Skip to content
2000
Volume 32, Issue 16
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

This review summarizes the scientific knowledge concerning the impact of vitamins, magnesium, and trace elements on various mechanisms contributing to the possible treatment and prevention of COVID-19, including its delayed consequences. A search was conducted in various databases, including PubMed, Scopus, ClinicalTrials.gov, and Web of Science. Among the main mechanisms involved in the effects of the studied micronutrients, immune-boosting, antioxidant and anti-inflammatory effects were also highlighted. The analyzed clinical trials confirmed that supplementation with higher daily doses of some micronutrients can reduce SARS-CoV-2 viral load and hospitalization time. The potential role of most known vitamins in preventing, treating COVID-19, and rehabilitating patients was considered. The most promising agents for combating COVID-19 and its consequences might be the following vitamins: vitamin D, ascorbic acid, polyunsaturated fatty acids (PUFAs), and some B complex vitamins. Inorganic elements deserving attention include magnesium and trace elements, such as zinc, selenium, copper, and iron. Some associations were found between micronutrient deficiencies and COVID-19 severity in children, adults, and older people. Patients can obtain the aforementioned micronutrients from natural food sources or as supplements/drugs in various dosage forms. The reviewed micronutrients might be considered adjunctive treatment strategies for COVID-19 patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673301578240515095227
2024-05-20
2026-02-21
Loading full text...

Full text loading...

References

  1. GasmiA. TippairoteT. MujawdiyaP.K. PeanaM. MenzelA. DadarM. Gasmi BenahmedA. BjørklundG. Micronutrients as immunomodulatory tools for COVID-19 management.Clin. Immunol.202022010854510.1016/j.clim.2020.10854532710937
    [Google Scholar]
  2. DoaeiS. MardiA. ZareM. Role of micronutrients in the modulation of immune system and platelet activating factor in patients with COVID-19; a narrative review.Front. Nutr.202310120723710.3389/fnut.2023.120723737781112
    [Google Scholar]
  3. GasmiA. ShanaidaM. OleshchukO. SemenovaY. MujawdiyaP.K. IvankivY. PokryshkoO. NoorS. PiscopoS. AdamivS. BjørklundG. Natural ingredients to improve immunity.Pharmaceuticals202316452810.3390/ph1604052837111285
    [Google Scholar]
  4. BergerM.M. Herter-AeberliI. ZimmermannM.B. SpieldennerJ. EggersdorferM. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action.Clin. Nutr. ESPEN202143394810.1016/j.clnesp.2021.03.01234024545
    [Google Scholar]
  5. GombartA.F. PierreA. MagginiS. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection.Nutrients202012123610.3390/nu1201023631963293
    [Google Scholar]
  6. MohammadiA.H. BehjatiM. KaramiM. AbariA.H. Sobhani-NasabA. RouraniH.A. HazratiE. MirghazanfariS.M. HadiV. HadiS. MilajerdiA. An overview on role of nutrition on COVID-19 immunity: Accumulative review from available studies.Clin. Nutrit. Open. Sci.20234764310.1016/j.nutos.2022.11.00136540357
    [Google Scholar]
  7. ShakoorH. FeehanJ. MikkelsenK. Al DhaheriA.S. AliH.I. PlatatC. IsmailL.C. StojanovskaL. ApostolopoulosV. Be well: A potential role for vitamin B in COVID-19.Maturitas202114410811110.1016/j.maturitas.2020.08.00732829981
    [Google Scholar]
  8. ShakoorH. FeehanJ. Al DhaheriA.S. AliH.I. PlatatC. IsmailL.C. ApostolopoulosV. StojanovskaL. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?Maturitas20211431910.1016/j.maturitas.2020.08.00333308613
    [Google Scholar]
  9. CalderP.C. Nutrition, immunity and COVID-19.BMJ Nutr. Prev. Heal.202031749210.1136/bmjnph‑2020‑00008533230497
    [Google Scholar]
