Skip to content
2000
Volume 32, Issue 19
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

This review explores the relationship between lithium in drinking water and mental health, a subject that has garnered increasing attention in investigations. Lithium, a metal with a well-established role in psychiatric medications, is found in trace amounts in drinking water, and studies suggest its potential correlations with lower rates of suicide and certain psychiatric disorders. However, these correlations do not imply causation, necessitating an examination of the underlying mechanisms. Lithium concentrations in drinking water vary globally, presenting challenges in establishing a universal threshold for “high” or “low” levels. Additionally, the optimal dosage for potential mental health benefits remains uncertain. Lithium is not considered an essential nutrient, and supplementation should be approached with caution due to possible toxicity risks, emphasizing the importance of medical supervision. The lack of causation and ongoing need for further investigation underscores the importance of cautious interpretation and transparent communication in navigating this evolving field.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673315171240702103413
2024-07-10
2025-09-02
Loading full text...

Full text loading...

References

  1. KozakaN. TakeuchiS. IshiiN. TeraoT. KurodaY. Association between lithium in tap water and suicide mortality rates in Miyazaki Prefecture.Environ. Health Prev. Med.20202512610.1186/s12199‑020‑00865‑632593289
    [Google Scholar]
  2. GirardiP. BrugnoliR. ManfrediG. SaniG. Lithium in bipolar disorder: Optimizing therapy using prolonged-release formulations.Drugs R D.201616429330210.1007/s40268‑016‑0139‑727770296
    [Google Scholar]
  3. KabacsN. MemonA. ObinwaT. StochlJ. PerezJ. Lithium in drinking water and suicide rates across the East of England.Br. J. Psychiatry2011198540640710.1192/bjp.bp.110.08861721525523
    [Google Scholar]
  4. AnandA. NakamuraK. SpielbergJ.M. ChaJ. KarneH. HuB. Integrative analysis of lithium treatment associated effects on brain structure and peripheral gene expression reveals novel molecular insights into mechanism of action.Transl. Psychiatry202010110310.1038/s41398‑020‑0784‑z32251271
    [Google Scholar]
  5. MahliG.S. BellE. OuthredT. BerkM. Lithium therapy and its interactions.Aust. Prescr.2020433919310.18773/austprescr.2020.02432675910
    [Google Scholar]
  6. BaldessariniR.J. VázquezG.H. TondoL. Bipolar depression: A major unsolved challenge.Int. J. Bipolar Disord.202081110.1186/s40345‑019‑0160‑131903509
    [Google Scholar]
  7. KamalZ.M. DuttaS. RahmanS. EtandoA. HasanE. NaharS.N. Wan Ahmad FakuradziW.F.S. SinhaS. HaqueM. AhmadR. Therapeutic application of lithium in bipolar disorders: A brief review.Cureus2022149e2933210.7759/cureus.2933236159362
    [Google Scholar]
  8. SchullehnerJ. PaksarianD. HansenB. ThygesenM. KristiansenS.M. DalsgaardS. SigsgaardT. PedersenC.B. Lithium in drinking water associated with adverse mental health effects.Schizophr. Res.201921031331510.1016/j.schres.2019.06.01631285074
    [Google Scholar]
  9. IshiiN. TeraoT. ArakiY. KohnoK. MizokamiY. ShiotsukiI. HatanoK. MakinoM. KodamaK. IwataN. Low risk of male suicide and lithium in drinking water.J. Clin. Psychiatry201576331932610.4088/JCP.14m0921825700119
    [Google Scholar]
  10. ArayaP. MartínezC. BarrosJ. Lithium in drinking water as a public policy for suicide prevention: Relevance and considerations.Front. Public Health20221080577410.3389/fpubh.2022.80577435252091
    [Google Scholar]
  11. MemonA. RogersI. FitzsimmonsS.M.D.D. CarterB. StrawbridgeR. Hidalgo-MazzeiD. YoungA.H. Association between naturally occurring lithium in drinking water and suicide rates: Systematic review and meta-analysis of ecological studies.Br. J. Psychiatry2020217666767810.1192/bjp.2020.12832716281
    [Google Scholar]
  12. Eyre-WattB. MahendranE. SuetaniS. FirthJ. KiselyS. SiskindD. The association between lithium in drinking water and neuropsychiatric outcomes: A systematic review and meta-analysis from across 2678 regions containing 113 million people.Aust. N. Z. J. Psychiatry202155213915210.1177/000486742096374033045847
    [Google Scholar]
