Skip to content
2000
Volume 32, Issue 30
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Antibiotic resistance has progressively diminished the effectiveness of conventional antibiotics, necessitating the cessation of clinical treatment. Consequently, novel antibacterial agents are urgently needed. We review studies on antimicrobial agents published during 2002-2023. Most of these studies were published within the last 10 years. By analyzing recent articles on antibiotic resistance and the development of new antibacterial drugs, we showed that although drug resistance is inevitable, the issue is being addressed gradually the discovery and clinical application of antimicrobial peptides, nanomaterial drugs, and bacteriophage therapy. In light of the emergence of antimicrobial resistance, the development of new antimicrobial agents will require innovation in a field that has relied on traditional methods of discovery and development.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673306699240614112615
2025-06-27
2025-09-29
Loading full text...

Full text loading...

References

  1. TheuretzbacherU. GottwaltS. BeyerP. ButlerM. CzaplewskiL. LienhardtC. MojaL. PaulM. PaulinS. RexJ.H. SilverL.L. SpigelmanM. ThwaitesG.E. PaccaudJ.P. HarbarthS. Analysis of the clinical antibacterial and antituberculosis pipeline.Lancet Infect. Dis.2019192e40e5010.1016/S1473‑3099(18)30513‑930337260
    [Google Scholar]
  2. WiddifieldJ. BernatskyS. PatersonJ.M. GunrajN. ThorneJ.C. PopeJ. CividinoA. BombardierC. Serious infections in a population-based cohort of 86,039 seniors with rheumatoid arthritis.Arthritis Care Res.201365335336110.1002/acr.2181222833532
    [Google Scholar]
  3. YangK. HanQ. ChenB. ZhengY. ZhangK. LiQ. WangJ. Antimicrobial hydrogels: promising materials for medical application.Int. J. Nanomedicine2018132217226310.2147/IJN.S15474829695904
    [Google Scholar]
  4. VosT. BarberR.M. BellB. Bertozzi-VillaA. BiryukovS. BolligerI. CharlsonF. DavisA. DegenhardtL. DickerD. DuanL. ErskineH. FeiginV.L. FerrariA.J. FitzmauriceC. FlemingT. GraetzN. GuinovartC. HaagsmaJ. HansenG.M. HansonS.W. HeutonK.R. HigashiH. KassebaumN. KyuH. LaurieE. LiangX. LofgrenK. LozanoR. MacIntyreM.F. Moradi-LakehM. NaghaviM. NguyenG. OdellS. OrtbladK. RobertsD.A. RothG.A. SandarL. SerinaP.T. StanawayJ.D. SteinerC. ThomasB. VollsetS.E. WhitefordH. WolockT.M. YeP. ZhouM. ÃvilaM.A. AasvangG.M. AbbafatiC. OzgorenA.A. Abd-AllahF. AzizM.I.A. AberaS.F. AboyansV. AbrahamJ.P. AbrahamB. AbubakarI. Abu-RaddadL.J. Abu-RmeilehN.M.E. AburtoT.C. AchokiT. AckermanI.N. AdelekanA. AdemiZ. AdouA.K. AdsuarJ.C. ArnlovJ. AgardhE.E. Al KhabouriM.J. AlamS.S. AlasfoorD. AlbittarM.I. AlegrettiM.A. AlemanA.V. AlemuZ.A. Alfonso-CristanchoR. AlhabibS. AliR. AllaF. AllebeckP. AllenP.J. AlMazroaM.A.A. AlsharifU. AlvarezE. Alvis-GuzmanN. AmeliO. AminiH. AmmarW. AndersonB.O. AndersonH.R. AntonioC.A.T. AnwariP. ApfelH. ArsenijevicV.S.A. ArtamanA. AsgharR.J. AssadiR. AtkinsL.S. AtkinsonC. BadawiA. BahitM.C. BakfalouniT. BalakrishnanK. BalallaS. BanerjeeA. Barker-ColloS.L. BarqueraS. BarregardL. BarreroL.H. BasuS. BasuA. BaxterA. BeardsleyJ. BediN. BeghiE. BekeleT. BellM.L. BenjetC. BennettD.A. BensenorI.M. BenzianH. BernabeE. BeyeneT.J. BhalaN. BhallaA. BhuttaZ. BienhoffK. BikbovB. AbdulhakA.B. BloreJ.D. BlythF.M. BohenskyM.A. BasaraB.B. BorgesG. BornsteinN.M. BoseD. BoufousS. BourneR.R. BoyersL.N. BraininM. BrauerM. BrayneC.E.G. BrazinovaA. BreitbordeN.J.K. BrennerH. BriggsA.D.M. BrooksP.M. BrownJ. BrughaT.S. BuchbinderR. BuckleG.C. BukhmanG. BullochA.G. BurchM. BurnettR. CardenasR. CabralN.L. NonatoI.R.C. CampuzanoJ.C. CarapetisJ.R. CarpenterD.O. CasoV. Castaneda-OrjuelaC.A. Catala-LopezF. ChadhaV.K. ChangJ-C. ChenH. ChenW. ChiangP.P. Chimed-OchirO. ChowdhuryR. ChristensenH. ChristophiC.A. ChughS.S. CirilloM. CoggeshallM. CohenA. ColistroV. ColquhounS.M. ContrerasA.G. CooperL.T. CooperC. CooperriderK. CoreshJ. CortinovisM. CriquiM.H. CrumpJ.A. Cuevas-NasuL. DandonaR. DandonaL. DansereauE. DantesH.G. DarganP.I. DaveyG. DavitoiuD.V. DayamaA. De la Cruz-GongoraV. de la VegaS.F. De LeoD. del Pozo-CruzB. DellavalleR.P. DeribeK. DerrettS. Des JarlaisD.C. DessalegnM. deVeberG.A. DharmaratneS.D. Diaz-TorneC. DingE.L. DokovaK. DorseyE.R. DriscollT.R. DuberH. DurraniA.M. EdmondK.M. EllenbogenR.G. EndresM. ErmakovS.P. EshratiB. EsteghamatiA. EstepK. FahimiS. FarzadfarF. FayD.F.J. FelsonD.T. FereshtehnejadS-M. FernandesJ.G. FerriC.P. FlaxmanA. FoigtN. ForemanK.J. FowkesF.G.R. FranklinR.C. FurstT. FutranN.D. GabbeB.J. GankpeF.G. Garcia-GuerraF.A. GeleijnseJ.M. GessnerB.D. GibneyK.B. GillumR.F. GinawiI.A. GiroudM. GiussaniG. GoenkaS. GoginashviliK. GonaP. de