  10. GalmésS. SerraF. PalouA. Current state of evidence: Influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework.Nutrients2020129273810.3390/nu1209273832911778
    [Google Scholar]
  11. GrantW. LahoreH. McDonnellS. BaggerlyC. FrenchC. AlianoJ. BhattoaH. Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths.Nutrients202012498810.3390/nu1204098832252338
    [Google Scholar]
  12. BjørklundG. ShanaidaM. LysiukR. ButnariuM. PeanaM. SaracI. StrusO. SmetaninaK. ChirumboloS. Natural Compounds and Products from an Anti-aging Perspective.Molecules20222720708410.3390/molecules2720708436296673
    [Google Scholar]
  13. CaoX. LiW. WangT. RanD. DavalosV. Planas-SerraL. PujolA. EstellerM. WangX. YuH. Accelerated biological aging in COVID-19 patients.Nat. Commun.2022131213510.1038/s41467‑022‑29801‑835440567
    [Google Scholar]
  14. GhodsiD. NikooyehB. AminiM. RabieiS. DoustmohammadianA. AbdollahiZ. MinaieM. SadeghiF. ClarkC.C.T. NeyestaniT.R. RasekhiH. Dietary supplement use among iranian households during COVID-19 epidemic lockdown: Less access in those who may need more national food and nutrition surveillance.Int. J. Prev. Med.2023149937854989
    [Google Scholar]
  15. LampovaB. DoskocilI. KourimskaL. KopecA. N-3 polyunsaturated fatty acids may affect the course of COVID-19.Front. Immunol.20221395751810.3389/fimmu.2022.95751836238306
    [Google Scholar]
  16. GermanoC. MessinaA. TavellaE. VitaleR. AvellisV. BarboniM. AttiniR. RevelliA. ZolaP. ManzoniP. MasturzoB. Fetal brain damage during maternal COVID-19: Emerging hypothesis, mechanism, and possible mitigation through maternal-targeted nutritional supplementation.Nutrients20221416330310.3390/nu1416330336014809
    [Google Scholar]
  17. NCT04877509. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04877509?cond=COVID-19&term=selenium&checkSpell=&rank=2
  18. VishwakarmaS. PanigrahiC. BaruaS. SahooM. MandliyaS. Food nutrients as inherent sources of immunomodulation during COVID-19 pandemic.Lebensm. Wiss. Technol.202215811315410.1016/j.lwt.2022.11315435125518
    [Google Scholar]
  19. MancakM. Koca CaliskanU. Applications of dietary supplements and aromatherapy for prophylactic and treatment purposes during COVID-19 Pandemic.Turk.J. Pharm. Sci.2023203176184
    [Google Scholar]
  20. NCT05598957. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT05598957?cond=COVID-19&term=vitamin%20d&rank=24
  21. NCT04407286. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04407286?cond=COVID-19&term=vitamin%20d&rank=1
  22. NCT04385940. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04385940?cond=COVID-19&term=vitamin%20d&rank=6
  23. NCT04733625. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04733625?cond=COVID-19&term=Micronutrients&page=2&rank=18
  24. NCT04641195. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04641195?cond=COVID-19&term=trace%20elements&page=2&rank=15
  25. NCT04780061. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04780061?cond=COVID-19&term=trace%20elements&page=2&rank=20
  26. NCT04357782. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04357782?cond=COVID-19&term=vitamin%20C&rank=2
  27. NCT04342728. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04342728?cond=COVID-19&term=trace%20elements&page=3&rank=26
  28. NCT05778383. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT05778383?cond=COVID-19&term=trace%20elements&rank=10
  29. NCT05630339. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT05630339?cond=COVID-19&term=magnesium&rank=2
  30. NCT04664010. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04664010?cond=COVID-19&term=vitamin&locStr=China&country=China&distance=50&rank=2
  31. NCT04915820. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04915820?cond=COVID-19&term=Zinc%20Deficiency&rank=9
