Skip to content
2000
image of Protective Effects of Ginsenosides on Drug-induced Cardiotoxicity: A New Therapeutic Approach with Focus on Molecular Mechanisms in Cardio-oncology Field

Abstract

(PG), a staple in traditional medicine in Korea and China, holds a rich history of application for various diseases. Notably, its primary active components, ginsenosides, exhibit diverse therapeutic effects. Chemotherapy-induced side effects pose significant challenges to the treatment outcomes of cancer patients. Current strategies for managing the adverse effects of chemotherapy exhibit limited efficacy and have the potential to induce various detrimental side effects. In the realm of complications, cardiotoxicity poses a serious threat, ranking as the second major contributor to illness and death in individuals suffering cancer. It is linked to various cellular mechanisms such as oxidative stress, inflammation, apoptosis, autophagy, endoplasmic reticulum stress, and aberrant myocardial energy metabolism. Both and experiments confirm that ginsenosides undeniably present non-toxic and efficacious alternatives for addressing chemotherapy-induced side effects, including cardiotoxicity, neurotoxicity, nephrotoxicity, hepatotoxicity, immunotoxicity, and hematopoietic inhibition. Hence, there is a need to produce novel and potent drugs sourced from natural, non-toxic compounds to address the side effects induced by chemotherapy. The emphasis should be on the underlying mechanisms targeting mentioned cellular pathways. In this comprehensive review, we consolidate current knowledge and summarization with this aim and shed light on the future research of PG in cardio-oncology.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673327575250331145643
2025-04-17
2025-11-05
Loading full text...

Full text loading...

References

  1. Mellor H.R. Bell A.R. Valentin J.P. Roberts R.R.A. Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol. Sci. 2011 120 1 14 32 10.1093/toxsci/kfq378 21177772
    [Google Scholar]
  2. Ferdinandy P. Baczkó I. Bencsik P. Giricz Z. Görbe A. Pacher P. Varga Z.V. Varró A. Schulz R. Definition of hidden drug cardiotoxicity: Paradigm change in cardiac safety testing and its clinical implications. Eur. Heart J. 2019 40 22 1771 1777 10.1093/eurheartj/ehy365 29982507
    [Google Scholar]
  3. James W.P.T. Caterson I.D. Coutinho W. Finer N. Van Gaal L.F. Maggioni A.P. Torp-Pedersen C. Sharma A.M. Shepherd G.M. Rode R.A. Renz C.L. SCOUT Investigators Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N. Engl. J. Med. 2010 363 10 905 917 10.1056/NEJMoa1003114 20818901
    [Google Scholar]
  4. Kerr D.J. Dunn J.A. Langman M.J. Smith J.L. Midgley R.S.J. Stanley A. Stokes J.C. Julier P. Iveson C. Duvvuri R. McConkey C.C. VICTOR Trial Group Rofecoxib and cardiovascular adverse events in adjuvant treatment of colorectal cancer. N. Engl. J. Med. 2007 357 4 360 369 10.1056/NEJMoa071841 17652651
    [Google Scholar]
  5. Nissen S.E. Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 2007 356 24 2457 2471 10.1056/NEJMoa072761 17517853
    [Google Scholar]
  6. Schmitz K.H. Prosnitz R.G. Schwartz A.L. Carver J.R. Prospective surveillance and management of cardiac toxicity and health in breast cancer survivors. Cancer 2012 118 S8 Suppl. 2270 2276 10.1002/cncr.27462 22488701
    [Google Scholar]
  7. Dong J. Chen H. Cardiotoxicity of anticancer therapeutics. Front. Cardiovasc. Med. 2018 5 9 10.3389/fcvm.2018.00009 29473044
    [Google Scholar]
  8. Preti H.A. Practical pearls in onco-cardiology. Methodist DeBakey Cardiovasc. J. 2015 11 4 254 10.14797/mdcj‑11‑4‑254 27057298
    [Google Scholar]
  9. Randle P.J. Garland P.B. Hales C.N. Newsholme E.A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963 281 7285 785 789 10.1016/S0140‑6736(63)91500‑9 13990765
    [Google Scholar]
  10. Natarajan V. Chawla R. Mah T. Vivekanandan R. Tan S.Y. Sato P.Y. Mallilankaraman K. Mitochondrial dysfunction in age-related metabolic disorders. Proteomics 2020 20 5-6 1800404 10.1002/pmic.201800404 32131138
    [Google Scholar]
  11. Park H.J. Kim D.H. Park S.J. Kim J.M. Ryu J.H. Ginseng in traditional herbal prescriptions. J. Ginseng Res. 2012 36 3 225 241 10.5142/jgr.2012.36.3.225 23717123
    [Google Scholar]
  12. He J. Wang H. Vijg J. New insights into bioactive compounds of traditional chinese medicines for insulin resistance based on signaling pathways. Chem. Biodivers. 2019 16 9 e1900176 10.1002/cbdv.201900176 31368177
