Skip to content
2000
Volume 32, Issue 22
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The search for effective painkillers has led to intensive research, with a particular focus on the transient receptor potential vanilloid-1 (TRPV1) channel as a possible target.

Methods

One promising candidate is ononin, which is investigated for its binding with TRPV1 through a 200-ns molecular dynamic simulation and analysed root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen-bond interactions, radius of gyration (RadGyr), and MM-PBSA energy calculations. The results were further validated experimentally calcium imaging studies.

Results

Molecular dynamics revealed that the ononin-TRPV1 complex achieved stable binding within a remarkably short time of approximately 38 ns while maintaining the degree of compactness of the receptor throughout a 200 ns simulation period. In contrast, the capsazepine-TRPV1 complex displayed more significant structural deviations during the whole simulation. Moreover, MM-PBSA energy calculations showed a relatively strong binding affinity between ononin and TRPV1, mainly attributed to favourable hydrophobic interactions. Pre-incubation of dorsal root ganglia (DRG) neurons with ononin (1 and 10 µM) or capsazepine (10 µM) for 4 min prior to stimulation with capsaicin significantly reduced capsaicin-evoked calcium responses. No significant difference between capsazepine and ononin was found at a concentration of 10 µM.

Conclusion

Overall, this research demonstrates the potential of ononin as a potential antagonist for developing analgesics targeting TRPV1. Hence, and to our best knowledge, this study represents the first report of ononin’s antagonistic activity towards TRPV1.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673331246241023095720
2024-01-23
2025-10-24
Loading full text...

Full text loading...

