Skip to content
2000
Volume 32, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The primary objective of this study is to conduct a comprehensive review of the significance of molecular docking in the field of drug discovery. This includes an examination of the various approaches and methods used in molecular docking, as well as an exploration of the techniques used for interpreting and validating docking results. To gather relevant data, a systematic search was conducted using Web of Science, PubMed, and Google Scholar. The search focused on articles related to molecular docking methodologies and their applications in drug discovery. Additionally, alternative techniques that can be used for more precise simulations of ligand-protein interactions were also considered. Molecular docking has proven to be an incredibly rich and valuable process in the field of drug discovery. Its flexibility allows for the incorporation of advanced computational techniques, thereby enhancing the reliability and efficiency of drug discovery processes. The results of the study highlights the significant strides made in the field of molecular docking, demonstrating its potential to revolutionize drug discovery. Molecular docking continues to evolve, with new advancements being made regularly. Despite the challenges faced, these advancements have significantly contributed to the enhancement of molecular docking, solidifying its position as a crucial tool in the field of drug discovery.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673325827240926081845
2024-10-16
2025-09-06
Loading full text...

Full text loading...

References

  1. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules20071338426205061
    [Google Scholar]
  2. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  3. McNuttA.T. FrancoeurP. AggarwalR. MasudaT. MeliR. RagozaM. SunseriJ. KoesD.R. GNINA 1.0: Molecular docking with deep learning.J. Cheminform.20211314310.1186/s13321‑021‑00522‑234108002
    [Google Scholar]
  4. BenderB.J. GahbauerS. LuttensA. LyuJ. WebbC.M. SteinR.M. FinkE.A. BaliusT.E. CarlssonJ. IrwinJ.J. ShoichetB.K. A practical guide to large-scale docking.Nat. Protoc.202116104799483210.1038/s41596‑021‑00597‑z34561691
    [Google Scholar]
  5. SahuD. RathorL.S. DwivediS.D. ShahK. ChauhanN.S. SinghM.R. SinghD. A review on molecular docking as an interpretative tool for molecular targets in disease management.Assay Drug Dev. Technol.2024221405010.1089/adt.2023.06038232353
    [Google Scholar]
  6. GuedesI.A. PereiraF.S.S. DardenneL.E. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges.Front. Pharmacol.20189108910.3389/fphar.2018.0108930319422
    [Google Scholar]
  7. VerdonkM.L. TaylorR.D. ChessariG. MurrayC.W. Illustration of current challenges in molecular docking.Structure-Based Drug DiscoverySpringerDordrecht200720122110.1007/1‑4020‑4407‑0_8
    [Google Scholar]
  8. SaikiaS. BordoloiM. Molecular docking: Challenges, advances and its use in drug discovery perspective.Curr. Drug Targets201920550152110.2174/138945011966618102215301630360733
    [Google Scholar]
  9. GuedesI.A. BarretoA.M.S. MarinhoD. KrempserE. KuenemannM.A. SperandioO. DardenneL.E. MitevaM.A. New machine learning and physics-based scoring functions for drug discovery.Sci. Rep.2021111319810.1038/s41598‑021‑82410‑133542326
    [Google Scholar]
  10. TorresP.H.M. SoderoA.C.R. JofilyP. Silva-JrF.P. Key topics in molecular docking for drug design.Int. J. Mol. Sci.20192018457410.3390/ijms2018457431540192
    [Google Scholar]
