Skip to content
2000
Volume 32, Issue 34
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Leishmaniasis is an affliction caused by the protozoan parasites of the Leishmania genus. This disease impacts a substantial global populace, exceeding one million individuals, leading to disability-adjusted life years and fatalities, particularly within tropical regions. At present, the existing drug therapies have not attained a degree of efficacy that can be unequivocally classified as genuinely triumphant. In this context, the conception of novel compounds possessing the capacity to impede the parasite's life cycle at various stages holds considerable significance.

Methods

In this research endeavor, an exploration was undertaken involving the design and synthesis of nineteen derivatives incorporating the nitrovinyl pharmacophore. The subsequent evaluation of their impacts on was conducted through a combination of (amastigote and promastigote inhibition) and (molecular docking) investigations.

Results

All of the compounds were synthesized and purified with good yields. In the amastigote inhibition assay, compounds , , and showed better inhibitory effects than the standard drug meglumine antimonate (MA). Regarding the synergistic impact of synthesized compounds and MA together, all outcomes were significantly better than those of monotherapy of each in amastigote and macrophage forms. In the promastigote assay, compounds , , , , , , and demonstrated superior inhibitory effects compared to MA. Moreover, compounds , , and showed the best synergies with MA in inhibiting amastigotes. According to docking scores, 1XTP (a SAM-dependent methyltransferase) and 4G5D (Prostaglandin F synthase) receptors were found to be the most probable targets in their mechanism of action.

Conclusion

evaluations and computational analyses strongly suggest that these compounds could be effective against both amastigotes and promastigotes. Additionally, they exhibited notable synergistic interactions with MA against both living forms of the parasite.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673323271241002060614
2024-10-17
2025-11-03
Loading full text...

Full text loading...

