Skip to content
2000
Volume 32, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.

Objective

This study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-dihydrobenzofuran-5-carboxamide as potential anti-can cer agents.

Methods

The synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated against MCF-7 cell lines. Compounds and were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.

Results

Compounds and demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.

Conclusion

Synthesized compounds displayed activity against MCF-7 cell lines, supporting findings from predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673329232241007101050
2024-10-11
2025-10-25
Loading full text...

Full text loading...

References

  1. UrruticoecheaA. AlemanyR. BalartJ. VillanuevaA. ViñalsF. CapelláG. Recent advances in cancer therapy: An overview.Curr. Pharm. Des.201016131010.2174/13816121078994184720214614
    [Google Scholar]
  2. GhoshA. GhoshD. MukerjeeN. MaitraS. DasP. DeyA. SharkawiS.M.Z. ZouganelisG.D. AlexiouA. ChaudhariS.Y. SharmaR. WaghmareS.A. PapadakisM. BatihaG.E.S. The efficient activity of glabridin and its derivatives against EGFR-mediated inhibition of breast cancer.Curr. Med. Chem.202431557359410.2174/092986733066623030312094236872353
    [Google Scholar]
  3. ShaabanM. OthmanH. IbrahimT. AliM. AbdelmoatyM. Abdel-KawiA.R. MostafaA. El NakeebA. EmamH. RefaatA. Immune checkpoint regulators: A new era toward promising cancer therapy.Curr. Cancer Drug Targets202020642946010.2174/156800962066620042208191232321404
    [Google Scholar]
  4. ZaromytidouA.I. Reflecting on the golden age of cancer research.Nat. Cancer20212121271127510.1038/s43018‑021‑00313‑635121928
    [Google Scholar]
  5. ShastriS. ChatterjeeB. ThakurS.S. Achievements in cancer research and its therapeutics in hundred years.Curr. Top. Med. Chem.201919171545156210.2174/156802661966619073009303431362690
    [Google Scholar]
  6. AhmedS. Innovation and discovery: A 30-year journey in advancing cancer care.Curr. Oncol.20243142109211110.3390/curroncol3104015638668059
    [Google Scholar]
  7. YuzhalinA.E. Redefining cancer research for therapeutic breakthroughs.Br. J. Cancer202413071078108210.1038/s41416‑024‑02634‑638424166
    [Google Scholar]
  8. AfzaN. TrivediP. BishnoiA. ParveenS. KumarS. BanerjeeM. A convergent multicomponent synthesis, spectral analysis, molecular modelling and docking studies of novel 2H-pyrido [1,2-a] pyrimidine-2,4(3H)-dione derivatives as potential anti-cervical cancer agents.J. Mol. Struct.2023127913498210.1016/j.molstruc.2023.134982
    [Google Scholar]
  9. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  10. KuchenbaeckerK.B. HopperJ.L. BarnesD.R. PhillipsK.A. MooijT.M. Roos-BlomM.J. JervisS. van LeeuwenF.E. MilneR.L. AndrieuN. GoldgarD.E. TerryM.B. RookusM.A. EastonD.F. AntoniouA.C. McGuffogL. EvansD.G. BarrowdaleD. FrostD. AdlardJ. OngK. IzattL. TischkowitzM. EelesR. DavidsonR. HodgsonS. EllisS. NoguesC. LassetC. Stoppa-LyonnetD. FrickerJ.P. FaivreL. BerthetP. HooningM.J. van der KolkL.E. KetsC.M. AdankM.A. JohnE.M. ChungW.K. AndrulisI.L. SoutheyM. DalyM.B. BuysS.S. OsorioA. EngelC. KastK. SchmutzlerR.K. CaldesT. JakubowskaA. SimardJ. FriedlanderM.L. McLachlanS.A. MachackovaE. ForetovaL. TanY.Y. SingerC.F. OlahE. GerdesA.M. ArverB. OlssonH. BRCA1 and BRCA2 Cohort Consortium Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers.JAMA2017317232402241610.1001/jama.2017.711228632866
    [Google Scholar]
  11. AntoniouA. PharoahP.D.P. NarodS. RischH.A. EyfjordJ.E. HopperJ.L. LomanN. OlssonH. JohannssonO. BorgÅ. PasiniB. RadiceP. ManoukianS. EcclesD.M. TangN. OlahE. Anton-CulverH. WarnerE. LubinskiJ. GronwaldJ. GorskiB. TuliniusH. ThorlaciusS. EerolaH. NevanlinnaH. SyrjäkoskiK. KallioniemiO.P. ThompsonD. EvansC. PetoJ. LallooF. EvansD.G. EastonD.F. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: A combined analysis of 22 studies.Am. J. Hum. Genet.20037251117113010.1086/37503312677558