  11. ZhangB. LiH. YuK. JinZ. Molecular docking-based computational platform for high-throughput virtual screening.CCF Trans. High Perform. Comput.202241637410.1007/s42514‑021‑00086‑535039800
    [Google Scholar]
  12. HuangS.Y. Comprehensive assessment of flexible-ligand docking algorithms: Current effectiveness and challenges.Brief. Bioinform.201819598299410.1093/bib/bbx03028334282
    [Google Scholar]
  13. BonvinA.M.J.J. Flexible protein–protein docking.Curr. Opin. Struct. Biol.200616219420010.1016/j.sbi.2006.02.00216488145
    [Google Scholar]
  14. SchleinkoferK. WangT. WadeR.C. Molecular docking.Encyclopedic Reference of Genomics and Proteomics in Molecular MedicineSpringerBerlin, Heidelberg20061149115310.1007/3‑540‑29623‑9_3820
    [Google Scholar]
  15. AndrusierN. MashiachE. NussinovR. WolfsonH.J. Principles of flexible protein–protein docking.Proteins200873227128910.1002/prot.2217018655061
    [Google Scholar]
  16. CavasottoC.N. AucarM.G. High-throughput docking using quantum mechanical scoring.Front Chem.2020824610.3389/fchem.2020.0024632373579
    [Google Scholar]
  17. AmaroR.E. BaudryJ. ChoderaJ. DemirÖ. McCammonJ.A. MiaoY. SmithJ.C. Ensemble docking in drug discovery.Biophys. J.2018114102271227810.1016/j.bpj.2018.02.03829606412
    [Google Scholar]
  18. McKayK. HamiltonN.B. RemingtonJ.M. SchneebeliS.T. LiJ. Essential dynamics ensemble docking for structure-based GPCR drug discovery.Front. Mol. Biosci.2022987921210.3389/fmolb.2022.87921235847975
    [Google Scholar]
  19. HuangS.Y. ZouX. Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking.Proteins200766239942110.1002/prot.2121417096427
    [Google Scholar]
  20. Evangelista FalconW. EllingsonS.R. SmithJ.C. BaudryJ. Ensemble docking in drug discovery: How many protein configurations from molecular dynamics simulations are needed to reproduce known ligand binding?J. Phys. Chem. B2019123255189519510.1021/acs.jpcb.8b1149130695645
    [Google Scholar]
  21. KapoorK. ThangapandianS. TajkhorshidE. Extended-ensemble docking to probe dynamic variation of ligand binding sites during large-scale structural changes of proteins.Chem. Sci. (Camb.)202213144150416910.1039/D2SC00841F35440993
    [Google Scholar]
  22. OnufrievA.V. CaseD.A. Generalized Born implicit solvent models for biomolecules.Annu. Rev. Biophys.201948127529610.1146/annurev‑biophys‑052118‑11532530857399
    [Google Scholar]
  23. WangK.W. LeeJ. ZhangH. SuhD. ImW. CHARMM-GUI implicit solvent modeler for various generalized born models in different simulation programs.J. Phys. Chem. B2022126387354736410.1021/acs.jpcb.2c0529436117287
    [Google Scholar]
  24. ZsidóB.Z. BayarsaikhanB. BörzseiR. SzélV. MohosV. HetényiC. The advances and limitations of the determination and applications of water structure in molecular engineering.Int. J. Mol. Sci.202324141178410.3390/ijms24141178437511543
    [Google Scholar]
  25. GentileF. YaacoubJ.C. GleaveJ. FernandezM. TonA.T. BanF. SternA. CherkasovA. Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking.Nat. Protoc.202217367269710.1038/s41596‑021‑00659‑235121854
    [Google Scholar]
  26. MarciszM. SamsonovS.A. Solvent model benchmark for molecular dynamics of glycosaminoglycans.J. Chem. Inf. Model.20236372147215710.1021/acs.jcim.2c0147236989082
    [Google Scholar]
  27. ClydeA. LiuX. BrettinT. YooH. PartinA. BabujiY. BlaiszikB. Mohd-YusofJ. MerzkyA. TurilliM. JhaS. RamanathanA. StevensR. AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detection.Sci. Rep.2023131210510.1038/s41598‑023‑28785‑936747041
    [Google Scholar]