    [Google Scholar]
  13. Zhou Y. Hou J. Liu W. Ren S. Wang Y. Zhang R. Chen C. Wang Z. Li W. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis. Int. Immunopharmacol. 2018 59 21 30 10.1016/j.intimp.2018.03.030 29621733
    [Google Scholar]
  14. He J. Li Y.L. Ginsenoside Rg1 downregulates the shear stress induced MCP-1 expression by inhibiting MAPK signaling pathway. Am. J. Chin. Med. 2015 43 2 305 317 10.1142/S0192415X15500202 25807959
    [Google Scholar]
  15. Chen J. Si M. Wang Y. Liu L. Zhang Y. Zhou A. Wei W. Ginsenoside metabolite compound K exerts anti-inflammatory and analgesic effects via downregulating COX2. Inflammopharmacology 2019 27 1 157 166 10.1007/s10787‑018‑0504‑y 29946770
    [Google Scholar]
  16. He J. Bioactivity-guided fractionation of pine needle reveals catechin as an anti-hypertension agent via inhibiting angiotensin-converting enzyme. Sci. Rep. 2017 7 1 8867 10.1038/s41598‑017‑07748‑x 28827527
    [Google Scholar]
  17. Yang K. Luo Y. Lu S. Hu R. Du Y. Liao P. Sun G. Sun X. Salvianolic Acid B and ginsenoside re synergistically protect against Ox-LDL-induced endothelial apoptosis through the antioxidative and antiinflammatory mechanisms. Front. Pharmacol. 2018 9 662 10.3389/fphar.2018.00662 29973885
    [Google Scholar]
  18. Liu M. Zhang J. Effects of ginsenoside Rb1 and Rg1 on synaptosomal free calcium level, ATPase and calmodulin in rat hippocampus. Chin. Med. J. 1995 108 7 544 547 7555276
    [Google Scholar]
  19. Sun J. Jiao C. Ma Y. Chen J. Wu W. Liu S. Anti-ageing effect of red ginseng revealed by urinary metabonomics using RRLC-Q-TOF-MS. Phytochem. Anal. 2018 29 4 387 397 10.1002/pca.2758 29573298
    [Google Scholar]
  20. Li, D-M.; Wang, F-X.; Yan, F-Q.; Sun, H-P. In vitro anti-infection of ginseng saponin Rb2. Chin. J. Nosocomiol. 2011 21 7 1284 1286
    [Google Scholar]
  21. Chen J.C. Chen L.D. Tsauer W. Tsai C.C. Chen B.C. Chen Y.J. Effects of Ginsenoside Rb2 and Rc on inferior human sperm motility in vitro. Am. J. Chin. Med. 2001 29 1 155 160 10.1142/S0192415X01000174 11321473
    [Google Scholar]
  22. Battinelli L. Mascellino M. Martino M. Lu M. Mazzanti G. Antimicrobial activity of ginsenosides. Pharm. Pharmacol. Commun. 1998 4 8 411 413
    [Google Scholar]
  23. Yu S.E. Mwesige B. Yi Y.S. Yoo B.C. Ginsenosides: The need to move forward from bench to clinical trials. J. Ginseng Res. 2019 43 3 361 367 10.1016/j.jgr.2018.09.001 31308807
    [Google Scholar]
  24. Lee I.S. Kang K.S. Kim S.Y. Panax ginseng pharmacopuncture: Current status of the research and future challenges. Biomolecules 2019 10 1 33 10.3390/biom10010033 31881709
    [Google Scholar]
  25. Rokot N.T. Kairupan T.S. Cheng K.C. Runtuwene J. Kapantow N.H. Amitani M. Morinaga A. Amitani H. Asakawa A. Inui A. A role of ginseng and its constituents in the treatment of central nervous system disorders. Evid. Based Complement. Alternat. Med. 2016 2016 1 2614742 10.1155/2016/2614742 27630732
    [Google Scholar]
  26. Chen S. Li X. Wang Y. Mu P. Chen C. Huang P. Liu D. Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion-induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway. Mol. Med. Rep. 2019 19 5 3633 3641 10.3892/mmr.2019.10018 30864725
    [Google Scholar]
  27. Wang H. Zheng Y. Sun Q. Zhang Z. Zhao M. Peng C. Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J. Nanobiotechnology 2021 19 1 322 10.1186/s12951‑021‑01062‑5 34654430
    [Google Scholar]
  28. Ahuja A. Kim J.H. Kim J.H. Yi Y.S. Cho J.Y. Functional role of ginseng-derived compounds in cancer. J. Ginseng Res. 2018 42 3 248 254 10.1016/j.jgr.2017.04.009 29983605
    [Google Scholar]
  29. Chu L.L. Montecillo J.A.V. Bae H. Recent advances in the metabolic engineering of yeasts for ginsenoside biosynthesis. Front. Bioeng. Biotechnol. 2020 8 139 10.3389/fbioe.2020.00139 32158753
    [Google Scholar]
  30. Choi W.Y. Lim H.W. Lim C.J. Anti-inflammatory, antioxidative and matrix metalloproteinase inhibitory properties of 20( R )-ginsenoside Rh2 in cultured macrophages and keratinocytes. J. Pharm. Pharmacol. 2013 65 2 310 316 10.1111/j.2042‑7158.2012.01598.x 23278699
    [Google Scholar]
  31. Hou M. Wang R. Zhao S. Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 2021 11 7 1813 1834 10.1016/j.apsb.2020.12.017 34386322
    [Google Scholar]
  32. Mohanan P. Subramaniyam S. Mathiyalagan R. Yang D.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res. 2018 42 2 123 132 10.1016/j.jgr.2017.01.008 29719458