    [Google Scholar]
  12. ChenS. ParmigianiG. Meta-Analysis of BRCA1 and BRCA2 Penetrance.J. Clin. Oncol.200725111329133310.1200/JCO.2006.09.106617416853
    [Google Scholar]
  13. QiP. JiangJ. QiH. JinY. ShenQ. WuY. SongH. ZhangW. Synthesis and antiproliferative activity of new polyoxo 2-benzyl-2,3-dihydrobenzofurans and their related compounds.Lett. Drug Des. Discov.201310988689410.2174/15701808113109990011
    [Google Scholar]
  14. IkedaZ. KakegawaK. KikuchiF. ItonoS. OkiH. YashiroH. HiyoshiH. TsuchimoriK. HamagamiK. WatanabeM. SasakiM. IshiharaY. TohyamaK. KitazakiT. MaekawaT. SasakiM. Design, synthesis, and biological evaluation of a novel series of 4-guanidinobenzoate derivatives as enteropeptidase inhibitors with low systemic exposure for the treatment of obesity.J. Med. Chem.202265128456847710.1021/acs.jmedchem.2c0046335686954
    [Google Scholar]
  15. JayanJ. ChandranN. ThekkantavidaA.C. AbdelgawadM.A. GhoneimM.M. ShakerM.E. UniyalP. BennyF. ZachariahS.M. KumarS. KimH. MathewB. Piperidine: A versatile heterocyclic ring for developing monoamine oxidase inhibitors.ACS Omega2023841377313775110.1021/acsomega.3c0588337867639
    [Google Scholar]
  16. Di MiccoS. SpataforaC. CardulloN. RiccioR. FischerK. PergolaC. KoeberleA. WerzO. ChalalM. Vervandier-FasseurD. TringaliC. BifulcoG. 2,3-dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors.Bioorg. Med. Chem.201624482082610.1016/j.bmc.2016.01.00226777299
    [Google Scholar]
  17. DeyS.P. SepayN. MallikA.K. PatraA. Novel chalcones as Bcl-2 inhibitor in lung cancer: Docking, design and synthesis of 2,3-tetrasubstituted-2,3-dihydrobenzofuran-3-carboxamides.J. Chem. Sci.2020132110510.1007/s12039‑020‑01812‑2
    [Google Scholar]
  18. VelagapudiU.K. LangelierM.F. Delgado-MartinC. DiolaitiM.E. BakkerS. AshworthA. PatelB.A. ShaoX. PascalJ.M. TaleleT.T. Design and synthesis of poly(ADP-ribose) polymerase inhibitors: Impact of adenosine pocket-binding motif appendage to the 3-oxo-2,3-dihydrobenzofuran-7-carboxamide on potency and selectivity.J. Med. Chem.201962115330535710.1021/acs.jmedchem.8b0170931042381
    [Google Scholar]
  19. PatelM.R. BhattA. SteffenJ.D. CherguiA. MuraiJ. PommierY. PascalJ.M. TrombettaL.D. FronczekF.R. TaleleT.T. Discovery and structure-activity relationship of novel 2,3-dihydrobenzofuran-7-carboxamide and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide derivatives as poly(ADP-ribose)polymerase-1 inhibitors.J. Med. Chem.201457135579560110.1021/jm500250224922587
    [Google Scholar]
  20. TabbicheA. BouchamaA. ChafaiN. ZaidiF. ChiterC. YahiaouiM. AbizaA. New bis hydrazone: Synthesis, X-ray crystal structure, DFT computations, conformational study and in silico study of the inhibition activity of SARS-CoV-2.J. Mol. Struct.2022126113286510.1016/j.molstruc.2022.13286535345533
    [Google Scholar]
  21. AbdelshaheedM.M. FawzyI.M. Hussein Ibrahim El- SubbaghH.I. YoussefK.M. Piperidine nucleus in the field of drug discoveryFut. J. Pharm. Sci.2021718810.1186/s43094‑021‑00335‑y
    [Google Scholar]
  22. De LucaL. LombardoL. MirabileS. MarrazzoA. DichiaraM. CosentinoG. AmataE. GittoR. Discovery and computational studies of piperidine/piperazine-based compounds endowed with sigma receptor affinity.RSC Med. Chem.20231491734174210.1039/D3MD00291H37731701
    [Google Scholar]
  23. CallejaD.J. KuchelN. LuB.G.C. BirkinshawR.W. KlemmT. DoerflingerM. CooneyJ.P. MackiewiczL. AuA.E. YapY.Q. BlackmoreT.R. KatneniK. CrightonE. NewmanJ. JarmanK.E. CallM.J. LechtenbergB.C. CzabotarP.E. PellegriniM. CharmanS.A. LowesK.N. MitchellJ.P. NachburU. LesseneG. KomanderD. Insights into drug repurposing, as well as specificity and compound properties of piperidine-based SARS-CoV-2 PLpro inhibitors.Front Chem.20221086120910.3389/fchem.2022.86120935494659