  32. NCT04647604. U.S. National Library of Medicine,2023. Available from: https://clinicaltrials.gov/study/NCT04647604?cond=COVID-19&term=Omega-3%20Fatty%20Acids&rank=1
  33. MikkelsenK. ApostolopoulosV. Vitamin B1, B2, B3, B5, B6 and the immune system.Nutrition and Immunity. MahmoudiM. RezaeiN. Springer NatureSwitzerland2019115125
    [Google Scholar]
  34. BabarQ. AnwarA. SaeedA. TahirM. Effect of plant spacings on growth, physiology, yield and fiber quality attributes of cotton genotypes under nitrogen fertilization.Agronomy202111122589
    [Google Scholar]
  35. BjørklundG. PeanaM. DadarM. LozynskaI. ChirumboloS. LysiukR. LenchykL. UpyrT. SeverinB. The role of B vitamins in stroke prevention.Crit. Rev. Food Sci. Nutr.202262205462547510.1080/10408398.2021.188534133724098
    [Google Scholar]
  36. Al SulaimanK. AljuhaniO. Al DossariM. AlshahraniA. AlharbiA. AlgarniR. Al JeraisyM. Al HarbiS. Al KatheriA. Al EidanF. Al BekairyA.M. Al QahtaniN. Al MuqrinM. VishwakarmaR. Al GhamdiG. Evaluation of thiamine as adjunctive therapy in COVID-19 critically ill patients: a two-center propensity score matched study.Crit. Care202125122310.1186/s13054‑021‑03648‑934193235
    [Google Scholar]
  37. LewisS.L. ChizmarL.R. LiottaS. COVID-19 and micronutrient deficiency symptoms is there some overlap?Clin. Nutr. ESPEN20224827528110.1016/j.clnesp.2022.01.03635331502
    [Google Scholar]
  38. RaganI. HartsonL. PidcokeH. BowenR. GoodrichR. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light.PLoS One2020155e023394710.1371/journal.pone.023394732470046
    [Google Scholar]
  39. KeilS.D. RaganI. YonemuraS. HartsonL. DartN.K. BowenR. Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light-based photochemical treatment.Vox Sang.2020115649550110.1111/vox.1293732311760
    [Google Scholar]
  40. FerrariA. CassanitiI. SammartinoJ.C. MortellaroC. Del FanteC. De VitisS. BaroneE. TrolettiD. PratiF. BaldantiF. PercivalleE. CesareP. SARS-CoV-2 variants inactivation of plasma units using a riboflavin and ultraviolet light-based photochemical treatment.Transfus. Apheresis Sci.202261410339810.1016/j.transci.2022.10339835227599
    [Google Scholar]
  41. HosseiniB. El AbdA. DucharmeF.M. Effects of Vitamin D Supplementation on COVID-19 Related Outcomes: A systematic review and meta-analysis.Nutrients20221410213410.3390/nu1410213435631275
    [Google Scholar]
  42. MehmelM. JovanovićN. SpitzU. Nicotinamide riboside the current state of research and therapeutic uses.Nutrients2020126161610.3390/nu1206161632486488
    [Google Scholar]
  43. LiuB. LiM. ZhouZ. GuanX. XiangY. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?J. Autoimmun.202011110245210.1016/j.jaut.2020.10245232291137
    [Google Scholar]
  44. ShangJ. SmithM.R. AnmangandlaA. LinH. NAD+ consuming enzymes in immune defense against viral infection.Biochem. J.2021478234071409210.1042/BCJ2021018134871367
    [Google Scholar]
  45. RainesN.H. GanatraS. NissaisorakarnP. PanditA. MoralesA. AsnaniA. SadrolashrafiM. MaheshwariR. PatelR. BangV. ShreyderK. BrarS. SinghA. DaniS.S. KnappS. Poyan MehrA. BrownR.S. ZeidelM.L. BhargavaR. SchlondorffJ. SteinmanT.I. MukamalK.J. ParikhS.M. Niacinamide may be associated with improved outcomes in COVID-19-related acute kidney injury: An observational study.Kidney360202121334110.34067/KID.000645202035368823
    [Google Scholar]
  46. CzumajA. Szrok-JurgaS. HebanowskaA. TurynJ. SwierczynskiJ. SledzinskiT. StelmanskaE. The pathophysiological role of CoA.Int. J. Mol. Sci.20202123905710.3390/ijms2123905733260564
    [Google Scholar]
  47. DarandM. HassanizadehS. MartamiF. ShamsS. MirzaeiM. HosseinzadehM. The association between B vitamins and the risk of COVID-19.Br. J. Nutr.2023130115516310.1017/S000711452200307536348570
    [Google Scholar]