    [Google Scholar]
  33. Nag S.A. Qin J-J. Wang W. Wang M-H. Wang H. Zhang R. Ginsenosides as anticancer agents: In vitro and in vivo activities, structure–activity relationships, and molecular mechanisms of action. Front. Pharmacol. 2012 3 25 10.3389/fphar.2012.00025 22403544
    [Google Scholar]
  34. Ong W.Y. Farooqui T. Koh H.L. Farooqui A.A. Ling E.A. Protective effects of ginseng on neurological disorders. Front. Aging Neurosci. 2015 7 129 10.3389/fnagi.2015.00129 26236231
    [Google Scholar]
  35. Kang K.S. Ham J. Kim Y.J. Park J.H. Cho E.J. Yamabe N. Heat-processed Panax ginseng and diabetic renal damage: Active components and action mechanism. J. Ginseng Res. 2013 37 4 379 388 10.5142/jgr.2013.37.379 24233065
    [Google Scholar]
  36. Zhang Y. Ding S. Chen Y. Sun Z. Zhang J. Han Y. Dong X. Fang Z. Li W. Ginsenoside Rg1 alleviates lipopolysaccharide-induced neuronal damage by inhibiting NLRP1 inflammasomes in HT22 cells. Exp. Ther. Med. 2021 22 1 782 10.3892/etm.2021.10214 34055081
    [Google Scholar]
  37. Fu W. Xu H. Yu X. Lyu C. Tian Y. Guo M. Sun J. Sui D. 20( S )-Ginsenoside Rg2 attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation: role of SIRT1. RSC Advances 2018 8 42 23947 23962 10.1039/C8RA02316F 35540288
    [Google Scholar]
  38. Xue Y. Fu W. Liu Y. Yu P. Sun M. Li X. Yu X. Sui D. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J. Food Sci. 2020 85 11 4039 4049 10.1111/1750‑3841.15505 33073372
    [Google Scholar]
  39. Kim J.H. Yi Y.S. Kim M.Y. Cho J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res. 2017 41 4 435 443 10.1016/j.jgr.2016.08.004 29021688
    [Google Scholar]
  40. Lü J.M. Yao Q. Chen C. Ginseng compounds: An update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 2009 7 3 293 302 10.2174/157016109788340767 19601854
    [Google Scholar]
  41. Zhou P. Lu S. Luo Y. Wang S. Yang K. Zhai Y. Sun G. Sun X. Attenuation of TNF-α-induced inflammatory injury in endothelial cells by ginsenoside Rb1 via inhibiting NF-κB, JNK and p38 signaling pathways. Front. Pharmacol. 2017 8 464 10.3389/fphar.2017.00464 28824425
    [Google Scholar]
  42. Kim M.K. Kang H. Baek C.W. Jung Y.H. Woo Y.C. Choi G.J. Shin H.Y. Kim K.S. Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain. J. Ginseng Res. 2018 42 2 183 191 10.1016/j.jgr.2017.02.005 29719465
    [Google Scholar]
  43. Yang X.D. Yang Y.Y. Ouyang D.S. Yang G.P. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015 100 208 220 10.1016/j.fitote.2014.11.019 25449425
    [Google Scholar]
  44. Tao C. Zhang J. Wang J. Le Y. Ginsenoside drug nanocomposites prepared by the aerosol solvent extraction system for enhancing drug solubility and stability. Pharmaceutics 2018 10 3 95 10.3390/pharmaceutics10030095 30021937
    [Google Scholar]
  45. Kim H. Lee J.H. Kim J.E. Kim Y.S. Ryu C.H. Lee H.J. Kim H.M. Jeon H. Won H.J. Lee J.Y. Lee J. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J. Ginseng Res. 2018 42 3 361 369 10.1016/j.jgr.2017.12.003 29983618
    [Google Scholar]
  46. Samarghandian, S.; Farkhondeh, T.; Samini, F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS & Neurological Disorders-Drug Targets. 2018 1;17 6 412 20 10.1016/j.cell.2010.02.016 20303880
    [Google Scholar]
  47. Zhu X. Gao R. Liu Z. Cheng Z. Qi Y. Fan C. Yu S.Y. Ginsenoside Rg1 reverses stress-induced depression-like behaviours and brain-derived neurotrophic factor expression within the prefrontal cortex. Eur. J. Neurosci. 2016 44 2 1878 1885 10.1111/ejn.13255 27062560
    [Google Scholar]
  48. Kim D. Park M. Haleem I. Lee Y. Koo J. Na Y.C. Song G. Lee J. Natural product ginsenoside 20(S)-25-Methoxyl-Dammarane-3β, 12β, 20-Triol in cancer treatment: A review of the pharmacological mechanisms and pharmacokinetics. Front. Pharmacol. 2020 11 521 10.3389/fphar.2020.00521 32425780
    [Google Scholar]
  49. Wang W.X. Wang W. Chen K.J. Protective effect and mechanism of ginsenosides on central nerve system of animals. Zhongguo Zhong Xi Yi Jie He Za Zhi 2005 25 1 89 93 15719762
    [Google Scholar]
  50. Samarghandian, S.; Farkhondeh, T.; Samini, F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS & neurological disorders-drug targets. Curr. Drug Targets CNS Neurol. Disord. 2018 1;17 6 412 20 10.3390/molecules24162939 31416121
    [Google Scholar]
  51. Rajabian A. Rameshrad M. Hosseinzadeh H. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: A patent review. Expert Opin. Ther. Pat. 2019 29 1 55 72 10.1080/13543776.2019.1556258 30513224
