Skip to content
2000
Volume 32, Issue 21
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Alzheimer’s Disease (AD) is a complicated and advanced neurodegenerative condition accompanied by gradual cholinergic neuronal death and higher levels of monoamine oxidase-B (MAO-B) enzyme. In this study, a series of novel hybrid compounds combining 1,3,4-oxadiazole and quinoline moieties were synthesized and evaluated for their potential as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and MAO enzymes.

Methods

The chemical structures of the synthesized compounds were confirmed using various analytical techniques, such as mass spectrometry, infrared spectroscopy (IR), proton nuclear magnetic resonance (1H-NMR), and carbon and nuclear magnetic resonance (13C-NMR). The final products were evaluated for anticholinesterase potential by applying modified Ellman’s spectrometric method, whereas a fluorometric method was used to assess MAO inhibition properties. studies using molecular docking and molecular dynamics simulation (MDS) methods has been also conducted.

Results

Among the synthesized compounds, 5a, 5c, and 6a demonstrated substantial activity against AChE, with IC values of 0.033 µM, 0.096 µM, and 0.177 µM, respectively. A molecular docking study was performed to elucidate the binding modes and establish the structure-activity relationship (SAR) of the most active compounds (5a, 5c, and 6a). Molecular dynamics simulation (MDS) of the most potent compound, 5a, was also conducted to examine the stability of the interactions with the receptor. Moreover, the physicochemical properties of the active products were also studied.

Conclusion

Overall, this research contributes to the development of 1,3,4-oxadiazole-quinoline hybrids as potential AChE inhibitors for the treatment of Alzheimer’s disease.

Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673333159240815061359
2024-08-28
2025-10-09
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/21/CMC-32-21-06.html?itemId=/content/journals/cmc/10.2174/0109298673333159240815061359&mimeType=html&fmt=ahah