References

  1. FernandesÍ.A. de AlmeidaL. FerreiraP.E. MarquesM.J. RochaR.P. CoelhoL.F.L. CarvalhoD.T. ViegasC.Jr Synthesis and biological evaluation of novel piperidine-benzodioxole derivatives designed as potential leishmanicidal drug candidates.Bioorg. Med. Chem. Lett.201525163346334910.1016/j.bmcl.2015.05.06826094119
    [Google Scholar]
  2. Petri e SilvaS.C.S. Palace-BerlF. TavaresL.C. SoaresS.R.C. LindosoJ.A.L. Effects of nitro-heterocyclic derivatives against Leishmania (Leishmania) infantum promastigotes and intracellular amastigotes.Exp. Parasitol.2016163687510.1016/j.exppara.2016.01.00726795261
    [Google Scholar]
  3. TahghighiA. ForoumadiA. Kabudanian-ArdestaniS. MahdianS.M.A. Synthesis and comparison of in vitro leishmanicidal activity of 5-(nitroheteroaryl)-1,3,4-thiadiazols containing cyclic amine of piperidin-4-ol at c-2 with acyclic amine analogues against Iranian strain of Leishmania major (MRHO/IR/75/ER).J. Arthropod Borne Dis.20171119510429026856
    [Google Scholar]
  4. MirzaeiM. SharifiI. Mohammad-RafiF. AnjomshoaM. AbiriA. MoqaddariA.H. NooshadokhtM. RaiesiO. AmirheidariB. Antileishmanial effects and drugability characteristics of a heterocyclic copper complex: An in silico, in vitro and molecular study.J. Inorg. Biochem.202324511224510.1016/j.jinorgbio.2023.11224537167732
    [Google Scholar]
  5. SabzevariS. TeshniziS.H. ShokriA. BahramiF. KouhestaniF. Cutaneous leishmaniasis in Iran: A systematic review and meta-analysis.Microb. Pathog.202115210472110.1016/j.micpath.2020.10472133539962
    [Google Scholar]
  6. Fattahi BafghiA. HaghirosadatB.F. YazdianF. MirzaeiF. PourmadadiM. PournasirF. HematiM. PournasirS. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major.Prep. Biochem. Biotechnol.2021511099099710.1080/10826068.2021.188504534060984
    [Google Scholar]
  7. AshwinH. SadlovaJ. VojtkovaB. BecvarT. LypaczewskiP. SchwartzE. GreenstedE. Van BocxlaerK. PasinM. LipinskiK.S. ParkashV. MatlashewskiG. LaytonA.M. LaceyC.J. JaffeC.L. VolfP. KayeP.M. Characterization of a new Leishmania major strain for use in a controlled human infection model.Nat. Commun.202112121510.1038/s41467‑020‑20569‑333431825
    [Google Scholar]
  8. AsayeshS. HosseiniS.R. ShafieiI. Amir HeidariB. Therapeutic effect of herbal medicine Fenchone on Leishmania major in vitro. J. Animal.Environ.202214339344
    [Google Scholar]
  9. RemadiL. HaouasN. ChaaraD. SlamaD. CharguiN. DabghiR. JbenianiH. MezhoudH. BabbaH. Clinical presentation of cutaneous leishmaniasis caused by leishmania major.Dermatology201623275275910.1159/00045654328253508
    [Google Scholar]
  10. FiroozA. MortazaviH. KhamesipourA. GhiasiM. AbediniR. BalighiK. EsmailiN. Nassiri-KashaniM. EskandariS.E. MohebaliM. Mir Amin MohammadiA. DowlatiY. Old world cutaneous leishmaniasis in Iran: Clinical variants and treatments.J. Dermatolog. Treat.202132767368310.1080/09546634.2019.170421431869258
    [Google Scholar]
  11. ShafiS. AfrinF. IslamuddinM. ChouhanG. AliI. NaazF. SharmaK. ZamanM.S. β-Nitrostyrenes as potential anti-leishmanial agents.Front. Microbiol.20167137910.3389/fmicb.2016.0137927635124
    [Google Scholar]
  12. PoorrajabF. ArdestaniS.K. EmamiS. Behrouzi-FardmoghadamM. ShafieeA. ForoumadiA. Nitroimidazolyl-1,3,4-thiadiazole-based anti-leishmanial agents: Synthesis and in vitro biological evaluation.Eur. J. Med. Chem.20094441758176210.1016/j.ejmech.2008.03.03918485538
    [Google Scholar]
  13. NavidpourL. LimaM.L. MilneR. WyllieS. Hadj-esfandiariN. ChoudharyM.I. KhanS. YousufS. Antileishmanial activities of (Z)-2-(nitroimidazolylmethylene)-3(2H)-benzofuranones: Synthesis, in vitro assessment, and bioactivation by NTR 1 and 2.Antimicrob. Agents Chemother.20226611e00583e2210.1128/aac.00583‑2236286539
    [Google Scholar]
  14. TavakoliP. GhaffarifarF. DelavariH. ShahpariN. Efficacy of manganese oxide (Mn2O3) nanoparticles against Leishmania major in vitro and in vivo.J. Trace Elem. Med. Biol.20195616216810.1016/j.jtemb.2019.08.00331473559
    [Google Scholar]
  15. Dea-AyuelaM.A. CastilloE. Gonzalez-AlvarezM. VegaC. RolónM. Bolás-FernándezF. BorrásJ. González-RosendeM.E. In vivo and in vitro anti-leishmanial activities of 4-nitro-N-pyrimidin- and N-pyrazin-2-ylbenze-] nesulfonamides, and N2-(4-nitrophenyl)-N1-propylglycina-] mide.Bioorg. Med. Chem.200917217449745610.1016/j.bmc.2009.09.03019811921
    [Google Scholar]
  16. Sifontes-RodríguezS. Monzote-FidalgoL. Castañedo-CancioN. Montalvo-ÁlvarezA.M. López-HernándezY. DiogoN.M. Infante-BourzacJ.F. Pérez-MartínO. Meneses-MarcelA. García-TrevijanoJ.A.E. Cabrera-PérezM.Á. The efficacy of 2-nitrovinylfuran derivatives against Leishmania in vitro and in vivo.Mem. Inst. Oswaldo Cruz2015110216617310.1590/0074‑0276014032425946239
    [Google Scholar]