  13. Hidalgo-MazzeiD. MantinghT. Pérez de MendiolaX. SamalinL. UndurragaJ. StrejilevichS. SeverusE. BauerM. González-PintoA. NolenW.A. YoungA.H. VietaE. Clinicians’ preferences and attitudes towards the use of lithium in the maintenance treatment of bipolar disorders around the world: A survey from the ISBD Lithium task force.Int. J. Bipolar Disord.20231112010.1186/s40345‑023‑00301‑y37243681
    [Google Scholar]
  14. Puglisi-AllegraS. RuggieriS. FornaiF. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders.Transl. Psychiatry202111136610.1038/s41398‑021‑01492‑734226487
    [Google Scholar]
  15. FountoulakisK.N. TohenM. ZarateC.A.Jr. Lithium treatment of Bipolar disorder in adults: A systematic review of randomized trials and meta-analyses.Eur. Neuropsychopharmacol.20225410011510.1016/j.euroneuro.2021.10.00334980362
    [Google Scholar]
  16. IshiiN. TeraoT. MatsuzakiH. InoueT. TakaesuY. KohnoK. TakeshimaM. BabaH. HonmaH. Lithium in drinking water may be negatively associated with depressive temperament in the nonclinical population.Clin. Neuropsychopharmacol. Ther.20178071110.5234/cnpt.8.7
    [Google Scholar]
  17. Pérez de MendiolaX. Hidalgo-MazzeiD. VietaE. González-PintoA. Overview of lithium’s use: A nationwide survey.Int. J. Bipolar Disord.2021911010.1186/s40345‑020‑00215‑z33687600
    [Google Scholar]
  18. HoekstraR. LekkerkerkerM.N. KuijperT.M. BoschT.M. van AlphenA.M. Renal function after withdrawal of lithium.Bipolar Disord.202224666767010.1111/bdi.1317835075735
    [Google Scholar]
  19. SampognaG. JaniriD. AlbertU. CaraciF. MartinottiG. SerafiniG. TortorellaA. ZuddasA. SaniG. FiorilloA. Why lithium should be used in patients with bipolar disorder? A scoping review and an expert opinion paper.Expert Rev. Neurother.20222211-1292393410.1080/14737175.2022.216189536562412
    [Google Scholar]
  20. LiaugaudaiteV. RaskauskieneN. NaginieneR. MickuvieneN. SherL. Association between lithium levels in drinking water and suicide rates: Role of affective disorders.J. Affect. Disord2022298Pt A51652110.1016/j.jad.2021.11.045
    [Google Scholar]
  21. Del MattoL. MuscasM. MurruA. VerdoliniN. AnmellaG. FicoG. CorponiF. CarvalhoA.F. SamalinL. CarpinielloB. FagioliniA. VietaE. PacchiarottiI. Lithium and suicide prevention in mood disorders and in the general population: A systematic review.Neurosci. Biobehav. Rev.202011614215310.1016/j.neubiorev.2020.06.01732561344
    [Google Scholar]
  22. Barjasteh-AskariF. DavoudiM. AminiH. GhorbaniM. YaseriM. YunesianM. MahviA.H. LesterD. Relationship between suicide mortality and lithium in drinking water: A systematic review and meta-analysis.J. Affect. Disord.202026423424110.1016/j.jad.2019.12.02732056756
    [Google Scholar]
  23. FiorilloA. SampognaG. AlbertU. MainaG. PerugiG. PompiliM. RossoG. SaniG. TortorellaA. Facts and myths about the use of lithium for bipolar disorder in routine clinical practice: An expert consensus paper.Ann. Gen. Psychiatry20232215010.1186/s12991‑023‑00481‑y38057894
    [Google Scholar]
  24. VolkmannC. BschorT. KöhlerS. Lithium treatment over the lifespan in bipolar disorders.Front. Psychiatry20201137710.3389/fpsyt.2020.0037732457664
    [Google Scholar]
  25. KohnoK. IshiiN. HirakawaH. TeraoT. Lithium in drinking water and crime rates in Japan: Cross-sectional study.BJPsych Open202066e12210.1192/bjo.2020.6333054891
    [Google Scholar]
  26. OssaniG.P. UcedaA.M. PonzoO.J. LagoN.R. MartinoD.J. Renal damage during continuous versus intermittent treatment with lithium.Biol. Trace Elem. Res.202119993411341510.1007/s12011‑020‑02465‑533155175
    [Google Scholar]
  27. ConchaG. BrobergK. GrandérM. CardozoA. PalmB. VahterM. High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of Northern Argentina.Environ. Sci. Technol.201044176875688010.1021/es101038420701280
    [Google Scholar]
  28. XueF. TanH. ZhangX. SantoshM. CongP. GeL. LiC. ChenG. ZhangY. Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from Northern Tibetan plateau.Geosci. Front.202415210176810.1016/j.gsf.2023.101768
    [Google Scholar]
  29. SharmaN. WesterhoffP. ZengC. Lithium occurrence in drinking water sources of the United States.Chemosphere202230513545810.1016/j.chemosphere.2022.13545835752313
    [Google Scholar]