  28. SivulaT. YetukuriL. KalliokoskiT. KäsnänenH. PosoA. PöhnerI. Machine learning-boosted docking enables the efficient structure-based virtual screening of giga-scale enumerated chemical libraries.J. Chem. Inf. Model.202363185773578310.1021/acs.jcim.3c0123937655823
    [Google Scholar]
  29. XuB. The application of molecular dynamic simulations.Appl. Comput. Eng.20237114715110.54254/2755‑2721/7/20230416
    [Google Scholar]
  30. JayaramB. PrajapatD. Chapter 15 - Molecular dynamics in predicting the stability of drug-receptor interactions.Cheminformatics, QSAR and Machine Learning Applications for Novel Drug DevelopmentAcademic Press202339343710.1016/B978‑0‑443‑18638‑7.00012‑8
    [Google Scholar]
  31. KumarA. OjhaK.K. Molecular dynamics simulation methods to study structural dynamics of proteins.Protein Folding Dynamics and StabilitySpringerSingapore SaudagarP. TripathiT. 20238310610.1007/978‑981‑99‑2079‑2_5
    [Google Scholar]
  32. KawsarS.M.A. MuniaN.S. SahaS. OzekiY. In silico pharmacokinetics, molecular docking and molecular dynamics simulation studies of nucleoside analogs for drug discovery - a mini review.Mini Rev. Med. Chem.202424111070108810.2174/011389557525803323102407352137957918
    [Google Scholar]
  33. LinX. Chapter 27 - applications of molecular dynamics simulations in drug discovery.Advances in Protein Molecular and Structural Biology MethodsAcademic Press202245546510.1016/B978‑0‑323‑90264‑9.00027‑1
    [Google Scholar]
  34. ChenZ. LiH. ZhangQ. BaoX. YuK. LuoX. ZhuW. JiangH. Pharmacophore-based virtual screening versus docking-based virtual screening: A benchmark comparison against eight targets.Acta Pharmacol. Sin.200930121694170810.1038/aps.2009.15919935678
    [Google Scholar]
  35. HuB. LillM.A. PharmDock: A pharmacophore-based docking program.J. Cheminform.2014611410.1186/1758‑2946‑6‑1424739488
    [Google Scholar]
  36. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  37. KhodarahmiG. FarrokhpourH. AsadiP. HassanzadehF. SaghaeiL. Quantum mechanical/molecular mechanical and docking study of the novel analogues based on hybridization of common pharmacophores as potential anti-breast cancer agents.Res. Pharm. Sci.201712323324010.4103/1735‑5362.20720428626481
    [Google Scholar]
  38. GiordanoD. BiancanielloC. ArgenioM.A. FacchianoA. Drug design by pharmacophore and virtual screening approach.Pharmaceuticals (Basel)202215564610.3390/ph1505064635631472
    [Google Scholar]
  39. MohantyM. MohantyP.S. Molecular docking in organic, inorganic, and hybrid systems: A tutorial review.Monatsh. Chem.2023154768370710.1007/s00706‑023‑03076‑137361694
    [Google Scholar]
  40. Uma MaheswariC. MuthuS. SundiusT. Combined quantum-mechanics/molecular-mechanics, molecular docking studies on hemorrhoid drug.Results Chem.2023510096210.1016/j.rechem.2023.100962
    [Google Scholar]
  41. MuhammedM.T. Aki-YalcinE. Molecular docking: Principles, advances, and its applications in drug discovery.Lett. Drug Des. Discov.202421348049510.2174/1570180819666220922103109
    [Google Scholar]
  42. ChenY. ShoichetB.K. Molecular docking and ligand specificity in fragment-based inhibitor discovery.Nat. Chem. Biol.20095535836410.1038/nchembio.15519305397
    [Google Scholar]
  43. WangT. WuM.B. ChenZ.J. ChenH. LinJ.P. YangL.R. Fragment-based drug discovery and molecular docking in drug design.Curr. Pharm. Biotechnol.2015161112510.2174/138920101566614112220453225420726
    [Google Scholar]