  17. Molecular operating environment. 2020. Available from: https://www.chemcomp.com/en/products.htm
  18. RoseP.W. BiC. BluhmW.F. ChristieC.H. DimitropoulosD. DuttaS. GreenR.K. GoodsellD.S. PrlićA. QuesadaM. QuinnG.B. RamosA.G. WestbrookJ.D. YoungJ. ZardeckiC. BermanH.M. BourneP.E. The RCSB Protein Data Bank: New resources for research and education.Nucleic Acids Res.201241D1D475D48210.1093/nar/gks120023193259
    [Google Scholar]
  19. LangarizadehM.A. EskandariK. AbiriA. TavakoliM.R. AsadipourA. PourshojaeiY. A novel dual three and five-component reactions between dimedone, aryl aldehydes, and 1-naphthylamine: Synthesis and computational studies.J. Mol. Struct.2022125813256910.1016/j.molstruc.2022.132569
    [Google Scholar]
  20. MaityS. MannaS. RanaS. NaveenT. MallickA. MaitiD. Efficient and stereoselective nitration of mono- and disubstituted olefins with AgNO2 and TEMPO.J. Am. Chem. Soc.201313593355335810.1021/ja311942e23406020
    [Google Scholar]
  21. DeadmanB.J. BattilocchioC. SliwinskiE. LeyS.V. A prototype device for evaporation in batch and flow chemical processes.Green Chem.20131582050205510.1039/c3gc40967h
    [Google Scholar]
  22. GanesanS. GanesanA. KothandapaniJ. Hyperbranched polyamines: Tunable catalysts for the Henry reaction.Synlett201425131847185010.1055/s‑0034‑1378534
    [Google Scholar]
  23. HaoE.J. LiuY.F. HanL.F. ZhangJ.L. Synthesis and crystal structure of trans-2-(2-Chlorophenyl)-1-nitroethy-] lene.Asian J. Chem.201325179975997710.14233/ajchem.2013.15790
    [Google Scholar]
  24. ChenH. HanX. QinN. WeiL. YangY. RaoL. ChiB. FengL. RenY. WanJ. Synthesis and biological evaluation of novel inhibitors against 1,3,8-trihydroxyna-] phthalene reductase from Magnaporthe grisea.Bioorg. Med. Chem.20162461225123010.1016/j.bmc.2016.01.05326860927
    [Google Scholar]
  25. KolarovicA. KäslinA. WennemersH. Stereoselective synthesis of indolines via organocatalytic thioester enolate addition reactions.Org. Lett.201416164236423910.1021/ol501936n25100030
    [Google Scholar]
  26. ClitheroeA. GreenD. JansenA.B.A. PhillipsP.C. RuleA.W. Nitroethylenes and related compounds as trichomonacides and candidacides.J. Pharm. Pharmacol.201117316717210.1111/j.2042‑7158.1965.tb07635.x14296938
    [Google Scholar]
  27. HanX. HuangY. WeiL. ChenH. GuoY. TangZ. HuW. XiaQ. WangQ. YanJ. RenY. Biological evaluation and SAR analysis of novel covalent inhibitors against fructose-1,6-bisphosphatase.Bioorg. Med. Chem.2020281811562410.1016/j.bmc.2020.11562432828433
    [Google Scholar]
  28. KumarM.S. RajannaK.C. ReddyK.R. VenkateswarluM. VenkannaP. Ultrasonic and microwave-assisted synthesis of β-nitro styrenes and nitro phenols with tertiary butyl nitrite under acid-free conditions.Synth. Commun.201343192672267710.1080/00397911.2012.735331
    [Google Scholar]
  29. BalachandraB. ShanmugamS. MuneeswaranT. RamakritinanM. Iodine catalyzed one-pot synthesis of highly substituted N-methyl pyrroles via [3+2] annulation and their in vitro evaluation as antibacterial agents.RSC Advances2015579647816478910.1039/C5RA11094G
    [Google Scholar]
  30. PoomathiN. PerumalP.T. Cinchona alkaloid and di-tert-butyldicarbonate–DMAP promoted efficient synthesis of (E)-nitroolefins.RSC Advances2016659544955450210.1039/C6RA06644E
    [Google Scholar]
  31. MoodieR.B. SchofieldK. TaylorP.G. BaillieP.J. Electrophilic aromatic substitution Part 25. The nitration in aqueous sulphuric acid of some cinnamic acids and other styrene derivatives.J. Chem. Soc., Perkin Trans. 21981584284710.1039/p29810000842
    [Google Scholar]
  32. RodríguezJ.M. Dolors PujolM. Straightforward synthesis of nitroolefins by microwave- or ultrasound-assisted Henry reaction.Tetrahedron Lett.201152212629263210.1016/j.tetlet.2011.03.037
    [Google Scholar]
  33. BiF. JiS. VenterH. LiuJ. SempleS.J. MaS. Substitution of terminal amide with 1 H -1,2,3-triazole: Identification of unexpected class of potent antibacterial agents.Bioorg. Med. Chem. Lett.201828588489110.1016/j.bmcl.2018.02.00129433923
    [Google Scholar]
  34. SunQ. HuangM. WeiY. Diversity of the reaction mechanisms of SAM-dependent enzymes.Acta Pharm. Sin. B202111363265010.1016/j.apsb.2020.08.01133777672
    [Google Scholar]
  35. MukherjeeS. XuW. HsuF.F. PatelJ. HuangJ. ZhangK. Sterol methyltransferase is required for optimal mitochondrial function and virulence in Leishmania major.Mol. Microbiol.20191111658110.1111/mmi.1413930260041
    [Google Scholar]
  36. Alves-FerreiraE.V.C. FerreiraT.R. WalradP. KayeP.M. CruzA.K. Leishmania braziliensis prostaglandin F2α synthase impacts host infection.Parasit. Vectors2020131910.1186/s13071‑020‑3883‑z31915065
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673323271241002060614
Loading
/content/journals/cmc/10.2174/0109298673323271241002060614
Loading