  30. MalhiG.S. TaniousM. DasP. BerkM. The science and practice of lithium therapy.Aust. N. Z. J. Psychiatry201246319221110.1177/000486741243734622391277
    [Google Scholar]
  31. AyanoG. Bipolar disorders and lithium: Pharmacokinetics, pharmacodynamics, therapeutic effects and indications of lithium: Review of articles.Austin. J. Psychiatry Behav. Sci.2016321053
    [Google Scholar]
  32. ImazM.L. LangohrK. TorraM. SoyD. García-EsteveL. Martin-SantosR. Neonatal feeding trajectories in mothers with bipolar disorder taking lithium: Pharmacokinetic Data.Front. Pharmacol.20211275202210.3389/fphar.2021.75202234630122
    [Google Scholar]
  33. YuanJ. ZhangB. XuY. ZhangX. SongJ. ZhouW. HuK. ZhuD. ZhangL. ShaoF. ZhangS. DingJ. ZhuC. Population pharmacokinetics of lithium in young pediatric patients with intellectual disability.Front. Pharmacol.20211265029810.3389/fphar.2021.65029833935755
    [Google Scholar]
  34. HoenigM.P. ZeidelM.L. Homeostasis, the milieu intérieur, and the wisdom of the nephron.Clin. J. Am. Soc. Nephrol.2014971272128110.2215/CJN.0886081324789550
    [Google Scholar]
  35. ScholtesR.A. MuskietM.H.A. van BaarM.J.B. HespA.C. GreasleyP.J. HammarstedtA. KarlssonC. HallowK.M. DanserA.H.J. HeerspinkH.J.L. van RaalteD.H. The adaptive renal response for volume homeostasis during 2 weeks of dapagliflozin treatment in people with type 2 diabetes and preserved renal function on a sodium- controlled diet.Kidney Int. Rep.2022751084109210.1016/j.ekir.2022.02.02335570989
    [Google Scholar]
  36. KishoreB.K. EcelbargerC.M. Lithium: A versatile tool for understanding renal physiology.Am. J. Physiol. Renal Physiol.20133049F1139F114910.1152/ajprenal.00718.201223408166
    [Google Scholar]
  37. AssmusA.M. MullinsJ.J. BrownC.M. MullinsL.J. Cellular plasticity: A mechanism for homeostasis in the kidney.Acta Physiol.20202291e1344710.1111/apha.1344731991057
    [Google Scholar]
  38. MarkowitzG.S. RadhakrishnanJ. KambhamN. ValeriA.M. HinesW.H. D’AgatiV.D. Lithium nephrotoxicity.J. Am. Soc. Nephrol.20001181439144810.1681/ASN.V118143910906157
    [Google Scholar]
  39. PahwaM. JosephB. NunezN.A. JenkinsG.D. ColbyC.L. KashaniK.B. VeldicM. MooreK.M. BetcherH.K. OzerdemA. Cuellar-BarbozaA.B. McElroyS.L. BiernackaJ.M. FryeM.A. SinghB. Long-term lithium therapy and risk of chronic kidney disease in bipolar disorder: A historical cohort study.Bipolar Disord.202123771572310.1111/bdi.1305233548063
    [Google Scholar]
  40. SchootT.S. MolmansT.H.J. GrootensK.P. KerckhoffsA.P.M. Systematic review and practical guideline for the prevention and management of the renal side effects of lithium therapy.Eur. Neuropsychopharmacol.202031163210.1016/j.euroneuro.2019.11.00631837914
    [Google Scholar]
  41. PaiN.M. MalyamV. MurugesanM. GanjekarS. MoirangthemS. DesaiG. Lithium toxicity at therapeutic doses as a fallout of COVID-19 infection: A case series and possible mechanisms.Int. Clin. Psychopharmacol.2022371252810.1097/YIC.000000000000037934686643
    [Google Scholar]
  42. GitlinM. BauerM. Key questions on the long term renal effects of lithium: A review of pertinent data.Int. J. Bipolar Disord.20231113510.1186/s40345‑023‑00316‑537971552
    [Google Scholar]
  43. ChangC.W.L. HoC.S.H. Lithium use in a patient with bipolar disorder and end-stage kidney disease on hemodialysis: A case report.Front. Psychiatry202011610.3389/fpsyt.2020.0000632116831
    [Google Scholar]
  44. DavisJ. DesmondM. BerkM. Lithium and nephrotoxicity: A literature review of approaches to clinical management and risk stratification.BMC Nephrol.201819130510.1186/s12882‑018‑1101‑430390660
    [Google Scholar]
  45. GeorgeS. MaitiR. MishraB.R. JenaM. MohapatraD. Effect of regulated add-on sodium chloride intake on stabilization of serum lithium concentration in bipolar disorder: A randomized controlled trial.Bipolar Disord.2023251667510.1111/bdi.1327636409058
    [Google Scholar]
  46. RaoR. ZhangM.Z. ZhaoM. CaiH. HarrisR.C. BreyerM.D. HaoC.M. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria.Am. J. Physiol. Renal Physiol.20052884F642F64910.1152/ajprenal.00287.200415585669
    [Google Scholar]
  47. SnitowM.E. BhansaliR.S. KleinP.S. Lithium and therapeutic targeting of GSK-3.Cells202110225510.3390/cells1002025533525562
    [Google Scholar]