  44. JacquemardC. DrwalM.N. DesaphyJ. KellenbergerE. Binding mode information improves fragment docking.J. Cheminform.20191112410.1186/s13321‑019‑0346‑730903304
    [Google Scholar]
  45. LiQ. Application of fragment-based drug discovery to versatile targets.Front. Mol. Biosci.2020718010.3389/fmolb.2020.0018032850968
    [Google Scholar]
  46. GanJ. LiuJ. LiuY. ChenS. DaiW. XiaoZ.X. CaoY. DrugRep: An automatic virtual screening server for drug repurposing.Acta Pharmacol. Sin.202344488889610.1038/s41401‑022‑00996‑236216900
    [Google Scholar]
  47. MaiaE.H.B. AssisL.C. de OliveiraT.A. da SilvaA.M. TarantoA.G. Structure-based virtual screening: From classical to artificial intelligence.Front Chem.2020834310.3389/fchem.2020.0034332411671
    [Google Scholar]
  48. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  49. IrwinJ.J. TangK.G. YoungJ. DandarchuluunC. WongB.R. KhurelbaatarM. MorozY.S. MayfieldJ. SayleR.A. ZINC20 - a free ultralarge-scale chemical database for ligand discovery.J. Chem. Inf. Model.202060126065607310.1021/acs.jcim.0c0067533118813
    [Google Scholar]
  50. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  51. AzadI. Molecular docking in the study of ligand-protein recognition: An overview.Molecular Docking - Recent AdvancesintechOpen IstifliE.S. 202310.5772/intechopen.106583
    [Google Scholar]
  52. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  53. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑823579614
    [Google Scholar]
  54. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd154915520816
    [Google Scholar]
  55. SurianaP. DrorR.O. Enhancing ligand pose sampling for molecular docking.2023arXiv10.48550/arXiv.2312.00191
    [Google Scholar]
  56. RamírezD. CaballeroJ. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data?Molecules2018235103810.3390/molecules2305103829710787
    [Google Scholar]
  57. MakeneniS. ThiekerD.F. WoodsR.J. Applying pose clustering and MD simulations to eliminate false positives in molecular docking.J. Chem. Inf. Model.201858360561410.1021/acs.jcim.7b0058829431438
    [Google Scholar]
  58. Palacio-RodríguezK. LansI. CavasottoC.N. CossioP. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking.Sci. Rep.201991514210.1038/s41598‑019‑41594‑330914702
    [Google Scholar]
  59. JarmoskaiteI. AlSadhanI. VaidyanathanP.P. HerschlagD. How to measure and evaluate binding affinities.eLife20209e5726410.7554/eLife.5726432758356
    [Google Scholar]
  60. CreanR.M. PudneyC.R. ColeD.K. van der KampM.W. Reliable in silico ranking of engineered therapeutic TCR binding affinities with MMPB/GBSA.J. Chem. Inf. Model.202262357759010.1021/acs.jcim.1c0076535049312
    [Google Scholar]
  61. da SilvaA.D. Bitencourt-FerreiraG. de AzevedoW.F.Jr. Taba: A tool to analyze the binding affinity.J. Comput. Chem.2020411697310.1002/jcc.2604831410856
    [Google Scholar]
  62. Bitencourt-FerreiraG. VillarrealM.A. QuirogaR. BiziukovaN. PoroikovV. TarasovaO. de Azevedo JuniorW.F. Exploring scoring function space: Developing computational models for drug discovery.Curr. Med. Chem.202431172361237710.2174/092986733066623032110373136944627
    [Google Scholar]
  63. de AzevedoW.F.Jr QuirogaR. VillarrealM.A. da SilveiraN.J.F. Bitencourt-FerreiraG. da SilvaA.D. Veit-AcostaM. OliveiraP.R. TutoneM. BiziukovaN. PoroikovV. TarasovaO. BaudS. SAnDReS 2.0: Development of machine-learning models to explore the scoring function space.J. Comput. Chem.202445272333234610.1002/jcc.2744938900052
    [Google Scholar]
  64. GilsonM.K. LiuT. BaitalukM. NicolaG. HwangL. ChongJ. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.Nucleic Acids Res.201644D1D1045D105310.1093/nar/gkv107226481362