References

  1. WellerJ. BudsonA. Current understanding of Alzheimer’s disease diagnosis and treatment.F1000 Res.20187116110.12688/f1000research.14506.1
    [Google Scholar]
  2. AbeysingheA.A.D.T. DeshapriyaR.D.U.S. UdawatteC. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions.Life Sci.202025611799610.1016/j.lfs.2020.11799632585249
    [Google Scholar]
  3. PohankaM. Cholinesterases, a target of pharmacology and toxicology.Biomed. Papers2011155321922910.5507/bp.2011.036
    [Google Scholar]
  4. SaxenaM. DubeyR. Target enzyme in Alzheimer’s disease: Acetylcholinesterase inhibitors.Curr. Top. Med. Chem.201919426427510.2174/156802661966619012812591230706815
    [Google Scholar]
  5. SinghM. KaurM. KukrejaH. ChughR. SilakariO. SinghD. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection.Eur. J. Med. Chem.20137016518810.1016/j.ejmech.2013.09.05024148993
    [Google Scholar]
  6. LiQ. HeS. ChenY. FengF. QuW. SunH. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Vol. 158.Eur. J. Med. Chem.2018
    [Google Scholar]
  7. DiamantS. PodolyE. FriedlerA. LigumskyH. LivnahO. SoreqH. Butyrylcholinesterase attenuates amyloid fibril formation in vitro.Proc. Natl. Acad. Sci. USA2006103238628863310.1073/pnas.060292210316731619
    [Google Scholar]
  8. NordbergA. BallardC. BullockR. Darreh-ShoriT. SomogyiM. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s Disease.Prim Care Companion CNS Disord2013152PCC.12r0141210.4088/PCC.12r01412
    [Google Scholar]
  9. BartorelliL. GiraldiC. SaccardoM. CammarataS. BottiniG. FasanaroA.M. Upgrade Study Group. Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer's disease.Curr. Med. Res. Opin.200521111809181810.1185/030079905X65655
    [Google Scholar]
  10. ZhaoT. DingK. ZhangL. ChengX. WangC. WangZ. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of Genus peganum.J. Chem.201320131610.1155/2013/717232
    [Google Scholar]
  11. PflégrV. ŠtěpánkováŠ. SvrčkováK. ŠvarcováM. VinšováJ. KrátkýM. 5-aryl-1,3,4-oxadiazol-2-amines decorated with long alkyl and their analogues: Synthesis, acetyl- and butyrylcholinesterase inhibition and docking study.Pharmaceuticals202215440010.3390/ph15040400
    [Google Scholar]
  12. HampelH. MesulamM.M. CuelloA.C. FarlowM.R. GiacobiniE. GrossbergG.T. KhachaturianA.S. VergalloA. CavedoE. SnyderP.J. KhachaturianZ.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy13229850777
    [Google Scholar]
  13. HollmannP. Update: FDA approval of Biogen’s aducanumab.Geriatr. Nurs.20224331831910.1016/j.gerinurse.2021.12.01834996638
    [Google Scholar]
  14. YoudimM.B.H. EdmondsonD. TiptonK.F. The therapeutic potential of monoamine oxidase inhibitors.Nat. Rev. Neurosci.20067429530910.1038/nrn188316552415
    [Google Scholar]
  15. RiedererP. DanielczykW. GrünblattE. Monoamine oxidase-B inhibition in Alzheimer's disease.Neurotoxicol2004251-227127710.1016/S0161‑813X(03)00106‑2
    [Google Scholar]
  16. CaiZ. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease (Review).Mol. Med. Rep.2014951533154110.3892/mmr.2014.204024626484
    [Google Scholar]
  17. PohankaM. Acetylcholinesterase inhibitors: a patent review (2008–present).Expert Opin. Ther. Pat.201222887188610.1517/13543776.2012.70162022768972
    [Google Scholar]
  18. AL-SharabiAA. Evren AE, Sağlık BN, Yurttaş L. Synthesis, characterization, molecular docking and molecular dynamics simulations of novel 2,5-disubstituted-1,3,4-thiadiazole derivatives as potential cholinesterase/monoamine oxidase dual inhibitors for Alzheimer’s disease.J. Biomol. Struct. Dyn.2023119
    [Google Scholar]