  48. ChatterjeeD. BeaulieuJ.M. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity.Front. Mol. Neurosci.202215102896310.3389/fnmol.2022.102896336504683
    [Google Scholar]
  49. McIntyreR.S. BerkM. BrietzkeE. GoldsteinB.I. López-JaramilloC. KessingL.V. MalhiG.S. NierenbergA.A. RosenblatJ.D. MajeedA. VietaE. VinbergM. YoungA.H. MansurR.B. Bipolar disorders.Lancet2020396102651841185610.1016/S0140‑6736(20)31544‑033278937
    [Google Scholar]
  50. WangW. LuD. ShiY. WangY. Exploring the neuroprotective effects of lithium in ischemic stroke: A literature review.Int. J. Med. Sci.202421228429810.7150/ijms.8819538169754
    [Google Scholar]
  51. SzałachŁ.P. LisowskaK.A. CubałaW.J. BarbutiM. PerugiG. The immunomodulatory effect of lithium as a mechanism of action in bipolar disorder.Front. Neurosci.202317121376610.3389/fnins.2023.121376637662097
    [Google Scholar]
  52. SolmiM. Suresh SharmaM. OsimoE.F. FornaroM. BortolatoB. CroattoG. MiolaA. VietaE. ParianteC.M. SmithL. Fusar-PoliP. ShinJ.I. BerkM. CarvalhoA.F. Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability.Brain Behav. Immun.20219719320310.1016/j.bbi.2021.07.01434332041
    [Google Scholar]
  53. WuT.N. LeeC.S. WuB.J. SunH.J. ChangC.H. ChenC.Y. ChenC.K. WuL.S.H. ChengA.T.A. Immunophenotypes associated with bipolar disorder and lithium treatment.Sci. Rep.2019911745310.1038/s41598‑019‑53745‑731767892
    [Google Scholar]
  54. ZhangY. WangJ. YeY. ZouY. ChenW. WangZ. ZouZ. Peripheral cytokine levels across psychiatric disorders: A systematic review and network meta-analysis.Prog. Neuropsychopharmacol. Biol. Psychiatry202312511074010.1016/j.pnpbp.2023.11074036893912
    [Google Scholar]
  55. SahaS. KrishnanH. RaghuP. IMPA1 dependent regulation of phosphatidylinositol 4,5-bisphosphate and calcium signalling by lithium.Life Sci. Alliance202472e20230242510.26508/lsa.20230242538056909
    [Google Scholar]
  56. CorbellaB. VietaE. Molecular targets of lithium action.Acta Neuropsychiatr.200315631634010.1046/j.1601‑5215.2003.00049.x26983769
    [Google Scholar]
  57. ShimS.S. BerglundK. YuS.P. Lithium: An old drug for new therapeutic strategy for Alzheimer’s disease and related dementia.Neurodegener. Dis.2023231-211210.1159/00053379737666228
    [Google Scholar]
  58. MurphyN. RedahanL. LallyJ. Management of lithium intoxication.BJPsych Adv.2023292829110.1192/bja.2022.7
    [Google Scholar]
  59. LoweH. BoswellJ. GoJ. LaFranceT. RinerA.D. ArthurS.M. RayS.D. RustC.F. Lithium.Side Effects of Drugs Annual. RayS.D. AmsterdamElsevier2020422332
    [Google Scholar]
  60. SennerF. KohshourM.O. AbdallaS. PapiolS. SchulzeT.G. The genetics of response to and side effects of lithium treatment in bipolar disorder: Future research perspectives.Front. Pharmacol.20211263888210.3389/fphar.2021.63888233867988
    [Google Scholar]
  61. HajikarimlouM. HuntK. KirbyG. TakallouS. JagadeesanS.K. OmidiK. HooshyarM. BurnsideD. MoteshareieH. BabuM. SmithM. HolcikM. SamanfarB. GolshaniA. Lithium chloride sensitivity in yeast and regulation of translation.Int. J. Mol. Sci.20202116573010.3390/ijms2116573032785068
    [Google Scholar]
  62. ThaseM.E. Adjunctive strategies for treatment-resistant depression.Managing Treatment-Resistant Depression. QuevedoJ. Riva-PosseP. BoboW.V. Cambridge, MassachusettsAcademic Press2022175192
    [Google Scholar]
  63. AwanS. AbelleiraA. KhehraL. HieberR. Undetectable serum lithium concentrations after coadministration of liquid lithium citrate and apple juice: A case report.Ment. Health Clin.2021111273010.9740/mhc.2021.01.02733505823
    [Google Scholar]
  64. MunteanuC. RotariuM. TurneaM. TătăranuL.G. DogaruG. PopescuC. SpînuA. AndoneI. IonescuE.V. ȚucmeanuR.E. OpreaC. ȚucmeanuA. CseppentoC.N. SilișteanuS.C. OnoseG. Lithium biological action mechanisms after ischemic stroke.Life20221211168010.3390/life1211168036362835
    [Google Scholar]
  65. DelcourteS. EtievantA. HaddjeriN. Role of central serotonin and noradrenaline interactions in the antidepressants’ action: Electrophysiological and neurochemical evidence. Progress in Brain ResearchAmsterdamElsevier202110.1016/bs.pbr.2021.01.002
    [Google Scholar]
  66. BrigittaB. Pathophysiology of depression and mechanisms of treatment.Dialogues Clin. Neurosci.20024172010.31887/DCNS.2002.4.1/bbondy22033824