Data & Media loading...

Supplements

Characterization and analytical data (FT-IR, 1H NMR, 13C NMR) related to all compounds have been reviewed in detail in a separate supplementary file. For this reason, only the analytical data of novel compounds (16 to 19) is introduced. Ortho-4-chloro benzyloxy-β-nitrostyrene 3153 (C-H), 2890 (C-H), 1625 (C=C), 1599 (C=C), 1507 & 1329 (NO), 1195 (C-O), 808 (C-Cl). 8.22 (1H, , =12Hz, CH), 7.85 (1H, , =15Hz, CH), 7.53-7.38 (6H, m, CH), 7.11-7.02 (2H, m, CH), 5.20 (2H, s, OCH). 158.2, 138.4, 135.2, 134.4, 134.3, 133.5, 132.3, 129.1, 128.8, 121.6, 119.5, 112.8, and 69.9. Para-4-chloro benzyloxy-β-nitrostyrene 3107 (C-H), 2941 & 2884 (C-H), 1630 (C=C), 1599 (C=C), 1493 & 1341 (NO), 1242 (C-O), 576 (C-Cl). 8.00 (1H, , =12Hz, CH), 7.56 (3H, brs, CH and CH), 7.40 (4H, brs, CH), 7.04 (2H, brs, CH), 5.13 (2H, s, OCH). 161.8, 138.9, 135.3, 134.5, 134.2, 131.2, 128.9, 128.8, 123, 115.8, and 69.5. Para-4-fluoro benzyloxy-β-nitrostyrene 3116 & 3042 (C-H), 2870 (C-H), 1604 (C=C), 1571 (C=C), 1512 & 1336 (NO), 1247 (C-O), 1172 (C-F). 8.00 (1H, , =15Hz, CH), 7.55 (1H, , =15Hz, CH), 7.54 (2H, , =9Hz, CH), 7.45 (1H, , =15Hz, CH), 7.13 (2H, t, =9Hz, CH), 7.05 (2H, d, =9Hz, CH), 5.12 (2H, s, OCH). 164.2, 161.9, 161.1, 138.9, 135.3, 131.8, 131.2, 129.5, 129.4, 122.9, 115.9, 115.8, 115.6, and 69.6. Para-4-methyl benzyloxy-β-nitrostyrene 3104 (C-H), 2935 (C-H), 1632 (C=C), 1603 (C=C), 1516 & 1352 (NO), 1253 (C-O). 8.00 (1H, , =12Hz, CH), 7.58-7.52 (3H, m, CH and CH), 7.36 (2H, , =9Hz CH), 7.26 (2H, , =9Hz, CH), 7.06 (2H, , =9Hz, CH), 5.15 (2H, s, OCH). 162.2, 139.1, 138.3, 135.1, 132.9, 131.2, 129.5, 127.7, 122.7, 115.8, 70.2, 21.2.


  • Article Type:
    Research Article
Keyword(s): amastigote; anti-leishmania; Leishmania major; molecular docking; Nitrovinyl; promastigote
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test