References

  1. VirgenC.G. KelkarN. TranA. RosaC.M. Cruz-TopeteD. AmatyaS. CornettE.M. UritsI. ViswanathO. KayeA.D. Pharmacological management of cancer pain: Novel therapeutics.Biomed. Pharmacother.202215611387110.1016/j.biopha.2022.11387136272265
    [Google Scholar]
  2. BlendonR.J. BensonJ.M. The Public and the Opioid-Abuse Epidemic.N. Engl. J. Med.2018378540741110.1056/NEJMp171452929298128
    [Google Scholar]
  3. KissinI. The development of new analgesics over the past 50 years: A lack of real breakthrough drugs.Anesth. Analg.2010110378078910.1213/ANE.0b013e3181cde88220185657
    [Google Scholar]
  4. AbbasM.A. Modulation of TRPV1 channel function by natural products in the treatment of pain.Chem. Biol. Interact.202033010917810.1016/j.cbi.2020.10917832738201
    [Google Scholar]
  5. NishioN. TaniguchiW. SugimuraY.K. TakiguchiN. YamanakaM. KiyoyukiY. YamadaH. MiyazakiN. YoshidaM. NakatsukaT. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels.Neuroscience201324720121210.1016/j.neuroscience.2013.05.02323707800
    [Google Scholar]
  6. GaramiA. ShimanskyY.P. RumbusZ. VizinR.C.L. FarkasN. HegyiJ. SzakacsZ. SolymarM. CsenkeyA. ChicheD.A. KapilR. KyleD.J. Van HornW.D. HegyiP. RomanovskyA.A. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis.Pharmacol. Ther.202020810747410.1016/j.pharmthera.2020.10747431926897
    [Google Scholar]
  7. Moiseenkova-BellV.Y. StanciuL.A. SeryshevaI.I. TobeB.J. WenselT.G. Structure of TRPV1 channel revealed by electron cryomicroscopy.Proc. Natl. Acad. Sci. USA2008105217451745510.1073/pnas.071183510518490661
    [Google Scholar]
  8. AbdallaS.S. HarbA.A. AlmasriI.M. BustanjiY.K. The interaction of TRPV1 and lipids: Insights into lipid metabolism.Front Physiol.202213106602310.1016/j.ceca.2019.102057
    [Google Scholar]
  9. ShalanN. KhaleelA. Al-SamydaiA. The role of capsaicin and transient receptor potential vanilloid 1 gene activation in preventing kidney stone: A comprehensive review.Trop. J. Pharm. Res.20242361031103710.4314/tjpr.v23i6.14
    [Google Scholar]
  10. OsmanS. FettW. Isoflavone glucoside stress metabolites of soybean leaves.Phytochemistry19832291921192310.1016/0031‑9422(83)80013‑2
    [Google Scholar]
  11. BenedecD. VlaseL. OnigaI. ToiuA. TamasM. TiperciucB. Isoflavonoids from Glycyrrhiza sp. and Ononis spinosa .Farmacia2012605615620
    [Google Scholar]
  12. KonarN. AygunesD. ArtikN. ErmanM. CoksariG. PoyrazogluE.S. Determination of Phytoestrogenic Compounds of Chickpea (Cicer arientinum L.) By Acid Hydrolysis and LC-MS/MS.International Conference on Food, Agriculture and Biology (FAB-2014)June 11-12, 2014Kuala Lumpur (Malaysia)2014
    [Google Scholar]
  13. VijayalakshmiA. MadhiraG. Anti-psoriatic activity of flavonoids from Cassia tora leaves using the rat ultraviolet B ray photodermatitis model.Rev. Bras. Farmacogn.201424332232910.1016/j.bjp.2014.07.010
    [Google Scholar]
  14. ChangX. ChenX. GuoY. GongP. PeiS. WangD. WangP. WangM. ChenF. Advances in Chemical Composition, Extraction Techniques, Analytical Methods, and Biological Activity of Astragali Radix. Molecules2022273105810.3390/molecules2703105835164321
    [Google Scholar]
  15. CaoJ. LiT. LiuT. ZhengY. LiuJ. YangQ. LiX. LuW. WeiY. LiW. A Study of the Mechanisms and Characteristics of Fluorescence Enhancement for the Detection of Formononetin and Ononin.Molecules2023284154310.3390/molecules2804154336838530
    [Google Scholar]
  16. MladenovaS.G. SavovaM.S. MarchevA.S. FerranteC. OrlandoG. WabitschM. GeorgievM.I. Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPARγ in human adipocytes.Biomed. Pharmacother.202214911290810.1016/j.biopha.2022.11290835367764
    [Google Scholar]
  17. ChenX. ZhangM. AhmedM. SurapaneniK.M. VeeraraghavanV.P. ArulselvanP. Neuroprotective effects of ononin against the aluminium chloride-induced Alzheimer’s disease in rats.Saudi J. Biol. Sci.20212884232423910.1016/j.sjbs.2021.06.03134354404
    [Google Scholar]
  18. LeeW. ChooS. SimH. BaeJ.S. Inhibitory Activities of Ononin on Particulate Matter-induced Oxidative Stress.Biotechnol. Bioprocess Eng.; BBE202126220821510.1007/s12257‑020‑0294‑0
    [Google Scholar]