    [Google Scholar]
  52. Samarghandian, S.; Shoshtari, M.E.; Sargolzaei, J.; Hossinimoghadam, H.; Farahzad, J.A. Anti-tumor activity of safranal against neuroblastoma cells. Pharmacog. Mag. 2014 10 Suppl 2 S419 10.2174/1567205018666211215150547 34911424
    [Google Scholar]
  53. Wang N. Yang J. Chen R. Liu Y. Liu S. Pan Y. Lei Q. Wang Y. He L. Song Y. Li Z. Ginsenoside Rg1 ameliorates Alzheimer’s disease pathology via restoring mitophagy. J. Ginseng Res. 2023 47 3 448 457 10.1016/j.jgr.2022.12.001 37252274
    [Google Scholar]
  54. Zhang G. Liu A. Zhou Y. San X. Jin T. Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J. Ethnopharmacol. 2008 115 3 441 448 10.1016/j.jep.2007.10.026 18083315
    [Google Scholar]
  55. Lian X.Y. Zhang Z. Stringer J.L. Anticonvulsant and neuroprotective effects of ginsenosides in rats. Epilepsy Res. 2006 70 2-3 244 256 10.1016/j.eplepsyres.2006.05.010 16782310
    [Google Scholar]
  56. Shin E. Koh Y. Kim A. Nah S. Jeong J. Chae J. Kim S. Yen T. Yoon H. Kim W. Ko K.H. Kim H.C. Ginsenosides attenuate kainic acid-induced synaptosomal oxidative stress via stimulation of adenosine A2A receptors in rat hippocampus. Behav. Brain Res. 2009 197 1 239 245 10.1016/j.bbr.2008.08.038 18809438
    [Google Scholar]
  57. Kang A. Hao H. Zheng X. Liang Y. Xie Y. Xie T. Dai C. Zhao Q. Wu X. Xie L. Wang G. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. J. Neuroinflammation 2011 8 1 100 10.1186/1742‑2094‑8‑100 21843370
    [Google Scholar]
  58. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  59. Chen H. Wu L. Li X. Zhu Y. Wang W. Xu C. Huang Z. Du K. Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1α-mediated glucose metabolism. Cell. Mol. Biol. 2019 65 4 48 52 10.14715/cmb/2019.65.4.8 31078152
    [Google Scholar]
  60. Ashrafizadeh, M.; Zarrabi, A.; Samarghandian, S.; Najafi, M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer?. Eur. J. Pharmacol. 2020 15 881 173226 10.1016/j.jare.2021.06.009 35127176
    [Google Scholar]
  61. Lee H. Hong Y. Tran Q. Cho H. Kim M. Kim C. Kwon S.H. Park S. Park J. Park J. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J. Ginseng Res. 2019 43 3 431 441 10.1016/j.jgr.2018.07.003 31308815
    [Google Scholar]
  62. Deng X. Zhao J. Qu L. Duan Z. Fu R. Zhu C. Fan D. Ginsenoside Rh4 suppresses aerobic glycolysis and the expression of PD-L1 via targeting AKT in esophageal cancer. Biochem. Pharmacol. 2020 178 114038 10.1016/j.bcp.2020.114038 32422139
    [Google Scholar]
  63. Mai T.T. Moon J. Song Y. Viet P.Q. Phuc P.V. Lee J.M. Yi T.H. Cho M. Cho S.K. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett. 2012 321 2 144 153 10.1016/j.canlet.2012.01.045 22326284
    [Google Scholar]
  64. Ji X. Lu Y. Tian H. Meng X. Wei M. Cho W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother. 2019 114 108800 10.1016/j.biopha.2019.108800 30921705
    [Google Scholar]
  65. Bian S. Zhao Y. Li F. Lu S. Wang S. Bai X. Liu M. Zhao D. Wang J. Guo D. 20(S)-Ginsenoside Rg3 promotes hela cell apoptosis by regulating autophagy. Molecules 2019 24 20 3655 10.3390/molecules24203655 31658733
    [Google Scholar]
  66. Zheng X. Chen W. Hou H. Li J. Li H. Sun X. Zhao L. Li X. Ginsenoside 20(S)-Rg3 induced autophagy to inhibit migration and invasion of ovarian cancer. Biomed. Pharmacother. 2017 85 620 626 10.1016/j.biopha.2016.11.072 27899249
    [Google Scholar]
  67. Xu F-Y. Shang W-Q. Yu J-J. Sun Q. Li M-Q. Sun J-S. The antitumor activity study of ginsenosides and metabolites in lung cancer cell. Am. J. Transl. Res. 2016 8 4 1708 1718 27186294
    [Google Scholar]
  68. Ding L. Qi H. Wang Y. Zhang Z. Liu Q. Guo C. Liu J. Chen Z. Li J. Chen J. Huang Q. Zhao D. Wang Z. Li X. Recent advances in ginsenosides against respiratory diseases: Therapeutic targets and potential mechanisms. Biomed. Pharmacother. 2023 158 114096 10.1016/j.biopha.2022.114096 36502752
    [Google Scholar]
  69. Ren S. Liu R. Wang Y. Ding N. Li Y. Synthesis and biological evaluation of ginsenoside compound K analogues as a novel class of anti-asthmatic agents. Bioorg. Med. Chem. Lett. 2019 29 1 51 55 10.1016/j.bmcl.2018.11.016 30448233
    [Google Scholar]
  70. Li Q. Zhai C. Wang G. Zhou J. Li W. Xie L. Shi Z. Ginsenoside Rh1 attenuates ovalbumin-induced asthma by regulating Th1/Th2 cytokines balance. Biosci. Biotechnol. Biochem. 2021 85 8 1809 1817 10.1093/bbb/zbab099 34057179
    [Google Scholar]