    [Google Scholar]
  67. BernardA. Lithium. Handbook on the Toxicology of Metals.4th ed.AmsterdamElsevier201510.1016/B978‑0‑444‑59453‑2.00044‑5
    [Google Scholar]
  68. AlsadyM. BaumgartenR. DeenP.M.T. de GrootT. Lithium in the kidney: Friend and foe?J. Am. Soc. Nephrol.20162761587159510.1681/ASN.201508090726577775
    [Google Scholar]
  69. LindseyB.D. BelitzK. CravottaC.A.III ToccalinoP.L. DubrovskyN.M. Lithium in groundwater used for drinking-water supply in the United States.Sci. Total Environ.202176714469110.1016/j.scitotenv.2020.14469133454610
    [Google Scholar]
  70. TondoL. AldaM. BauerM. BerginkV. GrofP. HajekT. LewitkaU. LichtR.W. ManchiaM. Müller-OerlinghausenB. NielsenR.E. SeloM. SimhandlC. BaldessariniR.J. Clinical use of lithium salts: Guide for users and prescribers.Int. J. Bipolar Disord.2019711610.1186/s40345‑019‑0151‑231328245
    [Google Scholar]
  71. HsuC.W. TsaiS.Y. TsengP.T. LiangC.S. VietaE. CarvalhoA.F. StubbsB. KaoH.Y. TuY.K. LinP.Y. Differences in the prophylactic effect of serum lithium levels on depression and mania in bipolar disorder: A dose-response meta-analysis.Eur. Neuropsychopharmacol.202258202910.1016/j.euroneuro.2022.01.11235158229
    [Google Scholar]
  72. U.S. Geological SurveyData used to model and map lithium concentrations in groundwater used as drinking water for the conterminous United States.2023Available From: https://www.geoplatform.gov/metadata/326a4957-1293-4eb0-9ecc-3a2197c36ca8
  73. LombardM.A. BrownE.E. SaftnerD.M. ArienzoM.M. Fuller-ThomsonE. BrownC.J. AyotteJ.D. Estimating lithium concentrations in groundwater used as drinking water for the conterminous United States.Environ. Sci. Technol.20245821255126410.1021/acs.est.3c0331538164924
    [Google Scholar]
  74. AndoS. SuzukiH. MatsukawaT. UsamiS. MuramatsuH. FukunagaT. YokoyamaK. OkazakiY. NishidaA. Comparison of lithium levels between suicide and non-suicide fatalities: Cross-sectional study.Transl. Psychiatry202212146610.1038/s41398‑022‑02238‑936344516
    [Google Scholar]
  75. MuronagaM. TeraoT. KohnoK. HirakawaH. IzumiT. EtohM. Lithium in drinking water and Alzheimer’s dementia: Epidemiological findings from national data base of Japan.Bipolar Disord.202224878879410.1111/bdi.1325736073313
    [Google Scholar]
  76. LiewZ. MengQ. YanQ. SchullehnerJ. HansenB. KristiansenS.M. VoutchkovaD.D. OlsenJ. ErsbøllA.K. KetzelM. Raaschou-NielsenO. RitzB.R. Association between estimated geocoded residential maternal exposure to lithium in drinking water and risk for autism spectrum disorder in offspring in Denmark.JAMA Pediatr.2023177661762410.1001/jamapediatrics.2023.034637010840
    [Google Scholar]
  77. ZhongS. ZhangK. BagheriM. BurkenJ.G. GuA. LiB. MaX. MarroneB.L. RenZ.J. SchrierJ. ShiW. TanH. WangT. WangX. WongB.M. XiaoX. YuX. ZhuJ.J. ZhangH. Machine learning: New ideas and tools in environmental science and engineering.Environ. Sci. Technol.20215519acs.est.1c0133910.1021/acs.est.1c0133934403250
    [Google Scholar]
  78. AdeelM. ZainM. ShakoorN. AhmadM. A. AzeemI. AzizM.A. TulcanR.X.S. RathoreA. TahirM. HortonR. XuM. YukuiR. Global navigation of Lithium in water bodies and emerging human health crisis.npj Clean Water2023610023810.1038/s41545‑023‑00238‑w
    [Google Scholar]
  79. DuthieA.C. HannahJ. BattyG.D. DearyI.J. StarrJ.M. SmithD.J. RussT.C. Low-level lithium in drinking water and subsequent risk of dementia: Cohort study.Int. J. Geriatr. Psychiatry2023383e589010.1002/gps.589036747488
    [Google Scholar]
  80. YoshimuraT. AraokaD. KawahataH. HossainH.M.Z. OhkouchiN. The influence of weathering, water sources, and hydrological cycles on lithium isotopic compositions in river water and groundwater of the Ganges–Brahmaputra–Meghna River System in Bangladesh.Front. Earth Sci.2021966875710.3389/feart.2021.668757
    [Google Scholar]
  81. WeynellM. WiechertU. SchuesslerJ.A. Lithium isotope signatures of weathering in the hyper-arid climate of the Western Tibetan plateau.Geochim. Cosmochim. Acta202129320522310.1016/j.gca.2020.10.021
    [Google Scholar]
  82. TörökA.I. MoldovanA. LeveiE.A. CadarO. TănăseliaC. MoldovanO.T. Assessment of lithium, macro- and microelements in water, soil and plant samples from Karst Areas in Romania.Materials20211414400210.3390/ma1414400234300922