CosioT.G. GosselinR.A. GotayC.C. GotoA. GoudaH.N. GuerrantR. GugnaniH.C. GunnellD. GuptaR. GuptaR. GutierrezR.A. Hafezi-NejadN. HaganH. HalasaY. HamadehR.R. HamavidH. HammamiM. HankeyG.J. HaoY. HarbH.L. HaroJ.M. HavmoellerR. HayR.J. HayS. HedayatiM.T. PiI.B.H. HeydarpourP. HijarM. HoekH.W. HoffmanH.J. HornbergerJ.C. HosgoodH.D. HossainM. HotezP.J. HoyD.G. HsairiM. HuH. HuG. HuangJ.J. HuangC. HuiartL. HusseiniA. IannaroneM. IburgK.M. InnosK. InoueM. JacobsenK.H. JassalS.K. JeemonP. JensenP.N. JhaV. JiangG. JiangY. JonasJ.B. JosephJ. JuelK. KanH. KarchA. KarimkhaniC. KarthikeyanG. KatzR. KaulA. KawakamiN. KaziD.S. KempA.H. KengneA.P. KhaderY.S. KhalifaS.E.A.H. KhanE.A. KhanG. KhangY-H. KhonelidzeI. KielingC. KimD. KimS. KimokotiR.W. KinfuY. KingeJ.M. KisselaB.M. KivipeltoM. KnibbsL. KnudsenA.K. KokuboY. KosenS. KramerA. KravchenkoM. KrishnamurthiR.V. KrishnaswamiS. DefoB.K. BicerB.K. KuipersE.J. KulkarniV.S. KumarK. KumarG.A. KwanG.F. LaiT. LallooR. LamH. LanQ. LansinghV.C. LarsonH. LarssonA. LawrynowiczA.E.B. LeasherJ.L. LeeJ-T. LeighJ. LeungR. LeviM. LiB. LiY. LiY. liangJ. LimS. LinH-H. LindM. LindsayM.P. LipshultzS.E. LiuS. LloydB.K. OhnoS.L. LogroscinoG. LookerK.J. LopezA.D. Lopez-OlmedoN. Lortet-TieulentJ. LotufoP.A. LowN. LucasR.M. LuneviciusR. LyonsR.A. MaJ. MaS. MackayM.T. MajdanM. MalekzadehR. MapomaC.C. MarcenesW. MarchL.M. MargonoC. MarksG.B. MarzanM.B. MasciJ.R. Mason-JonesA.J. MatzopoulosR.G. MayosiB.M. MazorodzeT.T. McGillN.W. McGrathJ.J. McKeeM. McLainA. McMahonB.J. MeaneyP.A. MehndirattaM.M. Mejia-RodriguezF. MekonnenW. MelakuY.A. MeltzerM. MemishZ.A. MensahG. MeretojaA. MhimbiraF.A. MichaR. MillerT.R. MillsE.J. MitchellP.B. MockC.N. MoffittT.E. IbrahimN.M. MohammadK.A. MokdadA.H. MolaG.L. MonastaL. MonticoM. MontineT.J. MooreA.R. MoranA.E. MorawskaL. MoriR. MoschandreasJ. MoturiW.N. MoyerM. MozaffarianD. MuellerU.O. MukaigawaraM. MurdochM.E. MurrayJ. MurthyK.S. NaghaviP. NahasZ. NaheedA. NaidooK.S. NaldiL. NandD. NangiaV. NarayanK.M.V. NashD. NejjariC. NeupaneS.P. NewmanL.M. NewtonC.R. NgM. NgalesoniF.N. NhungN.T. NisarM.I. NolteS. NorheimO.F. NormanR.E. NorrvingB. NyakarahukaL. OhI.H. OhkuboT. OmerS.B. OpioJ.N. OrtizA. PandianJ.D. PaneloC.I.A. PapachristouC. ParkE-K. ParryC.D. CaicedoA.J.P. PattenS.B. PaulV.K. PavlinB.I. PearceN. PedrazaL.S. PellegriniC.A. PereiraD.M. Perez-RuizF.P. PericoN. PervaizA. PesudovsK. PetersonC.B. PetzoldM. PhillipsM.R. PhillipsD. PhillipsB. PielF.B. PlassD. PoenaruD. PolanczykG.V. PolinderS. PopeC.A. PopovaS. PoultonR.G. PourmalekF. PrabhakaranD. PrasadN.M. QatoD. QuistbergD.A. RafayA. RahimiK. Rahimi-MovagharV. RahmanS. RajuM. RakovacI. RanaS.M. RazaviH. RefaatA. RehmJ. RemuzziG. ResnikoffS. RibeiroA.L. RiccioP.M. RichardsonL. RichardusJ.H. RiedererA.M. RobinsonM. RocaA. RodriguezA. Rojas-RuedaD. RonfaniL. RothenbacherD. RoyN. RuhagoG.M. SabinN. SaccoR.L. KsoreideK. SahaS. SahathevanR. SahraianM.A. SampsonU. SanabriaJ.R. Sanchez-RieraL. SantosI.S. SatpathyM. SaundersJ.E. SawhneyM. SaylanM.I. ScarboroughP. SchoettkerB. SchneiderI.J.C. SchwebelD.C. ScottJ.G. SeedatS. SepanlouS.G. SerdarB. Servan-MoriE.E. ShackelfordK. ShaheenA. ShahrazS. LevyT.S. ShangguanS. SheJ. SheikhbahaeiS. ShepardD.S. ShiP. ShibuyaK. ShinoharaY. ShiriR. ShishaniK. ShiueI. ShrimeM.G. SigfusdottirI.D. SilberbergD.H. SimardE.P. SindiS. SinghJ.A. SinghL. SkirbekkV. SliwaK. SoljakM. SonejiS. SoshnikovS.S. SpeyerP. SposatoL.A. SreeramareddyC.T. StoecklH. StathopoulouV.K. StecklingN. SteinM.B. SteinD.J. SteinerT.J. StewartA. StorkE. StovnerL.J. StroumpoulisK. SturuaL. SunguyaB.F. SwaroopM. SykesB.L. TabbK.M. TakahashiK. TanF. TandonN. TanneD. TannerM. TavakkoliM. TaylorH.R. Te AoB.J. TemesgenA.M. HaveM.T. TenkorangE.Y. TerkawiA.S. TheadomA.M. ThomasE. Thorne-LymanA.L. ThriftA.G. TleyjehI.M. TonelliM. TopouzisF. TowbinJ.A. ToyoshimaH. TraebertJ. TranB.X. TrasandeL. TrilliniM. TruelsenT. TrujilloU. TsilimbarisM. TuzcuE.M. UkwajaK.N. UndurragaE.A. UzunS.B. van BrakelW.H. van de VijverS. DingenenR.V. van GoolC.H. VarakinY.Y. VasankariT.J. VavilalaM.S. VeermanL.J. Velasquez-MelendezG. VenketasubramanianN. VijayakumarL. VillalpandoS. ViolanteF.S. VlassovV.V. WallerS. WallinM.T. WanX. WangL. WangJ.L. WangY. WarouwT.S. WeichenthalS. WeiderpassE. WeintraubR.G. WerdeckerA. WessellsK.R.R. WestermanR. WilkinsonJ.D. WilliamsH.C. WilliamsT.N. WoldeyohannesS.M. WolfeC.D.A. WongJ.Q. WongH. WoolfA.D. WrightJ.L. WurtzB. XuG. YangG. YanoY. YenesewM.A. YenturG.K. YipP. YonemotoN. YoonS-J. YounisM. YuC. KimK.Y. ZakiM.E.S. ZhangY. ZhaoZ. ZhaoY. ZhuJ. ZoniesD. ZuntJ.R. SalomonJ.A. MurrayC.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013.Lancet2015386999574380010.1016/S0140‑6736(15)60692‑426063472
    [Google Scholar]
  5. MartínezJ.L. RojoF. Metabolic regulation of antibiotic resistance.FEMS Microbiol. Rev.201135576878910.1111/j.1574‑6976.2011.00282.x21645016
    [Google Scholar]
  6. PoehlsgaardJ. DouthwaiteS. The bacterial ribosome as a target for antibiotics.Nat. Rev. Microbiol.200531187088110.1038/nrmicro126516261170
    [Google Scholar]
  7. Gualerzi, C.O.; Brandi, L.; Fabbretti, A.; Pon, C.L. Antibiotics: Targets, Mechanisms and Resistance. 2013.10.1002/9783527659685
  8. HudsonM.A. LocklessS.W. Elucidating the mechanisms of action of antimicrobial agents.MBio2022133e02240-2110.1128/mbio.02240‑2135435702
    [Google Scholar]
  9. JiangY. ChenY. SongZ. TanZ. ChengJ. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation.Adv. Drug Deliv. Rev.202117026128010.1016/j.addr.2020.12.01633400958
    [Google Scholar]
  10. AlmasaudiS.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features.Saudi J. Biol. Sci.201825358659610.1016/j.sjbs.2016.02.00929686523
    [Google Scholar]
  11. KonK V RaiM. Combining essential oils with antibiotics and other antimicrobial agents to overcome multidrug-resistant bacteria.Fighting Multidrug Resistance With Herbal Extracts, Essential Oils and their ComponentsAmsterdamElsevier2013149164
    [Google Scholar]
  12. MunitaJ.M. AriasC.A. Mechanisms of antibiotic resistance.Microbiol. Spectr.2016424.2.1510.1128/microbiolspec.VMBF‑0016‑201527227291