  19. DorababuA. Promising heterocycle-based scaffolds in recent (2019–2021) anti-Alzheimer’s drug design and discovery.Eur. J. Pharmacol.202292017484710.1016/j.ejphar.2022.17484735218718
    [Google Scholar]
  20. BoströJ. HognerA. LlinàA. WellnerE. PlowrightA.T. Oxadiazoles in medicinal chemistry.J. Med. Chem.201155518171830
    [Google Scholar]
  21. SahaR. TanwarO. MarellaA. Mumtaz AlamM. AkhterM. Recent updates on biological activities of oxadiazoles.Mini Rev. Med. Chem.20131371027104610.2174/138955751131307000722512577
    [Google Scholar]
  22. WenM.W. ShaJ.S. XiaoW. DongW.X. QuanM.W. Synthesis and biological evaluation of benzothiazol-based 1,3,4-oxadiazole derivatives as amyloid β-targeted compounds against Alzheimer’s disease.Monatsh Chem.20171481018071815
    [Google Scholar]
  23. IbrarA. KhanA. AliM. SarwarR. MehsudS. FarooqU. HalimiS.M.A. KhanI. Al-HarrasiA. Combined in vitro and in silico studies for the anticholinesterase activity and pharmacokinetics of coumarinyl thiazoles and oxadiazoles.Front Chem.20186MAR6110.3389/fchem.2018.0006129632858
    [Google Scholar]
  24. GeorgeN. SabahiB.A. AbuKhaderM. BalushiK.A. AkhtarM.J. KhanS.A. Design, synthesis and in vitro biological activities of coumarin linked 1,3,4-oxadiazole hybrids as potential multi-target directed anti-Alzheimer agents.J. King Saud Univ. Sci.202234410197710.1016/j.jksus.2022.101977
    [Google Scholar]
  25. TripathiA. ChoubeyP.K. SharmaP. SethA. SarafP. ShrivastavaS.K. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease.Bioorg. Chem.20209510350610.1016/j.bioorg.2019.10350631887472
    [Google Scholar]
  26. ChoubeyP.K. TripathiA. TripathiM.K. SethA. ShrivastavaS.K. Design, synthesis, and evaluation of N-benzylpyrrolidine and 1,3,4-oxadiazole as multitargeted hybrids for the treatment of Alzheimer’s disease.Bioorg. Chem.202111110492210.1016/j.bioorg.2021.10492233945941
    [Google Scholar]
  27. TokF. UğraşZ. SağlıkB.N. ÖzkayY. KaplancıklıZ.A. Koçyiğit-KaymakçıoğluB. Novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as MAO-B inhibitors: Synthesis, biological evaluation and molecular modeling studies.Bioorg. Chem.202111210491710.1016/j.bioorg.2021.10491733932769
    [Google Scholar]
  28. KarabelyovV. Kondeva-BurdinaM. AngelovaV.T. Synthetic approaches to unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles and their MAO-B inhibitory activity. A review.Bioorg. Med. Chem.20212911588810.1016/j.bmc.2020.11588833360082
    [Google Scholar]
  29. SharmaP. TripathiA. TripathiP.N. SinghS.S. SinghS.P. ShrivastavaS.K. Novel molecular hybrids of N -benzylpiperidine and 1,3,4-oxadiazole as multitargeted therapeutics to treat alzheimer’s disease.ACS Chem. Neurosci.201910104361438410.1021/acschemneuro.9b0043031491074
    [Google Scholar]
  30. MarellaA. TanwarO.P. SahaR. AliM.R. SrivastavaS. AkhterM. ShaquiquzzamanM. AlamM.M. Quinoline: A versatile heterocyclic.Saudi Pharm. J.201321111210.1016/j.jsps.2012.03.002
    [Google Scholar]
  31. YadavP. ShahK. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry.Bioorg. Chem.202110910463910.1016/j.bioorg.2021.10463933618829
    [Google Scholar]
  32. BowrojuS.K. MainaliN. AyyadevaraS. PenthalaN.R. KrishnamachariS. KakrabaS. ReisR.J.S. CrooksP.A. Design and synthesis of novel hybrid 8-hydroxy quinoline-indole derivatives as inhibitors of Aβ self-aggregation and metal chelation-induced Aβ aggregation.Molecules20202516361010.3390/molecules2516361032784464
    [Google Scholar]
  33. MantoaniS.P. ChierritoT.P.C. VilelaA.F.L. CardosoC.L. MartínezA. CarvalhoI. Novel triazole-quinoline derivatives as selective dual binding site acetylcholinesterase inhibitors.Molecules.201621219310.3390/molecules21020193
