
    [Google Scholar]
  30. LuY. MaiZ. ZhengJ. LinP. LinY. CuiL. ZhaoX. Constructing a T-cell receptor-related gene signature for prognostic stratification and therapeutic guidance in head and neck squamous cell carcinoma.Cancers (Basel)20231523549510.3390/cancers1523549538067199
    [Google Scholar]
  31. ZhaoX. SunW. GuoB. CuiL. CircularR.N.A. Circular RNA BIRC6 depletion promotes osteogenic differentiation of periodontal ligament stem cells via the miR-543/PTEN/PI3K/AKT/mTOR signaling pathway in the inflammatory microenvironment.Stem Cell Res. Ther.202213141710.1186/s13287‑022‑03093‑735964136
    [Google Scholar]
  32. MaiZ. ChenH. HuangM. ZhaoX. CuiL. A robust metabolic enzyme-based prognostic signature for head and neck squamous cell carcinoma.Front. Oncol.20221177024110.3389/fonc.2021.77024135127477
    [Google Scholar]
  33. ZhaoX. ShuD. SunW. SiS. RanW. GuoB. CuiL. PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c-Myc-mediated positive feedback loop.Cancer Commun. (Lond.)20224210987100710.1002/cac2.1234936002342
    [Google Scholar]
  34. CuiL. ZhaoX. JinZ. WangH. YangS.F. HuS. Melatonin modulates metabolic remodeling in HNSCC by suppressing MTHFD1L-formate axis.J. Pineal Res.2021714e1276710.1111/jpi.1276734533844
    [Google Scholar]
  35. YuanM. ZhaiY. MenY. ZhaoM. SunX. MaZ. YangX. SunS. BaoY. LiuY. HuiZ. Famitinib enhances the antitumor effect of radioimmunotherapy in murine lung cancer.Thorac. Cancer202213233331334010.1111/1759‑7714.1468936281217
    [Google Scholar]
  36. PittJ.M. MarabelleA. EggermontA. SoriaJ.C. KroemerG. ZitvogelL. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy.Ann. Oncol.20162781482149210.1093/annonc/mdw16827069014
    [Google Scholar]
  37. ChengL. ZhuY. HanH. ZhangQ. CuiK. ShenH. ZhangJ. YanJ. ProchownikE. LiY. MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice.Cell Death Dis.201787e291610.1038/cddis.2017.30928703810
    [Google Scholar]
  38. GordonJ.A. NobleJ.W. MidhaA. DerakhshanF. WangG. AdomatH.H. Tomlinson GunsE.S. LinY.Y. RenS. CollinsC.C. NelsonP.S. MorrisseyC. WasanK.M. CoxM.E. Upregulation of scavenger receptor B1 is required for steroidogenic and nonsteroidogenic cholesterol metabolism in prostate cancer.Cancer Res.201979133320333110.1158/0008‑5472.CAN‑18‑252931064850
    [Google Scholar]
  39. SunT. XiaoX. Targeting ACAT1 in cancer: From threat to treatment.Front. Oncol.202414139519210.3389/fonc.2024.139519238720812
    [Google Scholar]
  40. GoudarziA. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target.Life Sci.201923211659210.1016/j.lfs.2019.11659231228515
    [Google Scholar]
  41. ChistiakovD.A. MelnichenkoA.A. MyasoedovaV.A. GrechkoA.V. OrekhovA.N. Mechanisms of foam cell formation in atherosclerosis.J. Mol. Med. (Berl.)201795111153116510.1007/s00109‑017‑1575‑828785870
    [Google Scholar]
  42. ChangT.Y. LiB.L. ChangC.C.Y. UranoY. Acyl- coenzymeA. Acyl- coenzyme A:cholesterol acyltransferases.Am. J. Physiol. Endocrinol. Metab.20092971E1E910.1152/ajpendo.90926.200819141679
    [Google Scholar]
  43. YeK. WuY. SunY. LinJ. XuJ. TLR4 siRNA inhibits proliferation and invasion in colorectal cancer cells by downregulating ACAT1 expression.Life Sci.201615513313910.1016/j.lfs.2016.05.01227177773
    [Google Scholar]
  44. GuanJ. JiangX. GaiJ. SunX. ZhaoJ. LiJ. LiY. ChengM. DuT. FuL. LiQ. Sirtuin 5 regulates the proliferation, invasion and migration of prostate cancer cells through acetyl-CoA acetyltransferase 1.J. Cell. Mol. Med.20202423140391404910.1111/jcmm.1601633103371
    [Google Scholar]
  45. AyyagariV.N. WangX. Diaz-SylvesterP.L. GroeschK. BrardL. Assessment of acyl-CoA cholesterol acyltransferase (ACAT-1) role in ovarian cancer progression: An in vitro study.PLoS One2020151e022802410.1371/journal.pone.022802431978092
    [Google Scholar]
  46. LeeS.S.Y. LiJ. TaiJ.N. RatliffT.L. ParkK. ChengJ.X. Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment.ACS Nano2015932420243210.1021/nn504025a25662106