  71. Shergis J.L. Di Y.M. Zhang A.L. Vlahos R. Helliwell R. Ye J.M. Xue C.C. Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complement. Ther. Med. 2014 22 5 944 953 10.1016/j.ctim.2014.08.006 25440386
    [Google Scholar]
  72. Yang L. Chen P. Luo M. Shi W. Hou D. Gao Y. Xu S. Deng J. Inhibitory effects of total ginsenoside on bleomycin-induced pulmonary fibrosis in mice. Biomed. Pharmacother. 2019 114 108851 10.1016/j.biopha.2019.108851 30965234
    [Google Scholar]
  73. Kalil A.C. Thomas P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 2019 23 1 258 10.1186/s13054‑019‑2539‑x 31324202
    [Google Scholar]
  74. Gaitonde D.Y. Moore F.C. Morgan M.K. Influenza: Diagnosis and treatment. Am. Fam. Physician 2019 100 12 751 758 31845781
    [Google Scholar]
  75. Tamerius J. Nelson M.I. Zhou S.Z. Viboud C. Miller M.A. Alonso W.J. Global influenza seasonality: Reconciling patterns across temperate and tropical regions. Environ. Health Perspect. 2011 119 4 439 445 10.1289/ehp.1002383 21097384
    [Google Scholar]
  76. Im K. Kim J. Min H. Ginseng, the natural effectual antiviral: Protective effects of korean red ginseng against viral infection. J. Ginseng Res. 2016 40 4 309 314 10.1016/j.jgr.2015.09.002 27746682
    [Google Scholar]
  77. Kim J.Y. Kim H.J. Kim H.J. Effect of oral administration of Korean red ginseng on influenza A (H1N1) virus infection. J. Ginseng Res. 2011 35 1 104 110 10.5142/jgr.2011.35.1.104
    [Google Scholar]
  78. Yang H. Oh K.H. Kim H.J. Cho Y.H. Yoo Y.C. Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean red ginseng prevent rotavirus infection in newborn mice. J. Microbiol. Biotechnol. 2018 28 3 391 396 10.4014/jmb.1801.01006 29316736
    [Google Scholar]
  79. Bi S. Qu Y. Shao J. Zhang J. Li W. Zhang L. Ni J. Cao L. Ginsenoside Rg3 ameliorates stress of broiler chicks induced by Escherichia coli lipopolysaccharide. Front. Vet. Sci. 2022 9 878018 10.3389/fvets.2022.878018 35464384
    [Google Scholar]
  80. Talebi, M.; Ilgün, S.; Ebrahimi, V.; Talebi, M.; Farkhondeh, T.; Ebrahimi, H.; Samarghandian, S. Zingiber officinale ameliorates Alzheimer’s disease and cognitive impairments: Lessons from preclinical studies. Biomed. Pharmacother. 2021 1;133 111088 10.1016/j.intimp.2022.109176 36067653
    [Google Scholar]
  81. Yu Z. Yi H. Ma J. Wei Y. Cai M. Li Q. Qin C. Chen Y. Han X. Zhong R. Chen Y. Liang G. Deng Q. Tian K. Wang H. Zhang G. Ginsenoside Rg1 suppresses type 2 PRRSV infection via NF-κB signaling pathway in vitro, and provides partial protection against HP-PRRSV in Piglet. Viruses 2019 11 11 1045 10.3390/v11111045
    [Google Scholar]
  82. Liang Y.Y. Wang B. Li L. Experimental study of ginsenoside Rb1 on herpes simplex virus-1 infection for protecting nerves. Zhongguo Zhong Xi Yi Jie He Za Zhi 2012 32 7 975 979 23019960
    [Google Scholar]
  83. Yi Y.S. Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J. Ginseng Res. 2022 46 6 722 730 10.1016/j.jgr.2022.03.008 35399195
    [Google Scholar]
  84. He X.Y. Gao Z.Y. Liang W. Sun Y.C. Ameliorative effect of ginsenoside Rg1 on dextran sulfate sodium-induced colitis: Involvement of intestinal barrier remodeling in mice. Ann. Transl. Med. 2022 10 24 1328 10.21037/atm‑22‑5467 36660612
    [Google Scholar]
  85. Wu Y. Duan Z. Qu L. Zhang Y. Zhu C. Fan D. Gastroprotective effects of ginsenoside Rh4 against ethanol-induced gastric mucosal injury by inhibiting the MAPK/NF-κB signaling pathway. Food Funct. 2023 14 11 5167 5181 10.1039/D2FO03693B 37184519
    [Google Scholar]
  86. Lv S. Chen X. Chen Y. Gong D. Mao G. Shen C. Xia T. Cheng J. Luo Z. Cheng Y. Li W. Zeng J. Ginsenoside Rg3 induces apoptosis and inhibits proliferation by down-regulating TIGAR in rats with gastric precancerous lesions. BMC Complementary Med. Ther. 2022 22 1 188 10.1186/s12906‑022‑03669‑z 35840932
    [Google Scholar]
  87. Yu T. Rhee M.H. Lee J. Kim S.H. Yang Y. Kim H.G. Kim Y. Kim C. Kwak Y.S. Kim J.H. Cho J.Y. Ginsenoside Rc from Korean red ginseng ( Panax ginseng C.A. Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis. Am. J. Chin. Med. 2016 44 3 595 615 10.1142/S0192415X16500336 27109153
    [Google Scholar]
  88. Gao Q. Li G. Zu Y. Xu Y. Wang C. Xiang D. He W. Shang T. Cheng X. Liu D. Zhang C. Ginsenoside Rg1 alleviates ANIT-induced cholestatic liver injury by inhibiting hepatic inflammation and oxidative stress via SIRT1 activation. J. Ethnopharmacol. 2024 319 Pt 1 117089 10.1016/j.jep.2023.117089 37634749
    [Google Scholar]