    [Google Scholar]
  34. ShahM.S. Najam-ul-HaqM. ShahH.S. Farooq RizviS.U. IqbalJ. Quinoline containing chalcone derivatives as cholinesterase inhibitors and their in silico modeling studies.Comput. Biol. Chem.20187631031710.1016/j.compbiolchem.2018.08.00330142564
    [Google Scholar]
  35. AdlardP.A. ChernyR.A. FinkelsteinD.I. GautierE. RobbE. CortesM. VolitakisI. LiuX. SmithJ.P. PerezK. LaughtonK. LiQ.X. CharmanS.A. NicolazzoJ.A. WilkinsS. DelevaK. LynchT. KokG. RitchieC.W. TanziR.E. CappaiR. MastersC.L. BarnhamK.J. BushA.I. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta.Neuron2008591435510.1016/j.neuron.2008.06.01818614028
    [Google Scholar]
  36. BarthA. VogtA.G. dos ReisA.S. PinzM.P. KrügerR. DominguesW.B. AlvesD. CamposV.F. PintonS. ParoulN. WilhelmE.A. LucheseC. 7-Chloro-4-(bhenylselanyl) quinoline with memory enhancer action in aging rats: modulation of neuroplasticity, acetylcholinesterase activity, and cholesterol levels.Mol. Neurobiol.20195696398640810.1007/s12035‑019‑1530‑530805835
    [Google Scholar]
  37. SangZ. PanW. WangK. MaQ. YuL. LiuW. Design, synthesis and biological evaluation of 3,4-dihydro-2(1 H )-quinoline- O -alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.201725123006301710.1016/j.bmc.2017.03.07028487125
    [Google Scholar]
  38. ZaibS. MunirR. YounasM.T. KausarN. IbrarA. AqsaS. ShahidN. AsifT.T. AlsaabH.O. KhanI. Hybrid quinoline-thiosemicarbazone therapeutics as a new treatment opportunity for Alzheimer’s disease-synthesis, in vitro cholinesterase inhibitory potential and computational modeling analysis.Molecules20212621657310.3390/molecules2621657334770983
    [Google Scholar]
  39. DuarteY. FonsecaA. GutiérrezM. Adasme-CarreñoF. Muñoz-GutierrezC. Alzate-MoralesJ. SantanaL. UriarteE. ÁlvarezR. MatosM.J. Novel coumarin-quinoline hybrids: design of multitarget compounds for Alzheimer’s disease.ChemistrySelect20194255155810.1002/slct.201803222
    [Google Scholar]
  40. YurttaşL. KubilayA. EvrenA.E. Kısacıkİ. Karaca GençerH. Synthesis of some novel 3,4,5-trisubstituted triazole derivatives bearing quinoline ring and evaluation of their antimicrobial activity.Phosphorus Sulfur Silicon Relat. Elem.2020195976777310.1080/10426507.2020.1756808
    [Google Scholar]
  41. YurttaşL. BülbülE.F. TekinkocaS. DemirayakŞ. Antimicrobial activity evaluation of new 1,3,4-oxadiazole derivatives.ACTA Pharmaceutica Sciencia20175524510.23893/1307‑2080.APS.05511
    [Google Scholar]
  42. KaplancikliZ.A. YurttaşL. ÖzdemirA. Turan-ZitouniG. İşcanG. AkalınG. Abu MohsenU. Synthesis, anticandidal activity and cytotoxicity of some tetrazole derivatives.J. Enzyme Inhib. Med. Chem.2014291434810.3109/14756366.2012.75236323323990
    [Google Scholar]
  43. YurttaşL. ÖzkayY. Akalin-ÇiftçiG. Ulusoylar-YildirimŞ. Synthesis and anticancer activity evaluation of N-[4-(2-methylthiazol-4-yl)phenyl]acetamide derivatives containing (benz)azole moiety.J. Enzyme. Inhib. Med. Chem.201429217518410.3109/14756366.2013.763253
    [Google Scholar]
  44. ZhengQ.Z. ZhangX.M. XuY. ChengK. JiaoQ.C. ZhuH.L. Synthesis, biological evaluation, and molecular docking studies of 2-chloropyridine derivatives possessing 1,3,4-oxadiazole moiety as potential antitumor agents.Bioorg. Med. Chem.201018227836784110.1016/j.bmc.2010.09.05120947362
    [Google Scholar]
  45. DemirayakŞ. ŞahinZ. ErtaşM. BülbülE.F. BenderC. BiltekinS.N. BerkB. SağlıkB.N. LeventS. YurttaşL. Novel thiazole-piperazine derivatives as potential cholinesterase inhibitors.J. Heterocycl. Chem.201956123370338610.1002/jhet.3734
    [Google Scholar]