    [Google Scholar]
  47. LiM. YangY. WeiJ. CunX. LuZ. QiuY. ZhangZ. HeQ. Enhanced chemo-immunotherapy against melanoma by inhibition of cholesterol esterification in CD8+ T cells.Nanomedicine20181482541255010.1016/j.nano.2018.08.00830193815
    [Google Scholar]
  48. PanJ. ZhangQ. PalenK. WangL. QiaoL. JohnsonB. SeiS. ShoemakerR.H. LubetR.A. WangY. YouM. Potentiation of Kras peptide cancer vaccine by avasimibe, a cholesterol modulator.EBioMedicine201949728110.1016/j.ebiom.2019.10.04431680003
    [Google Scholar]
  49. Kaempf-RotzollD.E. TraberM.G. AraiH. Vitamin E and transfer proteins.Curr. Opin. Lipidol.200314324925410.1097/00041433‑200306000‑0000412840655
    [Google Scholar]
  50. PorterT.D. Supernatant protein factor and tocopherol-associated protein: An unexpected link between cholesterol synthesis and vitamin E (review).J. Nutr. Biochem.20031413610.1016/S0955‑2863(02)00262‑012559471
    [Google Scholar]
  51. MokashiV. PorterT.D. Supernatant protein factor requires phosphorylation and interaction with Golgi to stimulate cholesterol synthesis in hepatoma cells.Arch. Biochem. Biophys.2005435117518110.1016/j.abb.2004.11.03015680919
    [Google Scholar]
  52. DavidJ.J. KannanB. PandiC. JayaseelanV.P. VasagamJ.M. ArumugamP. Increased SEC14L2 expression is associated with clinicopathological features and worse prognosis in oral squamous cell carcinoma.Odontology202411241326133410.1007/s10266‑024‑00929‑x38575815
    [Google Scholar]
  53. TamK.W. HoC.T. LeeW.J. TuS.H. HuangC.S. ChenC.S. LeeC.H. WuC.H. HoY.S. Alteration of α- tocopherol-associated protein (TAP) expression in human breast epithelial cells during breast cancer development.Food Chem.20131382-31015102110.1016/j.foodchem.2012.09.14723411208
    [Google Scholar]
  54. MoorthyB. ChuC. CarlinD.J. Polycyclic aromatic hydrocarbons: From metabolism to lung cancer.Toxicol. Sci.2015145151510.1093/toxsci/kfv04025911656
    [Google Scholar]
  55. TherachiyilL. HusseinO.J. UddinS. KorashyH.M. Regulation of the aryl hydrocarbon receptor in cancer and cancer stem cells of gynecological malignancies: An update on signaling pathways.Semin. Cancer Biol.202286Pt 31186120210.1016/j.semcancer.2022.10.00336252938
    [Google Scholar]
  56. MannaP.R. AhmedA.U. YangS. NarasimhanM. Cohen-TannoudjiJ. SlominskiA.T. PruittK. Genomic profiling of the steroidogenic acute regulatory protein in breast cancer: In silico assessments and a mechanistic perspective.Cancers (Basel)201911562310.3390/cancers1105062331060224
    [Google Scholar]
  57. TangL. YaoS. TillC. GoodmanP.J. TangenC.M. WuY. KristalA.R. PlatzE.A. NeuhouserM.L. StanczykF.Z. ReichardtJ.K.V. SantellaR.M. HsingA. HoqueA. LippmanS.M. ThompsonI.M. AmbrosoneC.B. Repeat polymorphisms in estrogen metabolism genes and prostate cancer risk: Results from the prostate cancer prevention trial.Carcinogenesis201132101500150610.1093/carcin/bgr13921771722
    [Google Scholar]
  58. OlsonS.H. OrlowI. BayugaS. SimaC. BanderaE.V. PulickK. FaulknerS. TommasiD. EganD. RoyP. WilcoxH. AsyaA. ModicaI. AsadH. SoslowR. ZauberA.G. Variants in hormone biosynthesis genes and risk of endometrial cancer.Cancer Causes Control200819995596310.1007/s10552‑008‑9160‑718437511
    [Google Scholar]
  59. LiangZ. CaoJ. TianL. ShenY. YangX. LinQ. ZhangR. LiuH. DuX. ShiJ. ZhangJ. Aromatase-induced endogenous estrogen promotes tumour metastasis through estrogen receptor-α/matrix metalloproteinase 12 axis activation in castration-resistant prostate cancer.Cancer Lett.2019467728410.1016/j.canlet.2019.09.00131499120
    [Google Scholar]
  60. MengW. XiaoH. ZhaoR. ChenJ. WangY. MeiP. LiH. LiaoY. METTL3 drives NSCLC metastasis by enhancing CYP19A1 translation and oestrogen synthesis.Cell Biosci.20241411010.1186/s13578‑024‑01194‑938238831
    [Google Scholar]
  61. DeBose-BoydR.A. Feedback regulation of cholesterol synthesis: Sterol-accelerated ubiquitination and degradation of HMG CoA reductase.Cell Res.200818660962110.1038/cr.2008.6118504457