  89. Cui T. Xiao X. Pan Z. Tang K. Zhong Y. Chen Y. Guo J. Duan S. Zhong G. Li T. Li X. Wu X. Lin C. Yang X. Gao Y. Zhang D. Harnessing the therapeutic potential of ginsenoside Rd for activating SIRT6 in treating a mouse model of nonalcoholic fatty liver disease. ACS Omega 2023 8 32 29735 29745 10.1021/acsomega.3c04122 37599957
    [Google Scholar]
  90. Yi Y.S. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. Korean J. Physiol. Pharmacol. 2018 22 1 1 15 10.4196/kjpp.2018.22.1.1 29302207
    [Google Scholar]
  91. Li Z. Han S. Cui G. Xue B. Li J. Man Y. Zhang H. Teng L. Oral liposomes encapsulating ginsenoside compound K for rheumatoid arthritis therapy. Int. J. Pharm. 2023 643 123247 10.1016/j.ijpharm.2023.123247 37467813
    [Google Scholar]
  92. Xu Z. Li X. Shen G. Zou Y. Zhang H. Yang K. Zhu Y. The protective effect of ginsenoside Rg1 on apoptosis in human ankle joint traumatic arthritis chondrocytes. Evid. Based Complement. Alternat. Med. 2022 2022 1 7 10.1155/2022/6798377 35497927
    [Google Scholar]
  93. Hou T. Liu Y. Wang X. Jiao D. Xu H. Shi Q. Wang Y. Li W. Wu T. Liang Q. Ginsenoside Rg1 promotes lymphatic drainage and improves chronic inflammatory arthritis. J. Musculoskelet. Neuronal Interact. 2020 20 4 526 534 33265080
    [Google Scholar]
  94. Yu X. Zhang N. Lin W. Wang C. Gu W. Ling C. Feng Y. Su Y. Regulatory effects of four ginsenoside monomers in humoral immunity of systemic lupus erythematosus. Exp. Ther. Med. 2018 15 2 2097 2103 29434811
    [Google Scholar]
  95. Zhang P. Ginsenoside-Rg5 treatment inhibits apoptosis of chondrocytes and degradation of cartilage matrix in a rat model of osteoarthritis. Oncol. Rep. 2017 37 3 1497 1502 10.3892/or.2017.5392 28112382
    [Google Scholar]
  96. Hao P.P. Jiang F. Chen Y.G. Yang J. Zhang K. Zhang M.X. Zhang C. Zhao Y.X. Zhang Y. Erratum: Traditional Chinese medication for cardiovascular disease. Nat. Rev. Cardiol. 2015 12 6 318 10.1038/nrcardio.2015.60 25837526
    [Google Scholar]
  97. Peng H. Chen L. Deng Y. Liao X. Yang Y. Ginsenoside Rh2 mitigates myocardial damage in acute myocardial infarction by regulating pyroptosis of cardiomyocytes. Clin. Exp. Hypertens. 2023 45 1 2229536 10.1080/10641963.2023.2229536
    [Google Scholar]
  98. Yu T. Xu X. Wei J. Xu J. Luo W. Li A. Liang G. Wang M. Ginsenoside Rg5 alleviates Ang II–induced cardiac inflammation and remodeling by inhibiting the JNK/AP-1 pathway. Int. Immunopharmacol. 2023 120 110408 10.1016/j.intimp.2023.110408 37276830
    [Google Scholar]
  99. Chen L. Geng N. Chen T. Xiao Q. Zhang H. Huo H. Jiang L. Shao Q. He B. Ginsenoside Rb1 improves post-cardiac arrest myocardial stunning and cerebral outcomes by regulating the Keap1/Nrf2 pathway. Int. J. Mol. Sci. 2023 24 5 5059 10.3390/ijms24055059 36902487
    [Google Scholar]
  100. Guan S. Xin Y. Ding Y. Zhang Q. Han W. Ginsenoside Rg1 protects against cardiac remodeling in heart failure via SIRT1/PINK1/Parkin-mediated mitophagy. Chem. Biodivers. 2023 20 2 e202200730 10.1002/cbdv.202200730 36639922
    [Google Scholar]
  101. Zhang C. Han M. Zhang X. Tong H. Sun X. Sun G. Ginsenoside Rb1 protects against diabetic cardiomyopathy by regulating the adipocytokine pathway. J. Inflamm. Res. 2022 15 71 83 10.2147/JIR.S348866 35023944
    [Google Scholar]
  102. Li X. Xiang N. Wang Z. Ginsenoside Rg2 attenuates myocardial fibrosis and improves cardiac function after myocardial infarction via AKT signaling pathway. Biosci. Biotechnol. Biochem. 2020 84 11 2199 2206 10.1080/09168451.2020.1793292 32706304
    [Google Scholar]
  103. Yu Y. Sun J. Liu J. Wang P. Wang C. Ginsenoside Re preserves cardiac function and ameliorates left ventricular remodeling in a rat model of myocardial infarction. J. Cardiovasc. Pharmacol. 2020 75 1 91 97 10.1097/FJC.0000000000000752 31599782
    [Google Scholar]
  104. Wan S. Cui Z. Wu L. Zhang F. Liu T. Hu J. Tian J. Yu B. Liu F. Kou J. Li F. Ginsenoside Rd promotes omentin secretion in adipose through TBK1-AMPK to improve mitochondrial biogenesis via WNT5A/Ca2+ pathways in heart failure. Redox Biol. 2023 60 102610 10.1016/j.redox.2023.102610 36652744
    [Google Scholar]
  105. Tang B. Liu Y. Zhang J. Lu M. Wang H. Ginsenoside Rg1 ameliorates hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and inflammation by regulating CCN1. Biomed. Pharmacother. 2023 164 114920 10.1016/j.biopha.2023.114920 37216706
    [Google Scholar]