  48. HodoT.W. de AquinoM.T.P. ShimamotoA. ShankerA. Critical neurotransmitters in the neuroimmune network.Front. Immunol.202011186910.3389/fimmu.2020.0186932973771
    [Google Scholar]
  49. QiuY. PengY. WangJ. Immunoregulatory role of neurotransmitters.Adv. Neuroimmunol.19966322323110.1016/S0960‑5428(96)00018‑68968422
    [Google Scholar]
  50. PandolfiS. ChirumboloS. RicevutiG. ValdenassiL. BjørklundG. LysiukR. DoşaM.D. LenchykL. FazioS. Home pharmacological therapy in early COVID-19 to prevent hospitalization and reduce mortality: Time for a suitable proposal.Basic Clin. Pharmacol. Toxicol.2022130222523910.1111/bcpt.1369034811895
    [Google Scholar]
  51. KumarV. KancharlaS. JenaM.K. In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19.Virus disease2021321293710.1007/s13337‑020‑00643‑633532517
    [Google Scholar]
  52. KarakousisN.D. GourgoulianisK.I. KotsiouO.S. The role of folic acid in SARS-CoV-2 infection: An intriguing linkage under investigation.J. Pers. Med.202313356110.3390/jpm1303056136983742
    [Google Scholar]
  53. BelloS.O. YunusaA. AdamuA.A. ImamM.U. BelloM.B. ShuaibuA. IgumborE.U. HabibZ.G. PopoolaM.A. OchuC.L. BelloA.Y. DeeniY.Y. OkoyeI. Innovative, rapid, high-throughput method for drug repurposing in a pandemic-A case study of SARS-CoV-2 and COVID-19.Front. Pharmacol.202314113082810.3389/fphar.2023.113082836937851
    [Google Scholar]
  54. Mujica-CoopmanM.F. GarmendiaM.L. CorvalánC. Iron, folic acid, and vitamin D supplementation during pregnancy: Did pregnant Chilean women meet the recommendations during the COVID pandemic?PLoS One20231811e029374510.1371/journal.pone.029374537917771
    [Google Scholar]
  55. PandyaM. ShahS. MD. JunejaT. PatelA. GadnayakA. DaveS. DasK. DasJ. Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach.Informatics in Medicine Unlocked20223010095110.1016/j.imu.2022.10095135475214
    [Google Scholar]
  56. Jimenez-GuardeñoJ.M. Ortega-PrietoA.M. Menendez MorenoB. MaguireT.J.A. RichardsonA. Diaz-HernandezJ.I. Diez PerezJ. ZuckermanM. Mercadal PlayaA. Cordero DelineC. MalimM.H. Martinez-NunezR.T. Drug repurposing based on a quantum-inspired method versus classical fingerprinting uncovers potential antivirals against SARS-CoV-2.PLOS Comput. Biol.2022187e101033010.1371/journal.pcbi.101033035849631
    [Google Scholar]
  57. BoerenkampL.S. GijsbersB.L.M.G. VerversE.J. PijpersE.M.S. SpaetgensB. de ConinckA. GermeraadW.T.V. WodzigW.K.W.H. WietenL. van GorkomG.N.Y. van ElssenC.H.M.J. Low levels of serum and intracellular vitamin C in hospitalized COVID-19 patients.Nutrients20231516365310.3390/nu1516365337630843
    [Google Scholar]
  58. HiedraR. LoK.B. ElbashabshehM. GulF. WrightR.M. AlbanoJ. AzmaiparashviliZ. Patarroyo AponteG. The use of IV vitamin C for patients with COVID-19: A case series.Expert Rev. Anti Infect. Ther.202018121259126110.1080/14787210.2020.179481932662690
    [Google Scholar]
  59. DharS.K. KV. DamodarS. GujarS. DasM. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: Results from meta-analysis and regression.Heliyon202172e0615510.1016/j.heliyon.2021.e0615533553782
    [Google Scholar]
  60. GęgotekA. SkrzydlewskaE. Antioxidative and anti-inflammatory activity of ascorbic acid.Antioxidants20221110199310.3390/antiox1110199336290716
    [Google Scholar]
  61. GasmiA. MujawdiyaP.K. LysiukR. ShanaidaM. PeanaM. Gasmi BenahmedA. BeleyN. KovalskaN. BjørklundG. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS-CoV-2.Pharmaceuticals2022159104910.3390/ph1509104936145270
    [Google Scholar]
  62. KimH. JangM. KimY. ChoiJ. JeonJ. KimJ. HwangY. KangJ.S. LeeW.J. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection.J. Pharm. Pharmacol.201668340642010.1111/jphp.1252926898166
    [Google Scholar]
  63. Waqas KhanH.M. ParikhN. MegalaS.M. PredeteanuG.S. Unusual early recovery of a critical COVID-19 patient after administration of intravenous vitamin C.Am. J. Case Rep.202021e92552110.12659/AJCR.92552132709838