    [Google Scholar]
  62. DongX.Y. TangS.Q. Insulin-induced gene: A new regulator in lipid metabolism.Peptides201031112145215010.1016/j.peptides.2010.07.02020817058
    [Google Scholar]
  63. LuN. ZhangM. LuL. LiuY. LiuX. ZhangH. Insulin-induced gene 2 expression is associated with breast cancer metastasis.Am. J. Pathol.2021191238539510.1016/j.ajpath.2020.11.01333321090
    [Google Scholar]
  64. SunS. ZhangG. SunQ. WuZ. ShiW. YangB. LiY. Insulin-induced gene 2 expression correlates with colorectal cancer metastasis and disease outcome.IUBMB Life2016681657110.1002/iub.146126662938
    [Google Scholar]
  65. FukuokaM. KodamaT. MuraiK. HikitaH. SometaniE. SungJ. ShimodaA. ShigenoS. MotookaD. NishioA. FurutaK. TatsumiT. YusaK. TakeharaT. Genome-wide loss-of-function genetic screen identifies INSIG2 as the vulnerability of hepatitis B virus-integrated hepatoma cells.Cancer Sci.2024115385987010.1111/cas.1607038287498
    [Google Scholar]
  66. ShaoF. BianX. WangJ. XuD. GuoW. JiangH. ZhaoG. ZhuL. WangS. XingD. GaoY. HeJ. LuZ. Prognostic impact of PCK1 protein kinase activity-dependent nuclear SREBP1 activation in non-small-cell lung carcinoma.Front. Oncol.20211156124710.3389/fonc.2021.56124733842305
    [Google Scholar]
  67. XiaW. WangH. ZhouX. WangY. XueL. CaoB. SongJ. The role of cholesterol metabolism in tumor therapy, from bench to bed.Front. Pharmacol.20231492882110.3389/fphar.2023.92882137089950
    [Google Scholar]
  68. YabeD. BrownM.S. GoldsteinJ.L. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins.Proc. Natl. Acad. Sci. USA20029920127531275810.1073/pnas.16248889912242332
    [Google Scholar]
  69. JiangW. JinW.L. XuA.M. Cholesterol metabolism in tumor microenvironment: Cancer hallmarks and therapeutic opportunities.Int. J. Biol. Sci.20242062044207110.7150/ijbs.9227438617549
    [Google Scholar]
  70. GöbelA. BreiningD. RaunerM. HofbauerL.C. RachnerT.D. Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells.Cell Death Dis.20191029110.1038/s41419‑019‑1322‑x30692522
    [Google Scholar]
  71. RossF.A. MacKintoshC. HardieD.G. AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours.FEBS J.2016283162987300110.1111/febs.1369826934201
    [Google Scholar]
  72. MalawskyD.S. DismukeT. LiuH. CastellinoE. BrenmanJ. DasguptaB. TikunovA. GershonT.R. Chronic AMPK inactivation slows SHH medulloblastoma progression by inhibiting mTORC1 signaling and depleting tumor stem cells.iScience2023261210844310.1016/j.isci.2023.10844338094249
    [Google Scholar]
  73. SuK.H. DaiS. TangZ. XuM. DaiC. Heat shock factor 1 is a direct antagonist of AMP-activated protein kinase.Mol. Cell2019764546561.e810.1016/j.molcel.2019.08.02131561952
    [Google Scholar]
  74. PengZ. XuS. ZhangQ. YangX. YuanW. WangY. LiY. ZhuP. WuX. JiangZ. LiF. FanX. FAXDC2 inhibits the proliferation and invasion of human liver cancer HepG2 cells.Exp. Ther. Med.20232712710.3892/etm.2023.1231538125362
    [Google Scholar]
  75. BaekA.E. YuY.R.A. HeS. WardellS.E. ChangC.Y. KwonS. PillaiR.V. McDowellH.B. ThompsonJ.W. DuboisL.G. SullivanP.M. KemperJ.K. GunnM.D. McDonnellD.P. NelsonE.R. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells.Nat. Commun.20178186410.1038/s41467‑017‑00910‑z29021522
    [Google Scholar]
  76. AlfaqihM.A. NelsonE.R. LiuW. SafiR. JasperJ.S. MaciasE. GeradtsJ. ThompsonJ.W. DuboisL.G. FreemanM.R. ChangC. ChiJ.T. McDonnellD.P. FreedlandS.J. CYP27A1 loss dysregulates cholesterol homeostasis in prostate cancer.Cancer Res.20177771662167310.1158/0008‑5472.CAN‑16‑273828130224
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673336147241010065340
Loading
/content/journals/cmc/10.2174/0109298673336147241010065340
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cholesterol; HNSCC; hypoxia; immune infiltration; prognostic prediction; risk signature
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test