    [Google Scholar]
  13. GargN. OmanT.J. Andrew WangT.S. De GonzaloC.V.G. WalkerS. van der DonkW.A. Mode of action and structure–activity relationship studies of geobacillin I.J. Antibiot.201467113313610.1038/ja.2013.11224169799
    [Google Scholar]
  14. LewisK. Platforms for antibiotic discovery.Nat. Rev. Drug Discov.201312537138710.1038/nrd397523629505
    [Google Scholar]
  15. CollinF. ThompsonR.E. JolliffeK.A. PayneR.J. MaxwellA. Fragments of the bacterial toxin microcin B17 as gyrase poisons.PLoS One201384e6145910.1371/journal.pone.006145923593482
    [Google Scholar]
  16. NayarA.S. DoughertyT.J. FergusonK.E. GrangerB.A. McWilliamsL. StaceyC. LeachL.J. NaritaS. TokudaH. MillerA.A. BrownD.G. McLeodS.M. Novel antibacterial targets and compounds revealed by a high-throughput cell wall reporter assay.J. Bacteriol.2015197101726173410.1128/JB.02552‑1425733621
    [Google Scholar]
  17. LvZ.F. WangF.C. ZhengH.L. WangB. XieY. ZhouX.J. LvN.H. Meta-analysis: Is combination of tetracycline and amoxicillin suitable for Helicobacter pylori infection?World J. Gastroenterol.20152182522253310.3748/wjg.v21.i8.252225741163
    [Google Scholar]
  18. GrohsP. PodglajenI. GuerotE. BellenfantF. Caumont-PrimA. KacG. TillecovidinB. CarbonnelleE. ChatellierG. MeyerG. FagonJ.Y. GutmannL. Assessment of five screening strategies for optimal detection of carriers of third-generation cephalosporin-resistant Enterobacteriaceae in intensive care units using daily sampling.Clin. Microbiol. Infect.20142011O879O88610.1111/1469‑0691.1266324807791
    [Google Scholar]
  19. LeeY.W. LutherD.C. GoswamiR. JeonT. ClarkV. EliaJ. GopalakrishnanS. RotelloV.M. Direct cytosolic delivery of proteins through coengineering of proteins and polymeric delivery vehicles.J. Am. Chem. Soc.202014294349435510.1021/jacs.9b1275932049533
    [Google Scholar]
  20. DraperL.A. CotterP.D. HillC. RossR.P. The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria.BMC Microbiol.201313121210.1186/1471‑2180‑13‑21224069959
    [Google Scholar]
  21. KarasJ.A. CarterG.P. HowdenB.P. TurnerA.M. PaulinO.K.A. SwarbrickJ.D. BakerM.A. LiJ. VelkovT. Structure–activity relationships of daptomycin lipopeptides.J. Med. Chem.20206322132661329010.1021/acs.jmedchem.0c0078032687352
    [Google Scholar]
  22. BeckerB. CooperM.A. Aminoglycoside antibiotics in the 21st century.ACS Chem. Biol.20138110511510.1021/cb300511623110460
    [Google Scholar]
  23. DinosG. AthanassopoulosC. MissiriD. GiannopoulouP. VlachogiannisI. PapadopoulosG. PapaioannouD. KalpaxisD. Chloramphenicol derivatives as antibacterial and anticancer agents: Historic problems and current solutions.Antibiotics2016522010.3390/antibiotics502002027271676
    [Google Scholar]
  24. WuT. ZhangQ. RenW. YiX. ZhouZ. PengX. YuX. LangM. Controlled release of gentamicin from gelatin/genipin reinforced beta-tricalcium phosphate scaffold for the treatment of osteomyelitis.J. Mater. Chem. B Mater. Biol. Med.20131263304331310.1039/c3tb20261e32261039
    [Google Scholar]
  25. HosnyK.M. Ciprofloxacin as ocular liposomal hydrogel.AAPS PharmSciTech201011124124610.1208/s12249‑009‑9373‑420151337
    [Google Scholar]
  26. Abo-ShamaU.H. El-GendyH. MousaW.S. HamoudaR.A. YousufW.E. HettaH.F. AbdeenE.E. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms.Infect. Drug Resist.20201335136210.2147/IDR.S23442532104007
    [Google Scholar]
  27. GetahunY.A. AliD.A. TayeB.W. Multidrug-resistant microbial therapy using antimicrobial peptides and the CRISPR/Cas9 System.Vet. Med.202213173190
    [Google Scholar]
  28. MorettaA. ScieuzoC. PetroneA.M. SalviaR. MannielloM.D. FrancoA. LucchettiD. VassalloA. VogelH. SgambatoA. FalabellaP. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields.Front. Cell. Infect. Microbiol.20211166863210.3389/fcimb.2021.66863234195099
    [Google Scholar]
  29. SanchezC.J.Jr MendeK. BeckiusM.L. AkersK.S. RomanoD.R. WenkeJ.C. MurrayC.K. Biofilm formation by clinical isolates and the implications in chronic infections.BMC Infect. Dis.20131314710.1186/1471‑2334‑13‑4723356488
    [Google Scholar]
  30. MottaJ.P. WallaceJ.L. BuretA.G. DeraisonC. VergnolleN. Gastrointestinal biofilms in health and disease.Nat. Rev. Gastroenterol. Hepatol.202118531433410.1038/s41575‑020‑00397‑y33510461
    [Google Scholar]
  31. MiragaiaM. Factors contributing to the evolution of meca-mediated β-lactam resistance in staphylococci: Update and new insights from whole genome sequencing (WGS).Front. Microbiol.20189272310.3389/fmicb.2018.0272330483235
    [Google Scholar]
  32. ChetriS. BhowmikD. PaulD. PandeyP. ChandaD.D. ChakravartyA. BoraD. BhattacharjeeA. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli.BMC Microbiol.201919121010.1186/s12866‑019‑1589‑131488061
    [Google Scholar]
  33. HornaG. LópezM. GuerraH. SaénzY. RuizJ. Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa.Sci. Rep.2018811646310.1038/s41598‑018‑34694‑z30405166
    [Google Scholar]
  34. AlekshunM.N. LevyS.B. Molecular mechanisms of antibacterial multidrug resistance.Cell200712861037105010.1016/j.cell.2007.03.00417382878
    [Google Scholar]
  35. C ReygaertW. An overview of the antimicrobial resistance mechanisms of bacteria.AIMS Microbiol.20184348250110.3934/microbiol.2018.3.48231294229
    [Google Scholar]
  36. PetersonE. KaurP. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens.Front. Microbiol.20189292810.3389/fmicb.2018.0292830555448