    [Google Scholar]
  83. Pogge von StrandmannP.A.E. CosfordL.R. LiuC.Y. LiuX. KrauseA.J. WilsonD.J. HeX. McCoy-WestA.J. GislasonS.R. BurtonK.W. Assessing hydrological controls on the lithium isotope weathering tracer.Chem. Geol.202364212180110.1016/j.chemgeo.2023.121801
    [Google Scholar]
  84. QassemM. TriantisI. HickeyM. PalazidouE. KyriacouP. Methodology for rapid assessment of blood lithium levels in ultramicro volumes of blood plasma for applications in personal monitoring of patients with bipolar mood disorder.J. Biomed. Opt.201823101610.1117/1.JBO.23.10.10700430358332
    [Google Scholar]
  85. SheikhM. QassemM. TriantisI.F. KyriacouP.A. Advances in therapeutic monitoring of lithium in the management of bipolar disorder.Sensors202222373610.3390/s2203073635161482
    [Google Scholar]
  86. ApruzzeseG.M. ApicellaM.L. MaddalunoG. MazzitelliG. ViolaB. Spectroscopic measurements of lithium influx from an actively water-cooled liquid lithium limiter on FTU.Fusion Eng. Des.201711714514910.1016/j.fusengdes.2016.06.043
    [Google Scholar]
  87. van WijngaardenW.A. NobleG.A. Precision laser spectroscopy of Li+ and neutral lithium. Precision physics of simple atoms and molecules. KarshenboimS.G. Berlin, HeidelbergSpringer200811112910.1007/978‑3‑540‑75479‑4_7
    [Google Scholar]
  88. ZhangF. DellingerM. HiltonR.G. YuJ. AllenM.B. DensmoreA.L. SunH. JinZ. Hydrological control of river and seawater lithium isotopes.Nat. Commun.2022131335910.1038/s41467‑022‑31076‑y35688840
    [Google Scholar]
  89. StenzelY. HorsthemkeF. WinterM. NowakS. Chromatographic techniques in the research area of lithium ion batteries: Current state-of-the-art.Separations2019622610.3390/separations6020026
    [Google Scholar]
  90. Vortmann-WesthovenB. DiehlM. WinterM. NowakS. Ion chromatography with post-column reaction and serial conductivity and spectrophotometric detection method development for quantification of transition metal dissolution in lithium ion battery electrolytes. ChromatographiaHeidelberg, GermanySpringer Link201810.1007/s10337‑018‑3540‑2
    [Google Scholar]
  91. LewińskaI. Capitán-VallveyL.F. ErenasM.M. Thread-based microfluidic sensor for lithium monitoring in saliva.Talanta202325312409410.1016/j.talanta.2022.124094
    [Google Scholar]
  92. VrouweE.X. LuttgeR. van den BergA. Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection.Electrophoresis20042510-111660166710.1002/elps.20040588515188255
    [Google Scholar]
  93. KomatsuT. TokeshiM. FanS.K. Determination of blood lithium-ion concentration using digital microfluidic whole-blood separation and preloaded paper sensors.Biosens. Bioelectron.202219511363110.1016/j.bios.2021.11363134571482
    [Google Scholar]
  94. FadaeiA. An investigation into the association between suicide mortality rate and lithium levels in potable water: A review study.Int. Clin. Psychopharmacol.2023382738010.1097/YIC.000000000000043236719336
    [Google Scholar]
  95. OliveiraP. ZagaloJ. MadeiraN. NevesO. Lithium in public drinking water and suicide mortality in Portugal: Initial approach.Acta Med. Port.2019321475210.20344/amp.1074430753803
    [Google Scholar]
  96. NabiZ. StansfeldJ. PlöderlM. WoodL. MoncrieffJ. Effects of lithium on suicide and suicidal behaviour: A systematic review and meta-analysis of randomised trials.Epidemiol. Psychiatr. Sci.202231e6510.1017/S204579602200049X36111461
    [Google Scholar]
  97. KawadaT. Lithium in drinking water and suicide risk.EXCLI J.20222157157210.17179/excli2022‑468935651658
    [Google Scholar]
  98. AndoS. KoikeS. ShimoderaS. FujitoR. SawadaK. TeraoT. FurukawaT.A. SasakiT. InoueS. AsukaiN. OkazakiY. NishidaA. Lithium levels in tap water and the mental health problems of adolescents.J. Clin. Psychiatry2017783e252e25610.4088/JCP.15m1022028394506
    [Google Scholar]
  99. AgamG. LevineJ. Neuroprotective effects of lithium in neuropsychiatric disorders.Neuroprotection in Autism, Schizophrenia and Alzheimer’s diseas. GozesI. LevineJ. CambridgeAcademic Press202020924110.1016/B978‑0‑12‑814037‑6.00006‑9
    [Google Scholar]
  100. ZorrillaI. Lopez-ZurbanoS. AlberichS. BarberoI. Lopez-PenaP. García-CorresE. Chart PascualJ.P. CrespoJ.M. de DiosC. Balanzá-MartínezV. Gonzalez-PintoA. Lithium levels and lifestyle in patients with bipolar disorder: A new tool for self-management.Int. J. Bipolar Disord.20231111110.1186/s40345‑023‑00291‑x36929031