  106. Li C. Deng W. Liao X. Deng J. Zhang Y. Wang D. The effects and mechanism of ginsenoside Rg1 on myocardial remodeling in an animal model of chronic thromboembolic pulmonary hypertension. Eur. J. Med. Res. 2013 18 1 16 10.1186/2047‑783X‑18‑16 23738715
    [Google Scholar]
  107. Chen H. Yin J. Deng Y. Yang M. Xu L. Teng F. Li D. Cheng Y. Liu S. Wang D. Zhang T. Wu W. Liu X. Guan S. Jiang B. Guo D. The protective effects of ginsenoside Rg1 against hypertension target-organ damage in spontaneously hypertensive rats. BMC Complement. Altern. Med. 2012 12 1 53 10.1186/1472‑6882‑12‑53 22533478
    [Google Scholar]
  108. Xue Q. Yu T. Wang Z. Fu X. Li X. Zou L. Li M. Cho J.Y. Yang Y. Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis. J. Ginseng Res. 2023 47 2 237 245 10.1016/j.jgr.2022.08.001 36926610
    [Google Scholar]
  109. Xie B. Zu X. Wang Z. Xu X. Liu G. Liu R. Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites. Front. Pharmacol. 2022 13 990476 10.3389/fphar.2022.990476 36188559
    [Google Scholar]
  110. Zhang X.J. He C. Tian K. Li P. Su H. Wan J.B. Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways. Vascul. Pharmacol. 2015 73 86 95 10.1016/j.vph.2015.04.003 25912763
    [Google Scholar]
  111. Bingbing L. Jieru L.I. Jianchao S.I. Qi C. Shengchang Y. Ensheng J.I. Ginsenoside Rb1 alleviates chronic intermittent hypoxia-induced diabetic cardiomyopathy in db/db mice by regulating the adenosine monophosphate-activated protein kinase/Nrf2/heme oxygenase-1 signaling pathway. J. Tradit. Chin. Med. 2023 43 5 906 914 37679978
    [Google Scholar]
  112. Zhang Y. Ma J. Liu S. Chen C. Li Q. Qin M. Ren L. Ginsenoside F1 attenuates pirarubicin-induced cardiotoxicity by modulating Nrf2 and AKT/Bcl-2 signaling pathways. J. Ginseng Res. 2023 47 1 106 116 10.1016/j.jgr.2022.06.002 36644383
    [Google Scholar]
  113. Hou J. Yun Y. Cui C. Kim S. Ginsenoside Rh2 mitigates doxorubicin-induced cardiotoxicity by inhibiting apoptotic and inflammatory damage and weakening pathological remodelling in breast cancer-bearing mice. Cell Prolif. 2022 55 6 e13246 10.1111/cpr.13246 35534947
    [Google Scholar]
  114. Zhang Y. Wang Y. Ma Z. Liang Q. Tang X. Tan H. Xiao C. Gao Y. Ginsenoside Rb1 inhibits doxorubicin-triggered H9C2 cell apoptosis via aryl hydrocarbon receptor. Biomol. Ther. 2017 25 2 202 212 10.4062/biomolther.2016.066 27829271
    [Google Scholar]
  115. Wang X. Chen L. Wang T. Jiang X. Zhang H. Li P. Lv B. Gao X. Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of akt. Phytomedicine 2015 22 10 875 884 10.1016/j.phymed.2015.06.010 26321736
    [Google Scholar]
  116. Xu Z.M. Li C.B. Liu Q.L. Li P. Yang H. Ginsenoside Rg1 prevents doxorubicin-induced cardiotoxicity through the inhibition of autophagy and endoplasmic reticulum stress in mice. Int. J. Mol. Sci. 2018 19 11 3658 10.3390/ijms19113658 30463294
    [Google Scholar]
  117. Rahimi S. van Leeuwen D. Roshanzamir F. Pandit S. Shi L. Sasanian N. Nielsen J. Esbjörner E.K. Mijakovic I. Ginsenoside Rg3 reduces the toxicity of graphene oxide used for pH-responsive delivery of doxorubicin to liver and breast cancer cells. Pharmaceutics 2023 15 2 391 10.3390/pharmaceutics15020391 36839713
    [Google Scholar]
  118. Jang Y.J. Lee D. Hossain M.A. Aravinthan A. Kang C.W. Kim N.S. Kim J.H. Korean red ginseng enhances cardiac hemodynamics on doxorubicin-induced toxicity in rats. J. Ginseng Res. 2020 44 3 483 489 10.1016/j.jgr.2019.03.002 32372870
    [Google Scholar]
  119. Liu G. Zhang J. Sun F. Ma J. Qi X. Ginsenoside Rg2 attenuated trastuzumab-induced cardiotoxicity in rats. BioMed Res. Int. 2022 2022 1 8866660 10.1155/2022/8866660 35071601
    [Google Scholar]
  120. Liu G. Qi X. Li X. Sun F. Ginsenoside Rg2 protects cardiomyocytes against trastuzumab-induced toxicity by inducing autophagy. Exp. Ther. Med. 2021 21 5 473 10.3892/etm.2021.9904 33767768
    [Google Scholar]
  121. Xing J.J. Hou J.G. Liu Y. Zhang R.B. Jiang S. Ren S. Wang Y.P. Shen Q. Li W. Li X.D. Wang Z. Supplementation of saponins from leaves of Panax quinquefolius mitigates cisplatin-evoked cardiotoxicity via inhibiting oxidative stress-associated inflammation and apoptosis in mice. Antioxidants 2019 8 9 347 10.3390/antiox8090347 31480577
    [Google Scholar]
  122. Zhang J. Luo D. Li F. Li Z. Gao X. Qiao J. Wu L. Li M. Ginsenoside Rg3 alleviates antithyroid cancer drug vandetanib-induced QT interval prolongation. Oxid. Med. Cell. Longev. 2021 2021 1 3520034 10.1155/2021/3520034 34659631
    [Google Scholar]