    [Google Scholar]
  37. MorrisonL. ZembowerT.R. Antimicrobial resistance.Gastrointest. Endosc. Clin. N. Am.202030461963510.1016/j.giec.2020.06.00432891221
    [Google Scholar]
  38. LiB. YinF. ZhaoX. GuoY. WangW. WangP. ZhuH. YinY. WangX. Colistin resistance gene mcr-1 mediates cell permeability and resistance to hydrophobic antibiotics.Front. Microbiol.202010301510.3389/fmicb.2019.0301531998280
    [Google Scholar]
  39. Mahamad MaifiahM.H. CheahS.E. JohnsonM.D. HanM.L. BoyceJ.D. ThamlikitkulV. ForrestA. KayeK.S. HertzogP. PurcellA.W. SongJ. VelkovT. CreekD.J. LiJ. Global metabolic analyses identify key differences in metabolite levels between polymyxin- susceptible and polymyxin-resistant Acinetobacter baumannii.Sci. Rep.2016612228710.1038/srep2228726924392
    [Google Scholar]
  40. MillerW.R. MunitaJ.M. AriasC.A. Mechanisms of antibiotic resistance in enterococci.Expert Rev. Anti Infect. Ther.201412101221123610.1586/14787210.2014.95609225199988
    [Google Scholar]
  41. TookeC.L. HinchliffeP. BraggintonE.C. ColensoC.K. HirvonenV.H.A. TakebayashiY. SpencerJ. β-lactamases and β-lactamase inhibitors in the 21st century.J. Mol. Biol.2019431183472350010.1016/j.jmb.2019.04.00230959050
    [Google Scholar]
  42. YongD. TolemanM.A. GiskeC.G. ChoH.S. SundmanK. LeeK. WalshT.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India.Antimicrob. Agents Chemother.200953125046505410.1128/AAC.00774‑0919770275
    [Google Scholar]
  43. GasparriniA.J. MarkleyJ.L. KumarH. WangB. FangL. IrumS. SymisterC.T. WallaceM. BurnhamC.A.D. AndleebS. ToliaN.H. WencewiczT.A. DantasG. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance.Commun. Biol.20203124110.1038/s42003‑020‑0966‑532415166
    [Google Scholar]
  44. LohseM.B. GulatiM. JohnsonA.D. NobileC.J. Development and regulation of single- and multi-species Candida albicans biofilms.Nat. Rev. Microbiol.2018161193110.1038/nrmicro.2017.10729062072
    [Google Scholar]
  45. Mihai, M.M.; Dima, M.B.; Dima, B.; Holban, A.M. Nanomaterials for wound healing and infection control. Materials (Basel)., 2019, 6, 12(13), 2176.10.3390/ma1213217631284587PMC6650835
  46. OmarA. WrightJ. SchultzG. BurrellR. NadwornyP. Microbial biofilms and chronic wounds.Microorganisms201751910.3390/microorganisms501000928272369
    [Google Scholar]
  47. XuZ. LiM. LiY. CaoH. MiaoL. XuZ. HiguchiY. YamasakiS. NishinoK. WooP.C.Y. XiangH. YanA. Native CRISPR-cas-mediated genome editing enables dissecting and sensitizing clinical multidrug-resistant P. aeruginosa.Cell Rep.201929617071717.e310.1016/j.celrep.2019.10.00631693906
    [Google Scholar]
  48. FisherJ.F. MobasheryS. β-Lactam resistance mechanisms: Gram-positive bacteria and Mycobacterium tuberculosis.Cold Spring Harb. Perspect. Med.201665a02522110.1101/cshperspect.a02522127091943
    [Google Scholar]
  49. DaviesD.G. ParsekM.R. PearsonJ.P. IglewskiB.H. CostertonJ.W. GreenbergE.P. The involvement of cell- to-cell signals in the development of a bacterial biofilm.Science1998280536129529810.1126/science.280.5361.2959535661
    [Google Scholar]
  50. Favre-BontéS. KöhlerT. Van DeldenC. Biofilm formation by Pseudomonas aeruginosa: Role of the C4-HSL cell-to-cell signal and inhibition by azithromycin.J. Antimicrob. Chemother.200352459860410.1093/jac/dkg39712951348
    [Google Scholar]
  51. CaveneyN.A. CaballeroG. VoedtsH. NiciforovicA. WorrallL.J. VuckovicM. FonvielleM. HugonnetJ.E. ArthurM. StrynadkaN.C.J. Structural insight into YcbB-mediated beta-lactam resistance in Escherichia coli. Nat. Commun.2019101184910.1038/s41467‑019‑09507‑031015395
    [Google Scholar]
  52. Olivares PachecoJ. Alvarez-OrtegaC. Alcalde RicoM. MartínezJ.L. Metabolic compensation of fitness costs is a general outcome for antibiotic-resistant Pseudomonas aeruginosa mutants overexpressing efflux pumps.MBio201784e00500-1710.1128/mBio.00500‑1728743808
    [Google Scholar]
  53. WebberM.A. PiddockL.J. The importance of efflux pumps in bacterial antibiotic resistance.J. Antimicrob. Chemother.200351191110.1093/jac/dkg05012493781
    [Google Scholar]
  54. BaughS. EkanayakaA.S. PiddockL.J.V. WebberM.A. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm.J. Antimicrob. Chemother.201267102409241710.1093/jac/dks22822733653
    [Google Scholar]
  55. WaiteR.D. PapakonstantinopoulouA. LittlerE. CurtisM.A. Transcriptome analysis of Pseudomonas aeruginosa growth: Comparison of gene expression in planktonic cultures and developing and mature biofilms.J. Bacteriol.2005187186571657610.1128/JB.187.18.6571‑6576.200516159792
    [Google Scholar]
  56. Van DykT.K. TempletonL.J. CanteraK.A. SharpeP.L. SariaslaniF.S. Characterization of the Escherichia coli AaeAB efflux pump: A metabolic relief valve?J. Bacteriol.2004186217196720410.1128/JB.186.21.7196‑7204.200415489430
    [Google Scholar]
  57. BushN.G. Diez-SantosI. AbbottL.R. MaxwellA. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance.Molecules20202523566210.3390/molecules2523566233271787
    [Google Scholar]
  58. HuberS. KnollM.A. BerktoldM. WürznerR. BrindlmayerA. WeberV. PoschA.E. MrazekK. LepuschitzS. AnteM. BeiskenS. Orth-HöllerD. WeinbergerJ. Genomic and phenotypic analysis of linezolid-resistant Staphylococcus epidermidis in a tertiary hospital in Innsbruck, Austria.Microorganisms202195102310.3390/microorganisms905102334068744
    [Google Scholar]