    [Google Scholar]
  65. LiuZ. SuM. HanL. LiuJ. YangQ. LiY. WangR. Forging the basis for developing protein-ligand interaction scoring functions.Acc. Chem. Res.201750230230910.1021/acs.accounts.6b0049128182403
    [Google Scholar]
  66. MeliR. MorrisG.M. BigginP.C. Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning: A review.Front. Bioinform.2022288598310.3389/fbinf.2022.88598336187180
    [Google Scholar]
  67. FischerA. SmieškoM. SellnerM. LillM.A. Decision making in structure-based drug discovery: Visual inspection of docking results.J. Med. Chem.20216452489250010.1021/acs.jmedchem.0c0222733617246
    [Google Scholar]
  68. XuM. ShenC. YangJ. WangQ. HuangN. Systematic investigation of docking failures in large-scale structure-based virtual screening.ACS Omega2022743394173942810.1021/acsomega.2c0582636340123
    [Google Scholar]
  69. SchäferM. BrichN. ByškaJ. MarquesS.M. BednářD. ThielP. KozlíkováB. KroneM. InVADo: Interactive visual analysis of molecular docking data.IEEE Trans. Vis. Comput. Graph.20243041984199710.1109/TVCG.2023.333764238019636
    [Google Scholar]
  70. Schrodinger, L.L. The PyMOL molecular graphics system.20151. 8
    [Google Scholar]
  71. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera - A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  72. HumphreyW. DalkeA. SchultenK. VMD: Visual molecular dynamics.J. Mol. Graph.19961413338, 27-2810.1016/0263‑7855(96)00018‑58744570
    [Google Scholar]
  73. AdasmeM.F. LinnemannK.L. BolzS.N. KaiserF. SalentinS. HauptV.J. SchroederM. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA.Nucleic Acids Res.202149W1W530W53410.1093/nar/gkab29433950214
    [Google Scholar]
  74. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u21919503
    [Google Scholar]
  75. CabocheS. LeView: Automatic and interactive generation of 2D diagrams for biomacromolecule/ligand interactions.J. Cheminform.2013514010.1186/1758‑2946‑5‑4023988161
    [Google Scholar]
  76. DiedrichK. KrauseB. BergO. RareyM. PoseEdit: Enhanced ligand binding mode communication by interactive 2D diagrams.J. Comput. Aided Mol. Des.2023371049150310.1007/s10822‑023‑00522‑437515714
    [Google Scholar]
  77. WahlstromR. Validation of docking performance in the context of a structural water molecule using model system.Master’s thesis, University of Dundee2009
    [Google Scholar]
  78. NwonumaC.O. NwatuV.C. Mostafa-HedeabG. AdeyemiO.S. AlejolowoO.O. OjoO.A. AdahS.A. AwakanO.J. OkolieC.E. AsogwaN.T. UdofiaI.A. EgharevbaG.O. AljarbaN.H. AlkahtaniS. BatihaG.E.S. Experimental validation and molecular docking to explore the active components of cannabis in testicular function and sperm quality modulations in rats.BMC Complement. Med. Ther.202222122710.1186/s12906‑022‑03704‑z36028848
    [Google Scholar]
  79. AdahA.S. AyoJ.O. AdahD.A. NwonumaC.O. LawalT.A. Molecular docking and experimental validation of the effect of ergothioneine on heat shock protein-70 following endurance exercise by Arabian stallions.BMC Vet. Res.20231912710.1186/s12917‑023‑03584‑636717851
    [Google Scholar]
  80. HevenerK.E. ZhaoW. BallD.M. BabaogluK. QiJ. WhiteS.W. LeeR.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase.J. Chem. Inf. Model.200949244446010.1021/ci800293n19434845
    [Google Scholar]
  81. SokalingamS. MunussamiG. KimJ.-R. LeeS.-G. Validation on the molecular docking efficiency of lipocalin family of proteins.J. Ind. Eng. Chem.20186729330010.1016/j.jiec.2018.06.041
    [Google Scholar]