  123. Liu H. Liu Y. Li N. Zhang G.Q. Wang M. Ginsenoside Rg_3 based liposomes target delivery of dihydroartemisinin and paclitaxel for treatment of triple-negative breast cancer. Zhongguo Zhongyao Zazhi 2023 48 13 3472 3484 37474984
    [Google Scholar]
  124. Yang L.Q. Wang B. Gan H. Fu S.T. Zhu X.X. Wu Z.N. Zhan D.W. Gu R.L. Dou G.F. Meng Z.Y. Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharm. Drug Dispos. 2012 33 8 425 436 10.1002/bdd.1806 22898996
    [Google Scholar]
  125. Volkova M. Palmeri M. Russell K.S. Russell R.R. Activation of the aryl hydrocarbon receptor by doxorubicin mediates cytoprotective effects in the heart. Cardiovasc. Res. 2011 90 2 305 314 10.1093/cvr/cvr007 21233252
    [Google Scholar]
  126. Xu X. Chen K. Kobayashi S. Timm D. Liang Q. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J. Pharmacol. Exp. Ther. 2012 341 1 183 195 10.1124/jpet.111.189589 22209892
    [Google Scholar]
  127. Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med. 2015 8 2 2465 10.1007/s10741‑020‑09977‑1 32472524
    [Google Scholar]
  128. Araujo-Gutierrez R. Chitturi K.R. Xu J. Wang Y. Kinder E. Senapati A. Chebrolu L.B. Kassi M. Trachtenberg B.H. Baseline global longitudinal strain predictive of anthracycline-induced cardiotoxicity. Cardiooncology 2021 7 1 4 10.1186/s40959‑021‑00090‑2 33517910
    [Google Scholar]
  129. Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Zarrin, V.; Moghadam, E.R.; Zabolian, A.; Tavakol, S.; Samarghandian, S.; Najafi, M. PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci. 2020 256 117899 10.1016/j.lfs.2020.117899 3250474
    [Google Scholar]
  130. Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med. 2015 8 2 2465 29061786
    [Google Scholar]
  131. Hong S. Hwang H.J. Kim J.W. Kim J.A. Lee Y.B. Roh E. Choi K.M. Baik S.H. Yoo H.J. Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase–dependent mechanism. J. Ginseng Res. 2020 44 4 664 671 10.1016/j.jgr.2019.08.006 32617047
    [Google Scholar]
  132. Wang M. Xie D. Zhang M. Wang X.J. Multiple ingredients of a Chinese medicine formula Sheng-Mai-San coordinately attenuate doxorubicin-induced cardiotoxicity. Pharmacol. Res. Mod. Chin. Med. 2023 8 100281 10.1016/j.prmcm.2023.100281
    [Google Scholar]
  133. Orphanos G.S. Ioannidis G.N. Ardavanis A.G. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009 48 7 964 970 10.1080/02841860903229124 19734999
    [Google Scholar]
  134. Albini A. Pennesi G. Donatelli F. Cammarota R. De Flora S. Noonan D.M. Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J. Natl. Cancer Inst. 2010 102 1 14 25 10.1093/jnci/djp440 20007921
    [Google Scholar]
  135. Sanguinetti M.C. Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 2006 440 7083 463 469 10.1038/nature04710 16554806
    [Google Scholar]
  136. He L. Hannon G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004 5 7 522 531 10.1038/nrg1379 15211354
    [Google Scholar]
  137. Ashrafizadeh, M.; Ang, H.L.; Moghadam, E.R.; Mohammadi, S.; Zarrin, V.; Hushmandi, K., Samarghandian, S.; Zarrabi, A.; Najafi, M.; Mohammadinejad, R.; Kumar, A.P. MicroRNAs and their influence on the ZEB family: mechanistic aspects and therapeutic applications in cancer therapy. Biomolecules 2020 12;10 7 1040 10.1007/s00424‑013‑1429‑3 24390754
    [Google Scholar]
  138. Yan X. Xue J. Wu H. Wang S. Liu Y. Zheng S. Zhang C. Yang C. Ginsenoside-Rb1 protects hypoxic- and ischemic-damaged cardiomyocytes by regulating expression of miRNAs. Evid. Based Complement. Alternat. Med. 2015 2015 1 6 10.1155/2015/171306 26074986
    [Google Scholar]
  139. Yan X. Liu J. Wu H. Liu Y. Zheng S. Zhang C. Yang C. Impact of miR-208 and its target gene nemo-like kinase on the protective effect of ginsenoside Rb1 in hypoxia/ischemia injuried cardiomyocytes. Cell. Physiol. Biochem. 2016 39 3 1187 1195 10.1159/000447825 27577116
    [Google Scholar]
  140. Wang L. Chen X. Wang Y. Zhao L. Zhao X. Wang Y. miR-30c-5p mediates the effects of panax notoginseng saponins in myocardial ischemia reperfusion injury by inhibiting oxidative stress-induced cell damage. Biomed. Pharmacother. 2020 125 109963 10.1016/j.biopha.2020.109963 32036220
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673327575250331145643
Loading
/content/journals/cmc/10.2174/0109298673327575250331145643
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ginsenoside ; apoptosis ; chemotherapy ; cardiotoxicity ; Ginseng ; cardiovascular disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test