  19. YuD.H. BaoY.M. anL.J. YangM. Protection of PC12 cells against superoxide-induced damage by isoflavonoids from Astragalus mongholicus .Biomed. Environ. Sci.2009221505410.1016/S0895‑3988(09)60022‑219462688
    [Google Scholar]
  20. GongG. GanesanK. XiongQ. ZhengY. Antitumor Effects of Ononin by Modulation of Apoptosis in Non-Small-Cell Lung Cancer through Inhibiting PI3K/Akt/mTOR Pathway.Oxid. Med. Cell. Longev.2022202211710.1155/2022/512244836605098
    [Google Scholar]
  21. GongG. GanesanK. XiongQ. ZhengY. Anti-Invasive and Anti-Migratory Effects of Ononin on Human Osteosarcoma Cells by Limiting the MMP2/9 and EGFR-Erk1/2 Pathway.Cancers (Basel)202315375810.3390/cancers1503075836765716
    [Google Scholar]
  22. YeB. MaJ. LiZ. LiY. HanX. Ononin Shows Anticancer Activity Against Laryngeal Cancer via the Inhibition of ERK/JNK/p38 Signaling Pathway.Front. Oncol.20221293964610.3389/fonc.2022.93964635912256
    [Google Scholar]
  23. ZuoF. Anti-breast Cancer Effect of Ononin and Its Mechanism in Vitro .Chin. Pharm. Sci.202024194198
    [Google Scholar]
  24. GongG. ZhengY. KongX. WenZ. Anti-angiogenesis Function of Ononin via Suppressing the MEK/Erk Signaling Pathway.J. Nat. Prod.20218461755176210.1021/acs.jnatprod.1c0000834029083
    [Google Scholar]
  25. MengY. JiJ. XiaoX. LiM. NiuS. HeY. TongG. PanC. Ononin induces cell apoptosis and reduces inflammation in rheumatoid arthritis fibroblast-like synoviocytes by alleviating MAPK and NF-κB signaling pathways.Acta Biochim. Pol.202168223924510.18388/abp.2020_552834075738
    [Google Scholar]
  26. XuF. ZhaoL.J. LiaoT. LiZ.C. WangL.L. LinP.Y. JiangR. WeiQ.J. Ononin ameliorates inflammation and cartilage degradation in rat chondrocytes with IL-1β-induced osteoarthritis by downregulating the MAPK and NF-κB pathways.BMC Complement. Med. Ther.20222212510.1186/s12906‑022‑03504‑535086536
    [Google Scholar]
  27. DongL. YinL. ZhangY. FuX. LuJ. Anti-inflammatory effects of ononin on lipopolysaccharide-stimulated RAW 264.7 cells.Mol. Immunol.201783465110.1016/j.molimm.2017.01.00728095349
    [Google Scholar]
  28. YuT. LuX. LiangY. YangL. YinY. ChenH. Ononin alleviates DSS-induced colitis through inhibiting NLRP3 inflammasome via triggering mitophagy.Immun. Inflamm. Dis.2023112e77610.1002/iid3.77636840499
    [Google Scholar]
  29. YanW. HuangJ. GaoY. ZhangJ. LeiL. MaJ. MaZ. Ononin inhibits cerebral ischemia/reperfusion injury via suppression of inflammatory responses in experimental rats and SH-SY5Y cells.Appl. Nanosci.202212110911810.1007/s13204‑021‑02184‑w
    [Google Scholar]
  30. DongL. YuL. LiuA. AlahmadiT.A. AlmoallimH.S. DurairajK. Ononin mitigates streptozotocin-induced diabetic nephropathy in rats via alleviating oxidative stress and inflammatory markers.J. King Saud Univ. Sci.202234610202910.1016/j.jksus.2022.102029
    [Google Scholar]
  31. AbbasM.A. JaffalS.M. Antinociceptive Action of Ononis spinosa Leaf Extract in Mouse Pain Models. Acta Pol. Pharm. -.Drug Res.2019762299304
    [Google Scholar]
  32. YõlmazB.S. ÖzbekH. ÇitoğluG.S. UğraşS. Bayramİ. ErdoğanE. Analgesic and hepatotoxic effects of Ononis spinosa L.Phytother. Res.200620650050310.1002/ptr.189116619345
    [Google Scholar]
  33. JaffalS.M. Al-NajjarB.O. AbbasM.A. Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation.Korean J. Pain202134326227010.3344/kjp.2021.34.3.26234193633
    [Google Scholar]
  34. GaoY. CaoE. JuliusD. ChengY. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.Nature2016534760734735110.1038/nature1796427281200
    [Google Scholar]
  35. BIOVIA Discovery Studio.2016Available from: https://www.3ds.com/products/biovia/discovery-studio
  36. JaffalS.M. OranS. AlsalemM. Al-NajjarB.O. Effect of Arbutus andrachne L. methanolic leaf extract on TRPV1 function: Experimental and molecular docking studies.J. Appl. Pharm. Sci.2022121010.7324/JAPS.2022.121007.
    [Google Scholar]
  37. CaseD.A. BelfonK. Ben-ShalomI.Y. BrozellS.R. CeruttiD.S. CheathamT.E. DardenT.A. DukeR.E. GiambasuG. GilsonM.K. Amber 2020 Reference ManualSan Francisco, USAUniversity of California2020
    [Google Scholar]
  38. JakalianA. BushB.L. JackD.B. BaylyC.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method.J. Comput. Chem.200021213214610.1002/(SICI)1096‑987X(20000130)21:2<132::AID‑JCC5>3.0.CO;2‑P