  59. BhagwatA. DeshpandeA. ParishT. How Mycobacterium tuberculosis drug resistance has shaped anti-tubercular drug discovery.Front. Cell. Infect. Microbiol.20221297410110.3389/fcimb.2022.97410136159638
    [Google Scholar]
  60. HazamP.K. GoyalR. RamakrishnanV. Peptide based antimicrobials: Design strategies and therapeutic potential.Prog. Biophys. Mol. Biol.2019142102210.1016/j.pbiomolbio.2018.08.00630125585
    [Google Scholar]
  61. BrowneK. ChakrabortyS. ChenR. WillcoxM.D.P. BlackD.S. WalshW.R. KumarN. A new era of antibiotics: the clinical potential of antimicrobial peptides.Int. J. Mol. Sci.20202119704710.3390/ijms2119704732987946
    [Google Scholar]
  62. HanX. KouZ. JiangF. SunX. ShangD. Interactions of designed trp-containing antimicrobial peptides with DNA of multidrug-resistant Pseudomonas aeruginosa.DNA Cell Biol.202140241442410.1089/dna.2019.487432023094
    [Google Scholar]
  63. ZasloffM. Antimicrobial peptides of multicellular organisms: My perspective.Adv. Exp. Med. Biol.201911173610.1007/978‑981‑13‑3588‑4_130980349
    [Google Scholar]
  64. ZasloffM. Antimicrobial peptides of multicellular organisms.Nature2002415687038939510.1038/415389a11807545
    [Google Scholar]
  65. MartinezM. GonçalvesS. FelícioM.R. MaturanaP. SantosN.C. SemorileL. HollmannA. MaffíaP.C. Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa.Biochim. Biophys. Acta Biomembr.2019186171329133710.1016/j.bbamem.2019.05.00831095945
    [Google Scholar]
  66. Di LucaM. MaccariG. NifosìR. Treatment of microbial biofilms in the post-antibiotic era: Prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools.Pathog. Dis.201470325727010.1111/2049‑632X.1215124515391
    [Google Scholar]
  67. PletzerD. ColemanS.R. HancockR.E.W. Anti-biofilm peptides as a new weapon in antimicrobial warfare.Curr. Opin. Microbiol.201633354010.1016/j.mib.2016.05.01627318321
    [Google Scholar]
  68. BatoniG. MaisettaG. EsinS. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.Biochim. Biophys. Acta Biomembr.2016185851044106010.1016/j.bbamem.2015.10.01326525663
    [Google Scholar]
  69. AokiW. KurodaK. UedaM. Next generation of antimicrobial peptides as molecular targeted medicines.J. Biosci. Bioeng.2012114436537010.1016/j.jbiosc.2012.05.00122658802
    [Google Scholar]
  70. Lakshmaiah NarayanaJ. ChenJ.Y. Antimicrobial peptides: Possible anti-infective agents.Peptides201572889410.1016/j.peptides.2015.05.01226048089
    [Google Scholar]
  71. LovatiA.B. DragoL. BottagisioM. BongioM. FerrarioM. PeregoS. SansoniV. De VecchiE. RomanòC.L. Systemic and local administration of antimicrobial and cell therapies to prevent methicillin-resistant Staphylococcus epidermidis -induced femoral nonunions in a rat model.Mediators Inflamm.2016201611210.1155/2016/959570627478310
    [Google Scholar]
  72. MermerS. TurhanT. BolatE. AydemirS. YamazhanT. PullukcuH. ArdaB. SipahiH. UlusoyS. SipahiO.R. Ceftaroline versus vancomycin in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) in an experimental MRSA meningitis model.J. Glob. Antimicrob. Resist.20202214715110.1016/j.jgar.2020.02.00132068093
    [Google Scholar]
  73. GirinathanB.P. OuJ. DupuyB. GovindR. Pleiotropic roles of Clostridium difficile sin locus.PLoS Pathog.2018143e100694010.1371/journal.ppat.100694029529083
    [Google Scholar]
  74. RimaM. RimaM. FajlounZ. SabatierJ.M. BechingerB. NaasT. Antimicrobial peptides: A potent alternative to antibiotics.Antibiotics (Basel)2021109109510.3390/antibiotics1009109534572678
    [Google Scholar]
  75. CaiJ. CuiX. WangX. YouL. JiC. CaoY. A novel anti-infective peptide BCCY-1 with immunomodulatory activities.Front. Immunol.20211271396010.3389/fimmu.2021.71396034367182
    [Google Scholar]
  76. MoravejH. MoravejZ. YazdanparastM. HeiatM. MirhosseiniA. Moosazadeh MoghaddamM. MirnejadR. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria.Microb. Drug Resist.201824674776710.1089/mdr.2017.039229957118
    [Google Scholar]
  77. MahlapuuM. BjörnC. EkblomJ. Antimicrobial peptides as therapeutic agents: Oopportunities and challenges.Crit. Rev. Biotechnol.202040797899210.1080/07388551.2020.179657632781848
    [Google Scholar]
  78. ChenC.H. LuT.K. Development and challenges of antimicrobial peptides for therapeutic applications.Antibiotics (Basel)2020912410.3390/antibiotics901002431941022
    [Google Scholar]
  79. LiuC. QiJ. ShanB. GaoR. GaoF. XieH. YuanM. LiuH. JinS. WuF. MaY. Pretreatment with cathelicidin-BF ameliorates Pseudomonas aeruginosa pneumonia in mice by enhancing NETosis and the autophagy of recruited neutrophils and macrophages.Int. Immunopharmacol.20186538239110.1016/j.intimp.2018.10.03030380513
    [Google Scholar]
  80. LiuC.B. ShanB. BaiH.M. TangJ. YanL.Z. MaY.B. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates.Zool. Res.2015361414725730460
    [Google Scholar]
  81. BaharA. RenD. Antimicrobial peptides.Pharmaceuticals (Basel)20136121543157510.3390/ph612154324287494
    [Google Scholar]
  82. RamosR. MoreiraS. RodriguesA. GamaM. DominguesL. Recombinant expression and purification of the antimicrobial peptide magainin-2.Biotechnol. Prog.2013291172210.1002/btpr.165023125137
    [Google Scholar]
  83. WadeJ.D. LinF. HossainM.A. DawsonR.M. Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor.Amino Acids20124362279228310.1007/s00726‑012‑1305‑z22555649
    [Google Scholar]