    [Google Scholar]
  24. ShenJ. YangX. YuM. XiaoL. ZhangX. SunH. ChenH. PanG. YanY. WangS. LiW. ZhouL. XieQ. YuL. WangY. ShaoL. Discovery, synthesis, biological evaluation and structure-based optimization of novel piperidine derivatives as acetylcholine-binding protein ligands.Acta Pharmacol. Sin.2017381146155https://www.nature.com/articles/aps201612410.1038/aps.2016.12427917874
    [Google Scholar]
  25. VinayaK. VeereshB. Ananda KumarC. PrasannaD. RanganathaS. Benaka PrasadS. PatilB. RangappaK. Synthesis of novel 1-benzhydryl-4-(3-(piperidin-4-yl)propyl) piperidine sulfonamides as anticonvulsant agents.Lett. Drug Des. Discov.20107210911510.2174/157018010790225868
    [Google Scholar]
  26. SharmaR. SomanS.S. Design and synthesis of sulfonamide derivatives of pyrrolidine and piperidine as anti-diabetic agents.Eur. J. Med. Chem.2015902734235010.1016/j.ejmech.2014.11.04125437620
    [Google Scholar]
  27. FrolovN.A. VereshchaginA.N. Piperidine derivatives: Recent advances in synthesis and pharmacological applications.Int. J. Mol. Sci.2023243293710.3390/ijms2403293736769260
    [Google Scholar]
  28. MadácsiR. KanizsaiI. FehérL. GyurisM. ÓzsváriB. ErdélyiA. WölflingJ. PuskásL. Aromatic sulfonamides containing a condensed piperidine moiety as potential oxidative stress-inducing anticancer agents.Med. Chem.20139791191910.2174/157340641130907000423270324
    [Google Scholar]
  29. Di MatteoM. AmmazzalorsoA. AndreoliF. CaffaI. De FilippisB. FantacuzziM. GiampietroL. MaccalliniC. NencioniA. ParentiM.D. SonciniD. Del RioA. AmorosoR. Synthesis and biological characterization of 3-(imidazol-1-ylmethyl)piperidine sulfonamides as aromatase inhibitors.Bioorg. Med. Chem. Lett.201626133192319410.1016/j.bmcl.2016.04.07827161804
    [Google Scholar]
  30. TorresE. DiLabioG.A. A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP.J. Phys. Chem. Lett.20123131738174410.1021/jz300554y26291852
    [Google Scholar]
  31. MitraH. RoyT.K. Comprehensive benchmark results for the accuracy of basis sets for anharmonic molecular vibrations.J. Phys. Chem. A2020124449203922110.1021/acs.jpca.0c0663433095012
    [Google Scholar]
  32. LuT. ChenF. Multiwfn: A multifunctional wavefunction analyzer.J. Comput. Chem.201233558059210.1002/jcc.2288522162017
    [Google Scholar]
  33. Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. Nbo Version 3.1, Tci. University of Wisconsin, Madison. 1998, 65.
  34. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  35. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  36. van MeerlooJ. KaspersG.J.L. CloosJ. Cell sensitivity assays: The MTT assay.Methods Mol. Biol.201173123724510.1007/978‑1‑61779‑080‑5_2021516412
    [Google Scholar]
  37. RathkeM.W. NowakM. The Horner-Wadsworth-Emmons modification of the Wittig reaction using triethylamine and lithium or magnesium salts.J. Org. Chem.198550152624262610.1021/jo00215a004
    [Google Scholar]
  38. BiscegliaJ.A. OrelliL.R. Recent progress in the Horner-Wadsworth-Emmons reaction.Curr. Org. Chem.201519974477510.2174/1385272819666150311231006
    [Google Scholar]
  39. ChanL.C. CoxB.G. Kinetics of amide formation through carbodiimide/N-hydroxybenzotriazole (HOBt) couplings.J. Org. Chem.200772238863886910.1021/jo701558y17929977
    [Google Scholar]
  40. MajumdarS. DeJ. ChakrabortyA. RoyD. MaitiD.K. A protic ionic liquid catalyzed strategy for selective hydrolytic cleavage of tert-butyloxycarbonyl amine (N-Boc).RSC Advances2015553200320510.1039/C4RA13419B
    [Google Scholar]