    [Google Scholar]
  39. JakalianA. JackD.B. BaylyC.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation.J. Comput. Chem.200223161623164110.1002/jcc.1012812395429
    [Google Scholar]
  40. WangJ. WolfR.M. CaldwellJ.W. KollmanP.A. CaseD.A. Development and testing of a general amber force field.J. Comput. Chem.20042591157117410.1002/jcc.2003515116359
    [Google Scholar]
  41. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  42. RoeD.R. CheathamT.E.III PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.J. Chem. Theory Comput.2013973084309510.1021/ct400341p26583988
    [Google Scholar]
  43. MillerB.R.III McGeeT.D.Jr SwailsJ.M. HomeyerN. GohlkeH. RoitbergA.E. MMPBSA.py : An Efficient Program for End-State Free Energy Calculations.J. Chem. Theory Comput.2012893314332110.1021/ct300418h26605738
    [Google Scholar]
  44. AlsalemM. MillnsP. AltarifiA. El-SalemK. ChapmanV. KendallD.A. Anti-nociceptive and desensitizing effects of olvanil on capsaicin-induced thermal hyperalgesia in the rat.BMC Pharmacol. Toxicol.20161713110.1186/s40360‑016‑0074‑927439609
    [Google Scholar]
  45. SanechikaS. ShimoboriC. OhbuchiK. Identification of herbal components as TRPA1 agonists and TRPM8 antagonists.J. Nat. Med.202175371772510.1007/s11418‑021‑01515‑z33877504
    [Google Scholar]
  46. Lima CavendishR. de Souza SantosJ. Belo NetoR. Oliveira PaixãoA. Valéria OliveiraJ. Divino de AraujoE. Berretta e SilvaA.A. Maria ThomazziS. Cordeiro CardosoJ. Zanardo GomesM. Antinociceptive and anti-inflammatory effects of Brazilian red propolis extract and formononetin in rodents.J. Ethnopharmacol.201517312713310.1016/j.jep.2015.07.02226192808
    [Google Scholar]
  47. FangY. YeJ. ZhaoB. SunJ. GuN. ChenX. RenL. ChenJ. CaiX. ZhangW. YangY. CaoP. Formononetin ameliorates oxaliplatin-induced peripheral neuropathy via the KEAP1-NRF2-GSTP1 axis.Redox Biol.20203610167710.1016/j.redox.2020.10167732823168
    [Google Scholar]
  48. StraubI. KrügelU. MohrF. TeichertJ. RizunO. KonradM. OberwinklerJ. SchaeferM. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo .Mol. Pharmacol.201384573675010.1124/mol.113.08684324006495
    [Google Scholar]
  49. StraubI. MohrF. StabJ. KonradM. PhilippS.E. OberwinklerJ. SchaeferM. Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3.Br. J. Pharmacol.201316881835185010.1111/bph.1207623190005
    [Google Scholar]
  50. HansonS.M. NewsteadS. SwartzK.J. SansomM.S.P. Capsaicin interaction with TRPV1 channels in a lipid bilayer: Molecular dynamics simulation.Biophys. J.201510861425143410.1016/j.bpj.2015.02.01325809255
    [Google Scholar]
  51. Gonzalez-NiloF.D. Caceres-MolinaJ. Bravo-MoragaF. SepulvedaR. Diaz-FranulicI. Structural characterization of ligand-specific interactions in TRPV1 channel: Gating mechanism by capsaicin and capsazepine.Biophys. J.20161103284a10.1016/j.bpj.2015.11.1537
    [Google Scholar]
  52. CassidyA. BrownJ.E. HawdonA. FaughnanM.S. KingL.J. MillwardJ. Zimmer-NechemiasL. WolfeB. SetchellK.D.R. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods.J. Nutr.20061361455110.1093/jn/136.1.4516365057
    [Google Scholar]
  53. SinghS.P. Wahajuddin TewariD. PradhanT. JainG.K. PAMPA permeability, plasma protein binding, blood partition, pharmacokinetics and metabolism of formononetin, a methoxylated isoflavone.Food Chem. Toxicol.20114951056106210.1016/j.fct.2011.01.01221266188
    [Google Scholar]
  54. GampeN. DávidD.N. Takács-NovákK. BacklundA. BéniS. In vitro and in silico evaluation of Ononis isoflavonoids as molecules targeting the central nervous system.PLoS One2022173e026563910.1371/journal.pone.026563935298568
    [Google Scholar]
  55. LuoL.Y. FanM.X. ZhaoH.Y. LiM.X. WuX. GaoW.Y. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models.J. Agric. Food Chem.201866112917292410.1021/acs.jafc.8b0003529504397
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673331246241023095720
Loading
/content/journals/cmc/10.2174/0109298673331246241023095720
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): analgesic; calcium imaging; capsazepine; molecular dynamics; ononin; TRPV1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test