  84. InghamA.B. MooreR.J. Recombinant production of antimicrobial peptides in heterologous microbial systems.Biotechnol. Appl. Biochem.20074711910.1042/BA2006020717432953
    [Google Scholar]
  85. BrogdenK.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?Nat. Rev. Microbiol.20053323825010.1038/nrmicro109815703760
    [Google Scholar]
  86. HancockR.E.W. SahlH.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.Nat. Biotechnol.200624121551155710.1038/nbt126717160061
    [Google Scholar]
  87. MiyoshiN. IsogaiE. HiramatsuK. SasakiT. Activity of tick antimicrobial peptide from Ixodes persulcatus (persulcatusin) against cell membranes of drug-resistant Staphylococcus aureus.J. Antibiot. (Tokyo)201770214214610.1038/ja.2016.10127531221
    [Google Scholar]
  88. de MouraG.A. de OliveiraJ.R. RochaY.M. de Oliveira FreitasJ. RodriguesJ.P.V. FerreiraV.P.G. NicoleteR. Antitumor and antiparasitic activity of antimicrobial peptides derived from snake venom: Systematic review approach.Curr. Med. Chem.202229325358536810.2174/092986732966622050701171935524668
    [Google Scholar]
  89. CoutoJ. TonkM. FerrolhoJ. AntunesS. VilcinskasA. de la FuenteJ. DomingosA. Cabezas-CruzA. Antiplasmodial activity of tick defensins in a mouse model of malaria.Ticks Tick Borne Dis.20189484484910.1016/j.ttbdis.2018.03.01129567145
    [Google Scholar]
  90. WangY. ZhuS. The defensin gene family expansion in the tick Ixodes scapularis.Dev. Comp. Immunol.201135111128113410.1016/j.dci.2011.03.03021540051
    [Google Scholar]
  91. TonkM. Cabezas-CruzA. ValdésJ.J. RegoR.O.M. RudenkoN. GolovchenkoM. Bell-SakyiL. de la FuenteJ. GrubhofferL. Identification and partial characterisation of new members of the Ixodes ricinus defensin family.Gene2014540214615210.1016/j.gene.2014.03.00224607035
    [Google Scholar]
  92. Cabezas-CruzA. TonkM. BouchutA. PierrotC. PierceR.J. KotsyfakisM. RahnamaeianM. VilcinskasA. KhalifeJ. ValdésJ.J. Antiplasmodial activity is an ancient and conserved feature of tick defensins.Front. Microbiol.20167OCT168210.3389/fmicb.2016.0168227822206
    [Google Scholar]
  93. De CaleyaR.F. Gonzalez-PascualB. García-OlmedoF. CarboneroP. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro.Appl. Microbiol.1972235998100010.1128/am.23.5.998‑1000.19725031563
    [Google Scholar]
  94. AllenA. SnyderA.K. PreussM. NielsenE.E. ShahD.M. SmithT.J. Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth.Planta2007227233133910.1007/s00425‑007‑0620‑117849147
    [Google Scholar]
  95. NawrotR. BarylskiJ. NowickiG. BroniarczykJ. BuchwaldW. Goździcka-JózefiakA. Plant antimicrobial peptides.Folia Microbiol. (Praha)201459318119610.1007/s12223‑013‑0280‑424092498
    [Google Scholar]
  96. KongJ.L. DuX.B. FanC.X. Purification and primary structure determination of a novel polypeptide isolated from mistletoe Viscum coloratum.Chin. Chem. Lett.20041513111314
    [Google Scholar]
  97. ChenN. JiangC. Antimicrobial peptides: Structure, mechanism, and modification.Eur. J. Med. Chem.202325511537710.1016/j.ejmech.2023.11537737099837
    [Google Scholar]
  98. GordonY.J. RomanowskiE.G. McDermottA.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs.Curr. Eye Res.200530750551510.1080/0271368059096863716020284
    [Google Scholar]
  99. KangH.K. KimC. SeoC.H. ParkY. The therapeutic applications of antimicrobial peptides (AMPs): A patent review.J. Microbiol.201755111210.1007/s12275‑017‑6452‑128035594
    [Google Scholar]
  100. BhatiaE. SharmaS. JadhavK. BanerjeeR. Combinatorial liposomes of berberine and curcumin inhibit biofilm formation and intracellular methicillin resistant Staphylococcus aureus infections and associated inflammation.J. Mater. Chem. B Mater. Biol. Med.20219386487510.1039/D0TB02036B33392614
    [Google Scholar]
  101. DeptułaM. WardowskaA. DzierżyńskaM. Rodziewicz-MotowidłoS. PikułaM. Antibacterial peptides in dermatology–strategies for evaluation of allergic potential.Molecules201823241410.3390/molecules2302041429443886
    [Google Scholar]
  102. BiswaroL.S. da Costa SousaM.G. RezendeT.M.B. DiasS.C. FrancoO.L. Antimicrobial peptides and nanotechnology, recent advances and challenges.Front. Microbiol.2018985510.3389/fmicb.2018.0085529867793
    [Google Scholar]
  103. DivyashreeM. ManiM.K. ReddyD. KumavathR. GhoshP. AzevedoV. BarhD. Clinical applications of antimicrobial peptides (AMPs): Where do we stand now?Protein Pept. Lett.202027212013410.2174/092986652666619092515295731553285
    [Google Scholar]
  104. TakahashiT. KulkarniN.N. LeeE.Y. ZhangL. WongG.C.L. GalloR.L. Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors.Sci. Rep.201881403210.1038/s41598‑018‑22409‑329507358
    [Google Scholar]
  105. TeixeiraM.C. CarboneC. SousaM.C. EspinaM. GarciaM.L. Sanchez-LopezE. SoutoE.B. Nanomedicines for the delivery of antimicrobial peptides (AMPs).Nanomaterials (Basel)202010356010.3390/nano1003056032244858
    [Google Scholar]
  106. SarkarT. ChetiaM. ChatterjeeS. Antimicrobial peptides and proteins: From nature’s reservoir to the laboratory and beyond.Front Chem.2021969153210.3389/fchem.2021.69153234222199
    [Google Scholar]
  107. LeeT. PangS. AbrahamS. CoombsG.W. Antimicrobial-resistant CC17 Enterococcus faecium: The past, the present and the future.J. Glob. Antimicrob. Resist.201916364710.1016/j.jgar.2018.08.01630149193
    [Google Scholar]
  108. FordA.C. FormanD. HuntR.H. YuanY. MoayyediP. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: Systematic review and meta-analysis of randomised controlled trials.BMJ2014348may20 1g317410.1136/bmj.g317424846275