  46. SağlıkB.N. IlgınS. ÖzkayY. Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes.Eur. J. Med. Chem.20161241026104010.1016/j.ejmech.2016.10.04227783974
    [Google Scholar]
  47. OsmaniyeD. EvrenA.E. SağlıkB.N. LeventS. ÖzkayY. KaplancıklıZ.A. Design, synthesis, biological activity, molecular docking, and molecular dynamics of novel benzimidazole derivatives as potential AChE/MAO-B dual inhibitors.Arch. Pharm. (Weinheim)20223553210045010.1002/ardp.20210045034931332
    [Google Scholar]
  48. SağlıkB.N. Kaya ÇavuşoğluB. OsmaniyeD. LeventS. Acar ÇevikU. IlgınS. ÖzkayY. KaplancıklıZ.A. ÖztürkY. In vitro and in silico evaluation of new thiazole compounds as monoamine oxidase inhibitors.Bioorg. Chem.2019859710810.1016/j.bioorg.2018.12.01930605888
    [Google Scholar]
  49. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  50. CheungJ. RudolphM.J. BurshteynF. CassidyM.S. GaryE.N. LoveJ. FranklinM.C. HeightJ.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands.J. Med. Chem.20125522102821028610.1021/jm300871x23035744
    [Google Scholar]
  51. EvrenA.E. NuhaD. DawbaaS. SağlıkB.N. YurttaşL. Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors.Eur. J. Med. Chem.202222911409710.1016/j.ejmech.2021.11409734998057
    [Google Scholar]
  52. ArielN. OrdentlichA. BarakD. BinoT. VelanB. ShaffermanA. The ‘aromatic patch’ of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors.Biochem. J.199833519510210.1042/bj33500959742217
    [Google Scholar]
  53. OrdentlichA. BarakD. KronmanC. FlashnerY. LeitnerM. SegallY. ArielN. CohenS. VelanB. ShaffermanA. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket.J. Biol. Chem.199326823170831709510.1016/S0021‑9258(19)85305‑X8349597
    [Google Scholar]
  54. De AlmeidaJ.S.F.D. DolezalR. KrejcarO. KucaK. MusilekK. JunD. FrançaT.C.C. Molecular modeling studies on the interactions of aflatoxin B1 and its metabolites with human acetylcholinesterase. Part II: Interactions with the catalytic anionic site (CAS).Toxins (Basel)2018101038910.3390/toxins1010038930257474
    [Google Scholar]
  55. SahinZ. ErtasM. BenderC. BülbülE.F. BerkB. BiltekinS.N. YurttaşL. DemirayakŞ. Thiazole-substituted benzoylpiperazine derivatives as acetylcholinesterase inhibitors.Drug Dev. Res.201879840642510.1002/ddr.2148130343499
    [Google Scholar]
  56. SinghY.P. TejG.N.V.C. PandeyA. PriyaK. PandeyP. ShankarG. NayakP.K. RaiG. ChittiboyinaA.G. DoerksenR.J. VishwakarmaS. ModiG. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer’s disease.Eur. J. Med. Chem.202019811225710.1016/j.ejmech.2020.11225732375073
    [Google Scholar]
  57. DurmazŞ. EvrenA.E. SağlıkB.N. YurttaşL. TayN.F. Synthesis, anticholinesterase activity, molecular docking, and molecular dynamic simulation studies of 1,3,4-oxadiazole derivatives.Arch. Pharm. (Weinheim)202235511220029410.1002/ardp.20220029435972839
    [Google Scholar]
  58. PeitzikaS.C. PontikiE. A review on recent approaches on molecular docking studies of novel compounds targeting acetylcholinesterase in Alzheimer disease.Molecules2023283108410.3390/molecules2803108436770750
    [Google Scholar]
  59. ChiodiD. IshiharaY. “Magic Chloro”: Profound effects of the chlorine atom in drug discovery.J. Med. Chem.20236685305533110.1021/acs.jmedchem.2c0201537014977
    [Google Scholar]
  60. ChiodiD. IshiharaY. The role of the methoxy group in approved drugs.Eur. J. Med. Chem.202427311636411636410.1016/j.ejmech.2024.11636438781921
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673333159240815061359
Loading
/content/journals/cmc/10.2174/0109298673333159240815061359
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test