  41. KamalA. ReddyJ.S. BharathiE.V. DastagiriD. Base-free monosulfonylation of amines using tosyl or mesyl chloride in water.Tetrahedron Lett.200849234835310.1016/j.tetlet.2007.11.044
    [Google Scholar]
  42. AbdallahA.A.A.M. HaffarD. BenghanemF. GhedjatiS. Synthesis, characterization, antioxidant activities and DFT calculations of 2,4-bis (2-hydroxy-3-methoxy benzaldehyde) diiminotoluene Schiff base.J. Indian Chem. Soc.202320489791010.1007/s13738‑022‑02713‑6
    [Google Scholar]
  43. HaoL. WangJ. ZhaiD. MaP. MaC. PanY. JiangJ. Theoretical study on CL-20-based cocrystal energetic compounds in an external electric field.ACS Omega2020524147671477510.1021/acsomega.0c0164332596614
    [Google Scholar]
  44. ChakrabortyD. ChattarajP.K. Conceptual density functional theory based electronic structure principles.Chem. Sci.202112186264627910.1039/D0SC07017C34084424
    [Google Scholar]
  45. LuT. ChenQ. Realization of conceptual density functional theory and information?theoretic approach in multiwfn program.Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory2022726314710.1039/D0SC07017C34084424
    [Google Scholar]
  46. SlassiS. AarjaneM. AmineA. Synthesis, molecular geometry, Hirshfeld surface analysis, spectroscopic (NMR, UV–visible), DFT and TD-DFT calculations of an azoimidazole-based Schiff base.J. Indian Chem. Soc.202219124789480110.1007/s13738‑022‑02636‑2
    [Google Scholar]
  47. WuA. QiuY. LaiW. FengY. ZhuQ. WangY. JiangL. LeiF. ShenL. DFT, FMO, ESP, molecular docking and molecular dynamics simulations of bis-2-(2-phenethyl)chromone as a potential PPAR agonist.Lett. Org. Chem.202320767868710.2174/1570178620666230131143403
    [Google Scholar]
  48. Sudheer ReddyT. RajaK. Teja reddyK.N. Manubolu SuryaS.B. Synthesis, DFT, ADME and docking studies of Homoegonol and Egonol as potential inhibitors of COVID-19 main protease (6LU7).Results Chem.2023610108410.1016/j.rechem.2023.101084
    [Google Scholar]
  49. SagdincS.G. AkcayB.K. YildizS.Z. IsikI.B. Single-crystal X-ray structural characterization, Hirshfeld surface analysis, electronic properties, NBO, and NLO calculations and vibrational analysis of the monomeric and dimeric forms of 5-nitro-2-oxindole.New J. Chem.20214522100701008810.1039/D1NJ00264C
    [Google Scholar]
  50. FatmaS. RaiS. DeviP. BishnoiA. A combined experimental and theoretical DFT (B3LYP and CAMB3LYP) study on spectral features (FT-IR, NMR, and UV-Visible), first-order hyperpolarizability, NBO and HOMO-LUMO analysis of 4-(dimethylamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one.Lett. Org. Chem.202320431232510.2174/1570178619666220920143033
    [Google Scholar]
  51. AnbukarasiK. XavierS. HasanA.H. ErY.L. JamalisJ. SebastianS. PeriandyS. DFT and molecular docking analysis of newly synthesized compound (2E)-3-[3-(benzyloxy)phenyl]-1-(4′-chlorophenyl)-2-propen-1-one [Bpclpo].Curr. Phys. Chem.2023131377410.2174/1877946812666220928102954
    [Google Scholar]
  52. MahalingamS. MurugesanA. ThiruppathirajaT. LakshmipathiS. MakhanyaT.R. GenganR.M. Green synthesis of benzimidazole derivatives by using zinc boron nitride catalyst and their application from DFT (B3LYP) study.Heliyon2022811e1148010.1016/j.heliyon.2022.e1148036387572
    [Google Scholar]
  53. MirM.A. JassalM.M.S. AndrewsK. Molecular dynamic, Hirshfeld surface, computational quantum and spectroscopic analysis of 4-hydroxy-1-naphthaldehyde.Curr. Organocatal.2024111607010.2174/2213337210666230816091246
    [Google Scholar]
  54. KucukC. YurdakulS. ErdemB. Combined experimental and theoretical spectroscopic properties (FT-IR, FT-Ra, UV-Vis, and NMR), DFT studies, biological activity, molecular docking, and toxicity investigations of 3-methoxy-1-piperazinylbenzene.Lett. Org. Chem.202320545748010.2174/1570178620666221130154652
    [Google Scholar]