    [Google Scholar]
  109. PirakT. JangchudA. JantawatP. Characterisation of physical, chemical and antimicrobial properties of allicin- chitosan complexes.Int. J. Food Sci. Technol.20124771339134710.1111/j.1365‑2621.2012.02978.x
    [Google Scholar]
  110. BasniwalR.K. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study.J. Agric. Food Chem2011595205661
    [Google Scholar]
  111. Sierra-GarcíaG.D. Castro-RíosR. González-HortaA. Lara-AriasJ. Chávez-MontesA. Acemannan, an extracted polysaccharide from Aloe vera: A literature review.Nat. Prod. Commun.2014981934578X140090010.1177/1934578X140090083625233608
    [Google Scholar]
  112. BrayB.L. Large-scale manufacture of peptide therapeutics by chemical synthesis.Nat. Rev. Drug Discov.20032758759310.1038/nrd113312815383
    [Google Scholar]
  113. MitraR.N. ShomeA. PaulP. DasP.K. Antimicrobial activity, biocompatibility and hydrogelation ability of dipeptide-based amphiphiles.Org. Biomol. Chem.2009719410210.1039/B815368J19081951
    [Google Scholar]
  114. SaidjalolovS. EdooZ. FonvielleM. MayerL. IannazzoL. ArthurM. Etheve-QuelquejeuM. BraudE. Synthesis of carbapenems containing peptidoglycan mimetics and inhibition of the cross-linking activity of a transpeptidase of l,d Specificity.Chemistry202127103542355110.1002/chem.20200483133336443
    [Google Scholar]
  115. DraytonM. KizhakkedathuJ.N. StrausS.K. Towards robust delivery of antimicrobial peptides to combat bacterial resistance.Molecules20202513304810.3390/molecules2513304832635310
    [Google Scholar]
  116. ForierK RaemdonckK De SmedtS C Lipid and polymer nanoparticles for drug delivery to bacterial biofilms.J Control Release201419060723
    [Google Scholar]
  117. González-ParedesA. SitiaL. RuyraA. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides.Eur. J. Pharm. Biopharm.2019134166177
    [Google Scholar]
  118. SinghB. VuddandaP.R. M RV. KumarV. SaxenaP.S. SinghS. Cefuroxime axetil loaded solid lipid nanoparticles for enhanced activity against S. aureus biofilm.Colloids Surf. B Biointerfaces2014121929810.1016/j.colsurfb.2014.03.04624945607
    [Google Scholar]
  119. TagliettiA. Diaz FernandezY.A. AmatoE. CuccaL. DacarroG. GrisoliP. NecchiV. PallaviciniP. PasottiL. PatriniM. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria.Langmuir201228218140814810.1021/la300383822546237
    [Google Scholar]
  120. XuL. LiX. TakemuraT. HanagataN. WuG. ChouL. Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel.J. Nanobiotechnology20121011610.1186/1477‑3155‑10‑1622548743
    [Google Scholar]
  121. BrownA.N. SmithK. SamuelsT.A. LuJ. ObareS.O. ScottM.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus.Appl. Environ. Microbiol.20127882768277410.1128/AEM.06513‑1122286985
    [Google Scholar]
  122. JahnkeJ.P. CornejoJ.A. SumnerJ.J. SchulerA.J. AtanassovP. IstaL.K. Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of Shewanella oneidensis MR-1.Biointerphases201611101100310.1116/1.493924426746161
    [Google Scholar]
  123. LemireJ.A. HarrisonJ.J. TurnerR.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications.Nat. Rev. Microbiol.201311637138410.1038/nrmicro302823669886
    [Google Scholar]
  124. KimS. WooE.R. LeeD.G. Synergistic antifungal activity of isoquercitrin: Apoptosis and membrane permeabilization related to reactive oxygen species in Candida albicans.IUBMB Life201971228329210.1002/iub.197330481395
    [Google Scholar]
  125. ZouL. WangJ. GaoY. RenX. RottenbergM.E. LuJ. HolmgrenA. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production.Sci. Rep.2018811113110.1038/s41598‑018‑29313‑w30042429
    [Google Scholar]
  126. YeJ. SuY. LinX. LaiS. LiW. AliF. ZhengJ. PengB. Alanine enhances aminoglycosides-induced ros production as revealed by proteomic analysis.Front. Microbiol.201892910.3389/fmicb.2018.0002929441044
    [Google Scholar]
  127. AroraN. ThangaveluK. KaranikolosG.N. Bimetallic nanoparticles for antimicrobial applications.Front Chem.2020841210.3389/fchem.2020.0041232671014
    [Google Scholar]
  128. DakalT.C. KumarA. MajumdarR.S. YadavV. Mechanistic basis of antimicrobial actions of silver nanoparticles.Front. Microbiol.20167183110.3389/fmicb.2016.0183127899918
    [Google Scholar]
  129. ZhuY. HaoW. WangX. OuyangJ. DengX. YuH. WangY. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections.Med. Res. Rev.20224241377142210.1002/med.2187934984699
    [Google Scholar]
  130. MoghimiS.M. HunterA.C. MurrayJ.C. Nanomedicine: Current status and future prospects.FASEB J.200519331133010.1096/fj.04‑2747rev15746175
    [Google Scholar]
  131. MitraP. ChakrabortyP.K. SahaP. RayP. BasuS. Antibacterial efficacy of acridine derivatives conjugated with gold nanoparticles.Int. J. Pharm.20144731-263664310.1016/j.ijpharm.2014.07.05125087507
    [Google Scholar]
  132. LiS. SheP. ZhouL. ZengX. XuL. LiuY. ChenL. WuY. High-throughput identification of antibacterials against Pseudomonas aeruginosa. Front. Microbiol.20201159142610.3389/fmicb.2020.59142633362739
    [Google Scholar]
  133. NgV.W.L. ChanJ.M.W. SardonH. OnoR.J. GarcíaJ.M. YangY.Y. HedrickJ.L. Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections.Adv. Drug Deliv. Rev.201478466210.1016/j.addr.2014.10.02825450263
    [Google Scholar]