    [Google Scholar]
  101. BaldessariniR.J. TondoL. VázquezG.H. Pharmacological treatment of adult bipolar disorder.Mol. Psychiatry201924219821710.1038/s41380‑018‑0044‑229679069
    [Google Scholar]
  102. BosiA. CerianiL. ElinderC.G. BelloccoR. ClaseC.M. LandenM. CarreroJ.J. RunessonB. Quality of laboratory biomarker monitoring during treatment with lithium in patients with bipolar disorder.Bipolar Disord.202325649950610.1111/bdi.1330236651925
    [Google Scholar]
  103. EnderleJ. KlinkU. di GiuseppeR. KochM. SeidelU. WeberK. BirringerM. RatjenI. RimbachG. LiebW. Plasma lithium levels in the general population: A cross-sectional analysis of metabolic and dietary correlates.Nutrients2020128248910.3390/nu1208248932824874
    [Google Scholar]
  104. BarbosaH. SoaresA.M.V.M. PereiraE. FreitasR. Lithium: A review on concentrations and impacts in marine and coastal systems.Sci. Total Environ.2023857Pt 215937410.1016/j.scitotenv.2022.15937436240931
    [Google Scholar]
  105. SeidelU. JansK. HommenN. IpharraguerreI.R. LüersenK. BirringerM. RimbachG. Lithium content of 160 beverages and its impact on lithium status in Drosophila melanogaster. Foods20209679510.3390/foods906079532560287
    [Google Scholar]
  106. IzsakB. HidvegiA. BalintL. MalnasiT. VarghaM. PandicsT. RihmerZ. DomeP. Investigation of the association between lithium levels in drinking water and suicide mortality in Hungary.J. Affect Disord.2022298Pt A54054710.1016/j.jad.2021.11.041
    [Google Scholar]
  107. GuptaS. KripalaniM. KhastgirU. ReillyJ. Management of the renal adverse effects of lithium.Adv. Psychiatr. Treat.201319645746610.1192/apt.bp.112.010306
    [Google Scholar]
  108. GuptaS. KhastgirU. Drug information update. Lithium and chronic kidney disease: Debates and dilemmas.BJPsych Bull.201741421622010.1192/pb.bp.116.05403128811917
    [Google Scholar]
  109. MossM.C. KozlowskiT. DupuisR. DetwilerR. LeeR.M. DeyoJ.C. Lithium use for bipolar disorder post renal transplant: Is mood stabilization without toxicity possible?Transplantation2014973e23e2410.1097/01.TP.0000438620.04558.3824492429
    [Google Scholar]
  110. BalochS. KaziT.G. AfridiH.I. BaigJ.A. TalpurF.N. ArainM.B. Correlation of lithium levels between drinking water obtained from different sources and scalp hair samples of adult male subjects.Environ. Geochem. Health20173951191119910.1007/s10653‑016‑9886‑127757573
    [Google Scholar]
  111. NevesM.O. MarquesJ. EggenkampH.G.M. Lithium in Portuguese bottled natural mineral waters-potential for health benefits?Int. J. Environ. Res. Public Health20201722836910.3390/ijerph1722836933198207
    [Google Scholar]
  112. NaeemA. AslamM. Saifullah MühlingK.H. Lithium: Perspectives of nutritional beneficence, dietary intake, biogeochemistry, and biofortification of vegetables and mushrooms.Sci. Total Environ.202179814924910.1016/j.scitotenv.2021.14924934329936
    [Google Scholar]
  113. SzklarskaD. RzymskiP. Is lithium a micronutrient? From biological activity and epidemiological observation to food fortification.Biol. Trace Elem. Res.20191891182710.1007/s12011‑018‑1455‑230066063
    [Google Scholar]
  114. JingH. ZhangQ. GaoX. Excessive lithium of water induced a toxic effect on kidney via oxidative damage and inflammation in carp.Aquaculture202153573628210.1016/j.aquaculture.2020.736282
    [Google Scholar]
  115. HermannA. GorunA. BenudisA. Lithium use and non-use for pregnant and postpartum women with bipolar disorder.Curr. Psychiatry Rep.2019211111410.1007/s11920‑019‑1103‑331701245
    [Google Scholar]
  116. GahrM. FreudenmannR. ConnemannB. KellerF. Schönfeldt-LecuonaC. Nephrotoxicity and long-term treatment with lithium.Psychiatr. Prax.2013411152210.1055/s‑0033‑134949024089323
    [Google Scholar]
  117. CadeJ.F.J. Lithium salts in the treatment of psychotic excitement.Med. J. Aust.194921034935210.5694/j.1326‑5377.1949.tb36912.x18142718
    [Google Scholar]