  55. ReddyT.S. RajaK. MandapatiK.R. GoliS.R. BabuM.S.S. Efficient approach for the synthesis of aryl vinyl ketones and its synthetic application to mimosifoliol with DFT and Autodocking studies.Molecules20232817621410.3390/molecules2817621437687043
    [Google Scholar]
  56. DexlinX.D.D. TarikaJ.D.D. KumarS.M. MariappanA. BeaulaT.J. Synthesis and DFT computations on structural, electronic and vibrational spectra, RDG analysis and molecular docking of novel anti COVID-19 molecule 3, 5 dimethyl pyrazolium 3, 5 dichloro salicylate.J. Mol. Struct.2021124613116510.1016/j.molstruc.2021.13116536532120
    [Google Scholar]
  57. DanaieE. MasoudiS. MasnabadiN. NMR and FT-IR investigation study and topological analysis of various conformations of 2,5-dimethyl-2,5-dihydroxyl-1,4-dithian using density functional theory method.Curr. Org. Chem.202327131123113110.2174/1385272827666230911115837
    [Google Scholar]
  58. MirM.A. AndrewsK. AshrafM.W. KumarA. KumarD. BishtA. ChauhanR. PrakashS. The molecular structural analysis of biologically important catechol molecule: An integrative perspective from experiments and futuristic tools.Curr. Organocatal.2024111788810.2174/2213337210666230901161332
    [Google Scholar]
  59. LeeK. JangJ. SeoS. LimJ. KimW.Y. Drug-likeness scoring based on unsupervised learning.Chem. Sci. 202213255456510.1039/D1SC05248A35126987
    [Google Scholar]
  60. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  61. GhoseA.K. ViswanadhanV.N. WendoloskiJ.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.J. Comb. Chem.199911556810.1021/cc980007110746014
    [Google Scholar]
  62. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  63. EganW.J. MerzK.M.Jr BaldwinJ.J. Prediction of drug absorption using multivariate statistics.J. Med. Chem.200043213867387710.1021/jm000292e11052792
    [Google Scholar]
  64. MueggeI. HealdS.L. BrittelliD. Simple selection criteria for drug-like chemical matter.J. Med. Chem.200144121841184610.1021/jm015507e11384230
    [Google Scholar]
  65. BaellJ.B. HollowayG.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.J. Med. Chem.20105372719274010.1021/jm901137j20131845
    [Google Scholar]
  66. TahaM. SultanS. HerizalM. FatmiM.Q. SelvarajM. RamasamyK. HalimS.A. LimS.M. RahimF. AshrafK. ShehzadA. Synthesis, anticancer, molecular docking and QSAR studies of benzoylhydrazone.J. Saudi Chem. Soc.20192381168117910.1016/j.jscs.2019.07.007
    [Google Scholar]
  67. SulimovV.B. KutovD.C. SulimovA.V. Advances in docking.Curr. Med. Chem.202026427555758010.2174/092986732566618090411500030182836
    [Google Scholar]
  68. Messias MonteiroA.F. da SilvaF.M. RodriguesT.C.M.L. RamosC.S. ScottiM.T. ScottiL. In silico studies on natural products and derivatives against different types of cancer.Curr. Med. Chem.202431782584710.2174/0929867330666230614153430
    [Google Scholar]
  69. LinC.T. WuL.Y. TsaiF.S. Predictive analysis of Yi- Gai-San’s multifaceted mechanisms for tremor-dominant Parkinson’s disease via network pharmacology and molecular docking validation.Curr. Med. Chem.202431365989601210.2174/010929867329183824031107541538879763
    [Google Scholar]
  70. WilliamsR.S. GloverJ.N.M. Structural consequences of a cancer-causing BRCA1-BRCT missense mutation.J. Biol. Chem.200327842630263510.1074/jbc.M21001920012427738
    [Google Scholar]
  71. PantelejevsT. Zuazua-VillarP. KoczyO. CounsellA.J. WalshS.J. RobertsonN.S. SpringD.R. DownsJ.A. HyvönenM. A recombinant approach for stapled peptide discovery yields inhibitors of the RAD51 recombinase.Chem. Sci. 20231447139151392310.1039/D3SC03331G38075664
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673329232241007101050
Loading
/content/journals/cmc/10.2174/0109298673329232241007101050
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test