Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Infections linked to orthopedic trauma are common complications that place a significant strain on the healthcare system. Immediate identification of the infection and its severity is essential for providing effective treatment.

Methods

C-reactive Protein (CRP) is a commonly used inflammatory marker in orthopedic surgery and has proven to be a valuable biomarker for diagnosing and monitoring infections. Specifically, CRP aids in the early identification of postoperative infections. This research work has focused on developing a highly sensitive CRP biosensor using iron oxide nanomaterial-modified dielectric sensors.

Results

Gold Urchin (GU)-conjugated aptamers and antibodies were used as probes and attached to the electrode amine linkers. The aptamer-GU-antibody-modified electrode detected CRP at concentrations as low as 1 pg/mL, with an R2 value of 0.9942. Furthermore, CRP-spiked serum exhibited an increase in current response at all concentrations of CRP, indicating selective detection of CRP. Additionally, control experiments using complementary sequences of the aptamer, relevant proteins, and non-immune antibodies did not enhance the current responses, confirming the specific identification of CRP.

Conclusion

The sensing strategy has enabled the detection of CRP at its lowest levels, facilitating the identification of infections during orthopedic surgery and subsequent treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322598241021111322
2024-11-07
2025-10-22
Loading full text...

Full text loading...

References

  1. van de WallB.J.M. StadhouderA. HouwertR.M. OnerF.C. BeeresF.J.P. GroenwoldR.H.H. NEXT Study Group Natural experiments for orthopaedic trauma research: An introduction.Injury202354242943410.1016/j.injury.2022.11.02836402587
    [Google Scholar]
  2. GrzelakS. BérubéM. GagnonM.A. CôtéC. TurcotteV. PeletS. BelzileÉ. Pain management strategies after orthopaedic trauma: A mixed-methods study with a view to optimizing practices.J. Pain Res.20221538540210.2147/JPR.S34262735177930
    [Google Scholar]
  3. LeeC. MayerE. BernthalN. WenkeJ. O’TooleR.V. Orthopaedic infections: What have we learned?OTA Int 202362SSuppl.e25010.1097/OI9.000000000000025037168032
    [Google Scholar]
  4. NeumaierM. BraunK.F. SandmannG. SiebenlistS. C-reactive protein in orthopaedic surgery.Acta Chir. Orthop. Traumatol. Cech.201582532733110.55095/achot2015/05426516948
    [Google Scholar]
  5. KannoN. HayakawaN. SuzukiS. HaradaY. YogoT. HaraY. Changes in canine C-reactive protein levels following orthopaedic surgery: A prospective study.Acta Vet. Scand.20196113310.1186/s13028‑019‑0468‑y31262326
    [Google Scholar]
  6. GopinathS.C.B. Methods developed for SELEX.Anal. Bioanal. Chem.2007387117118210.1007/s00216‑006‑0826‑217072603
    [Google Scholar]
  7. OzalpV.C. EyidoganF. OktemH.A. Aptamer-gated nanoparticles for smart drug delivery.Pharmaceuticals2011481137115710.3390/ph4081137
    [Google Scholar]
  8. GengH. GopinathS.C.B. NiuW. Highly sensitive Hepatitis B virus identification by Antibody-aptamer sandwich Enzyme-Linked Immunosorbent assay.INNOSC Theranostics Pharmacol. Sci.20235171410.36922/itps.298
    [Google Scholar]
  9. HuangY. ZhangL. LiZ. GopinathS.C.B. ChenY. XiaoY. Aptamer–17β-estradiol–antibody sandwich ELISA for determination of gynecological endocrine function.Biotechnol. Appl. Biochem.202168488188810.1002/bab.200833245588
    [Google Scholar]
  10. VasudevanM. TaiM.J.Y. PerumalV. GopinathS.C.B. MurtheS.S. OvinisM. MohamedN.M. JoshiN. Highly sensitive and selective acute myocardial infarction detection using aptamer-tethered MoS2 nanoflower and screen-printed electrodes.Biotechnol. Appl. Biochem.2020bab.206010.1002/bab.206033140493
    [Google Scholar]
  11. LakshmipriyaT. FujimakiM. GopinathS.C.B. AwazuK. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications.Langmuir20132948151071511510.1021/la402728324200095
    [Google Scholar]
  12. LakshmipriyaT. HoriguchiY. NagasakiY. Co-immobilized poly (ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma.Analyst (Lond.)2014139163977398510.1039/C4AN00168K24922332
    [Google Scholar]
  13. WaltariE. CarabajalE. SanyalM. FriedlandN. McCutcheonK.M. Adaption of a conventional ELISA to a 96-well ELISA-Array for measuring the antibody responses to influenza virus proteins and vaccines.J. Immunol. Methods2020481-48211278910.1016/j.jim.2020.11278932380014
    [Google Scholar]
  14. SarvariP. SarvariP. Advances in nanoparticle-based drug delivery in cancer treatmentGlob. Transl. Med. 202322039410.36922/gtm.0394
    [Google Scholar]
  15. GopinathN. Artificial intelligence and neuroscience: An update on fascinating relationships.Process Biochem.202312511312010.1016/j.procbio.2022.12.011
    [Google Scholar]
  16. GopinathN. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic.Process Biochem.2021110949910.1016/j.procbio.2021.08.00134366689
    [Google Scholar]
  17. ShaoB. XiaoZ. Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - A review.Anal. Chim. Acta20201114748410.1016/j.aca.2020.02.04132359518
    [Google Scholar]
  18. YangW. RatinacK.R. RingerS.R. ThordarsonP. GoodingJ.J. BraetF. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene.International EditionAngewandte Chemie201010.1002/anie.200903463
    [Google Scholar]
  19. AzizM.A. OyamaM. Nanomaterials in electrochemical biosensor.Adv. Mat. Res.201499512514310.4028/www.scientific.net/AMR.995.125
    [Google Scholar]
  20. GopinathS.C.B. LakshmipriyaT. AwazuK. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles.Biosens. Bioelectron.20145111512310.1016/j.bios.2013.07.03723948242
    [Google Scholar]
  21. LeeJ. MoritaM. TakemuraK. ParkE.Y. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform.Biosens. Bioelectron.201810242543110.1016/j.bios.2017.11.05229175218
    [Google Scholar]
  22. Ozansoy KasapB. MarchenkoS.V. SoldatkinO.O. DzyadevychS.V. Akata KurcB. Biosensors based on Nano-Gold/Zeolite-Modified Ion selective field-effect transistors for creatinine detection.Nanoscale Res. Lett.201712116210.1186/s11671‑017‑1943‑x28264530
    [Google Scholar]
  23. BiH. BianP. GopinathS.C.B. MarimuthuK. LvG. YinX. Identifying mineral decrement with bone injury by quantifying osteocalcin on current-volt sensor.Biotechnol. Appl. Biochem.20226952061206810.1002/bab.226734622990
    [Google Scholar]
  24. JarczewskaM. RębiśJ. GórskiŁ. MalinowskaE. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein.Talanta2018189455410.1016/j.talanta.2018.06.03530086945
    [Google Scholar]
  25. KurtzS.M. DevineJ.N. PEEK biomaterials in trauma, orthopedic, and spinal implants.Biomaterials200728324845486910.1016/j.biomaterials.2007.07.01317686513
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322598241021111322
Loading
/content/journals/cmc/10.2174/0109298673322598241021111322
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): aptamer; biomarker; biosensor; Bone fracture; c-reactive protein; gold nanomaterial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test