  82. AgrawalP. SinghH. SrivastavaH.K. SinghS. KishoreG. RaghavaG.P.S. Benchmarking of different molecular docking methods for protein-peptide docking.BMC Bioinformatics201919S1342610.1186/s12859‑018‑2449‑y30717654
    [Google Scholar]
  83. CS. SD.K. RagunathanV. TiwariP. AS. PB.D. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.J. Biomol. Struct. Dyn.202240258561110.1080/07391102.2020.181558432897178
    [Google Scholar]
  84. TerefeE.M. GhoshA. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of phytochemicals isolated from croton dichogamus against the HIV-1 reverse transcriptase.Bioinform. Biol. Insights2022161177932222112560510.1177/1177932222112560536185760
    [Google Scholar]
  85. LeiF. MinX. PeiyuZ. YangL. JianM. LipengL. ShuhaoW. Molecular docking cloud computing process control method.WO Patent 20201685072019
  86. TingleB.I. IrwinJ.J. Large-scale docking in the cloud.J. Chem. Inf. Model.20236392735274110.1021/acs.jcim.3c0003137071086
    [Google Scholar]
  87. StewartJ.J.P. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations.1996582133146
    [Google Scholar]
  88. OhnoK. KamiyaN. AsakawaN. InoueY. SakuraiM. Application of an integrated MOZYME+DFT method to pKa calculations for proteins.Chem. Phys. Lett.20013413-438739210.1016/S0009‑2614(01)00499‑7
    [Google Scholar]
  89. StewartJ.J.P. Application of the PM6 method to modeling proteins.J. Mol. Model.200915776580510.1007/s00894‑008‑0420‑y19066990
    [Google Scholar]
  90. SulimovA. KutovD. IlinI. SulimovV. Quantum- chemical quasi-docking for molecular dynamics calculations.Nanomaterials (Basel)202212227410.3390/nano1202027435055291
    [Google Scholar]
  91. MoussaJ.E. StewartJ.J.P. MOPAC202410.5281/zenodo.6511958
    [Google Scholar]
  92. SchmidtM.W. BaldridgeK.K. BoatzJ.A. ElbertS.T. GordonM.S. JensenJ.H. KosekiS. MatsunagaN. NguyenK.A. SuS. WindusT.L. DupuisM. MontgomeryJ.A.Jr. General atomic and molecular electronic structure system.J. Comput. Chem.199314111347136310.1002/jcc.540141112
    [Google Scholar]
  93. AlexeevY. MazanetzM.P. IchiharaO. FedorovD.G. GAMESS as a free quantum-mechanical platform for drug research.Curr. Top. Med. Chem.201212182013203310.2174/15680261280491026923110536
    [Google Scholar]
  94. ChudykE.I. SarratL. AldeghiM. FedorovD.G. BodkinM.J. JamesT. SoutheyM. RobinsonR. MoraoI. HeifetzA. Exploring GPCR-ligand interactions with the fragment molecular orbital (FMO) method.Methods Mol. Biol.2018170517919510.1007/978‑1‑4939‑7465‑8_829188563
    [Google Scholar]
  95. ChoiJ. KimH.J. JinX. LimH. KimS. RohI.S. KangH.E. NoK.T. SohnH.J. Application of the fragment molecular orbital method to discover novel natural products for prion disease.Sci. Rep.2018811306310.1038/s41598‑018‑31080‑730166585
    [Google Scholar]
  96. GordonM. SchmidtM. Theory and applications of computational chemistry, the first forty years.AmsterdamElsevier200511671189
    [Google Scholar]
  97. LimH. KangD.H. KimJ. Pellow-JarmanA. McFarthingS. Pellow-JarmanR. JeonH.N. OhB. RheeJ.K.K. NoK.T. Fragment molecular orbital-based variational quantum eigensolver for quantum chemistry in the age of quantum computing.Sci. Rep.2024141242210.1038/s41598‑024‑52926‑338287087
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673325827240926081845
Loading
/content/journals/cmc/10.2174/0109298673325827240926081845
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): HTS; ligand-protein; machine learning; Molecular docking; scoring functions; validation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test