  134. VasileB.S. OpreaO. VoicuG. FicaiA. AndronescuE. TeodorescuA. HolbanA. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care.Int. J. Pharm.2014463216116910.1016/j.ijpharm.2013.11.03524291078
    [Google Scholar]
  135. SalickD.A. PochanD.J. SchneiderJ.P. Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus.Adv. Mater.200921414120412310.1002/adma.200900189
    [Google Scholar]
  136. BitscharK. SauerB. FockenJ. DehmerH. MoosS. KonnerthM. SchillingN.A. GrondS. KalbacherH. KurschusF.C. GötzF. KrismerB. PeschelA. SchittekB. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors.Nat. Commun.2019101273010.1038/s41467‑019‑10646‑731227691
    [Google Scholar]
  137. DijksteelG.S. UlrichM.M.W. MiddelkoopE. BoekemaB.K.H.L. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs).Front. Microbiol.20211261697910.3389/fmicb.2021.61697933692766
    [Google Scholar]
  138. MarchesanS. QuY. WaddingtonL.J. EastonC.D. GlattauerV. LithgowT.J. McLeanK.M. ForsytheJ.S. HartleyP.G. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel.Biomaterials201334143678368710.1016/j.biomaterials.2013.01.09623422591
    [Google Scholar]
  139. NovacO. LisaG. ProfireL. TuchilusC. PopaM.I. Antibacterial quaternized gellan gum based particles for controlled release of ciprofloxacin with potential dermal applications.Mater. Sci. Eng. C20143529129910.1016/j.msec.2013.11.01624411380
    [Google Scholar]
  140. PrincipiN. SilvestriE. EspositoS. Advantages and limitations of bacteriophages for the treatment of bacterial infections.Front. Pharmacol.20191051310.3389/fphar.2019.0051331139086
    [Google Scholar]
  141. TangS.S. BiswasS.K. TanW.S. SahaA.K. LeoB.F. Efficacy and potential of phage therapy against multidrug resistant Shigella spp.PeerJ20197e622510.7717/peerj.622530984476
    [Google Scholar]
  142. Llanos-CheaA. CitorikR.J. NickersonK.P. InganoL. SerenaG. SengerS. LuT.K. FasanoA. FahertyC.S. Bacteriophage therapy testing against shigella flexneri in a novel human intestinal organoid-derived infection model.J. Pediatr. Gastroenterol. Nutr.201968450951610.1097/MPG.000000000000220330418409
    [Google Scholar]
  143. AbouhmadA. KoranyA.H. GreyC. DishishaT. Hatti-KaulR. Exploring the enzymatic and antibacterial activities of novel mycobacteriophage Lysin B Enzymes.Int. J. Mol. Sci.2020219317610.3390/ijms2109317632365915
    [Google Scholar]
  144. FulgioneA. IannielloF. PapaianniM. ContaldiF. SgammaT. GianniniC. PastoreS. VelottaR. Della VenturaB. RoveriN. LelliM. CapuanoF. CapparelliR. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages.Int. J. Nanomedicine2019142219223210.2147/IJN.S19018830992664
    [Google Scholar]
  145. Torres-BarcelóC. HochbergM.E. Evolutionary rationale for phages as complements of antibiotics.Trends Microbiol.201624424925610.1016/j.tim.2015.12.01126786863
    [Google Scholar]
  146. ChangR.Y.K. DasT. ManosJ. KutterE. MoralesS. ChanH.K. Bacteriophage PEV20 and ciprofloxacin combination treatment enhances removal of Pseudomonas aeruginosa biofilm isolated from cystic fibrosis and wound patients.AAPS J.20192134910.1208/s12248‑019‑0315‑030949776
    [Google Scholar]
  147. ComeauA.M. TétartF. TrojetS.N. PrèreM.F. KrischH.M. Phage-antibiotic synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth.PLoS One200728e79910.1371/journal.pone.000079917726529
    [Google Scholar]
  148. KimM. JoY. HwangY.J. HongH.W. HongS.S. ParkK. MyungH. Phage-antibiotic synergy via delayed lysis.Appl. Environ. Microbiol.20188422e02085-1810.1128/AEM.02085‑1830217844
    [Google Scholar]
  149. ChangR.Y.K. NangS.C. ChanH.K. LiJ. Novel antimicrobial agents for combating antibiotic-resistant bacteria.Adv. Drug Deliv. Rev.202218711437810.1016/j.addr.2022.11437835671882
    [Google Scholar]
  150. SchooleyR.T. BiswasB. GillJ.J. Hernandez-MoralesA. LancasterJ. LessorL. BarrJ.J. ReedS.L. RohwerF. BenlerS. SegallA.M. TaplitzR. SmithD.M. KerrK. KumaraswamyM. NizetV. LinL. McCauleyM.D. StrathdeeS.A. BensonC.A. PopeR.K. LerouxB.M. PicelA.C. MateczunA.J. CilwaK.E. RegeimbalJ.M. EstrellaL.A. WolfeD.M. HenryM.S. QuinonesJ. SalkaS. Bishop-LillyK.A. YoungR. HamiltonT. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection.Antimicrob. Agents Chemother.20176110e00954-1710.1128/AAC.00954‑1728807909
    [Google Scholar]
  151. WuN. DaiJ. GuoM. LiJ. ZhouX. LiF. GaoY. QuH. LuH. JinJ. LiT. ShiL. WuQ. TanR. ZhuM. YangL. LingY. XingS. ZhangJ. YaoB. LeS. GuJ. QinJ. LiJ. ChengM. TanD. LiL. ZhangY. ZhuZ. CaiJ. SongZ. GuoX. ChenL.K. ZhuT. Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients.Emerg. Microbes Infect.202110161261810.1080/22221751.2021.190275433703996
    [Google Scholar]
  152. RoachD.R. LeungC.Y. HenryM. MorelloE. SinghD. Di SantoJ.P. WeitzJ.S. DebarbieuxL. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen.Cell Host Microbe20172213847.e410.1016/j.chom.2017.06.01828704651
    [Google Scholar]
  153. PiresD.P. MonteiroR. Mil-HomensD. FialhoA. LuT.K. AzeredoJ. Designing P. aeruginosa synthetic phages with reduced genomes.Sci. Rep.2021111216410.1038/s41598‑021‑81580‑233495501
    [Google Scholar]
  154. ParkJ.Y. MoonB.Y. ParkJ.W. ThorntonJ.A. ParkY.H. SeoK.S. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.Sci. Rep.2017714492910.1038/srep4492928322317
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673306699240614112615
Loading
/content/journals/cmc/10.2174/0109298673306699240614112615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test