  118. KatzI.R. RogersM.P. LewR. ThwinS.S. DorosG. AhearnE. OstacherM.J. DeLisiL.E. SmithE.G. RingerR.J. FergusonR. HoffmanB. KaufmanJ.S. PaikJ.M. ConradC.H. HolmbergE.F. BoneyT.Y. HuangG.D. LiangM.H. AgrawalD. AkhtarN. AndrosenkoM. BergerB. BhatV. BrennerL. ChalasaniL. ChangD. ChenP.P.J. CornejoB. CoryD. DavidsonD. DickmannP. DuncanE. FernandoR. FloydK.C. FormanS. GaleP. GeeteJ. IgnatowskiM. JonesK. JuergensT. JurjusG. KhatkhateG. KonickiE.P. KrahnD. LarsonG. LeckbandS. MackJ. MatthewsS. MayoL. McGladeE. MichaletsJ. MillerE. MulyE. NiculescuA. OstacherM. PadalaP. PadalaK. PazzagliaP. RaskindM. RenshawP. ShivakumarG. SmithJ.C. SullivanD. SuppesP. SwannA. ThomasL. ThompsonS. TurnerE. UmbertM. WestermeyerJ. WoodA. WortzelH. Yurgelun-ToddD. Lithium treatment in the prevention of repeat suicide-related outcomes in veterans with major depression or bipolar disorder.JAMA Psychiatry2022791243210.1001/jamapsychiatry.2021.317034787653
    [Google Scholar]
  119. ChiouS.Y.S. KyseniusK. HuangY. HabgoodM.D. KoehnL.M. QiuF. CrouchP.J. VarshneyS. GanioK. DziegielewskaK.M. SaundersN.R. Lithium administered to pregnant, lactating and neonatal rats: Entry into developing brain.Fluids Barriers CNS20211815710.1186/s12987‑021‑00285‑w34876168
    [Google Scholar]
  120. PoelsE.M.P. BijmaH.H. GalballyM. BerginkV. Lithium during pregnancy and after delivery: A review.Int. J. Bipolar Disord.2018612610.1186/s40345‑018‑0135‑730506447
    [Google Scholar]
  121. FornaroM. MaritanE. FerrantiR. ZaninottoL. MiolaA. AnastasiaA. MurruA. SoléE. StubbsB. CarvalhoA.F. SerrettiA. VietaE. Fusar-PoliP. McGuireP. YoungA.H. DazzanP. VigodS.N. CorrellC.U. SolmiM. Lithium exposure during pregnancy and the postpartum period: A systematic review and meta- analysis of safety and efficacy outcomes.Am. J. Psychiatry20201771769210.1176/appi.ajp.2019.1903022831623458
    [Google Scholar]
  122. ImazM.L. TorraM. SoyD. García-EsteveL. Martin-SantosR. Clinical lactation studies of lithium: A systematic review.Front. Pharmacol.201910100510.3389/fphar.2019.0100531551795
    [Google Scholar]
  123. RejS. HerrmannN. GruneirA. McArthurE. JeyakumarN. MuandaF.T. HarelZ. DixonS. GargA.X. Association of lithium use and a higher serum concentration of lithium with the risk of declining renal function in older adults.J. Clin. Psychiatry202081519m1304510.4088/JCP.19m1304532841553
    [Google Scholar]
  124. ChesnayeN.C. StelV.S. TripepiG. DekkerF.W. FuE.L. ZoccaliC. JagerK.J. An introduction to inverse probability of treatment weighting in observational research.Clin. Kidney J.2022151142010.1093/ckj/sfab15835035932
    [Google Scholar]
  125. BosiA. ClaseC.M. CerianiL. SjölanderA. FuE.L. RunessonB. ChangZ. LandénM. BelloccoR. ElinderC.G. CarreroJ.J. Absolute and relative risks of kidney outcomes associated with lithium vs. valproate use in Sweden.JAMA Netw. Open202367e232205610.1001/jamanetworkopen.2023.2205637418264
    [Google Scholar]
  126. CarterL. ZolezziM. LewczykA. An updated review of the optimal lithium dosage regimen for renal protection.Can. J. Psychiatry2013581059560010.1177/07067437130580100924165107
    [Google Scholar]
  127. SeverusW.E. KleindienstN. SeemüllerF. FrangouS. MöllerH.J. GreilW. What is the optimal serum lithium level in the long-term treatment of bipolar disorder – a review?Bipolar Disord.200810223123710.1111/j.1399‑5618.2007.00475.x18271901
    [Google Scholar]
  128. NewmarkR.L. BogenD.L. WisnerK.L. IsaacM. CiolinoJ.D. ClarkC.T. Risk-Benefit assessment of infant exposure to lithium through breast milk: A systematic review of the literature.Int. Rev. Psychiatry201931329530410.1080/09540261.2019.158665731180257
    [Google Scholar]
  129. HeinonenE. TöttermanK. BäckK. SarmanI. SvedenkransJ. ForsbergL. Lithium use during breastfeeding was safe in healthy full-term infants under strict monitoring.Acta Paediatr.2022111101891189810.1111/apa.1644435673836
    [Google Scholar]
  130. ImazM.L. SoyD. TorraM. García-EsteveL. SolerC. Martin-SantosR. Case report: Clinical and pharmacokinetic profile of lithium monotherapy in exclusive breastfeeding. A follow-up case series.Front. Pharmacol.20211264741410.3389/fphar.2021.64741434248617
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673315171240702103413
Loading
/content/journals/cmc/10.2174/0109298673315171240702103413
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): causation; correlations; drinking water; Lithium; mental health; public health
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test