    [Google Scholar]
  64. ChengR.Z. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)?Med. Drug. Disc.2020510002810.1016/j.medidd.2020.10002832328576
    [Google Scholar]
  65. HuiL.L. NelsonE.A.S. LinS.L. ZhaoJ.V. The role of vitamin C in pneumonia and COVID-19 infection in adults with European ancestry: a Mendelian randomisation study.Eur. J. Clin. Nutr.202276458859110.1038/s41430‑021‑00993‑434462559
    [Google Scholar]
  66. Komal; Kumar, J.; Sen, A. The role of vitamin C: From prevention of pneumonia to treatment of COVID-19.Mater. Today Proc.2022
    [Google Scholar]
  67. HermelM. SweeneyM. NiY.M. BonakdarR. TriffonD. SuharC. MehtaS. DalhoumiS. GrayJ. Natural supplements for COVID-19-background, rationale, and clinical trials.J Evid Based Integr Med2021262515690X211036875
    [Google Scholar]
  68. RawatD. RoyA. MaitraS. GulatiA. KhannaP. BaidyaD.K. Vitamin C and COVID-19 treatment: A systematic review and meta-analysis of randomized controlled trials.Diabetes Metab. Syndr.202115610232410.1016/j.dsx.2021.10232434739908
    [Google Scholar]
  69. RoyA. DasS. ChatterjeeI. RoyS. ChakrabortyR. Anti-inflammatory effects of different dietary antioxidants. EkiertH.M. RamawatK.G. AroraJ. Plant Antioxidants and Health. Reference Series in PhytochemistrySpringerCham2022
    [Google Scholar]
  70. LiangX. ZhouR. LiY. YangL. SuM. LaiK.P. Clinical characterization and therapeutic targets of vitamin A in patients with hepatocholangiocarcinoma and coronavirus disease.Aging (Albany NY)20211312157851580010.18632/aging.20322034176789
    [Google Scholar]
  71. Bastos MaiaS. Rolland SouzaA. Costa CaminhaM. Lins da SilvaS. Callou CruzR. Carvalho dos SantosC. Batista FilhoM. Vitamin A and pregnancy: A narrative review.Nutrients201911368110.3390/nu1103068130909386
    [Google Scholar]
  72. TepasseP.R. VollenbergR. FobkerM. KabarI. SchmidtH. MeierJ.A. NowackiT. Hüsing-KabarA. VitaminA. Vitamin A plasma levels in COVID-19 patients: A prospective multicenter study and hypothesis.Nutrients2021137217310.3390/nu1307217334202697
    [Google Scholar]
  73. ChungT.W.H. ZhangH. WongF.K.C. SridharS. LeeT.M.C. LeungG.K.K. ChanK.H. LauK.K. TamA.R. HoD.T.Y. ChengV.C.C. YuenK.Y. HungI.F.N. MakH.K.F. A pilot study of short-course oral vitamin A and aerosolised diffuser olfactory training for the treatment of smell loss in long COVID.Brain Sci.2023137101410.3390/brainsci1307101437508945
    [Google Scholar]
  74. RothD.E. AbramsS.A. AloiaJ. BergeronG. BourassaM.W. BrownK.H. CalvoM.S. CashmanK.D. CombsG. De-RegilL.M. JefferdsM.E. JonesK.S. KapnerH. MartineauA.R. NeufeldL.M. SchleicherR.L. ThacherT.D. WhitingS.J. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low and middle-income countries.Ann. N. Y. Acad. Sci.201814301447910.1111/nyas.1396830225965
    [Google Scholar]
  75. AslanM.T. Aslanİ.Ö. ÖzdemirÖ. Is vitamin D one of the key elements in COVID-19 Days?J. Nutr. Health Aging20202491038103910.1007/s12603‑020‑1517‑y33155635
    [Google Scholar]
  76. DhawanM. Priyanka ChoudharyO.P. Immunomodulatory and therapeutic implications of vitamin D in the management of COVID-19.Hum. Vaccin. Immunother.2022181202573410.1080/21645515.2022.202573435072581
    [Google Scholar]
  77. KonijetiG.G. AroraP. BoylanM.R. SongY. HuangS. HarrellF. Newton-ChehC. O’NeillD. KorzenikJ. WangT.J. ChanA.T. VitaminD. Vitamin D supplementation modulates T cell–mediated immunity in humans: Results from a randomized control trial.J. Clin. Endocrinol. Metab.2016101253353810.1210/jc.2015‑359926653112
    [Google Scholar]
  78. VasheghaniM. RekabiM. SadrM. Protective role of vitamin D status against COVID-19: A mini-review.Endocrine202279223524210.1007/s12020‑022‑03203‑836258153
    [Google Scholar]
  79. HastieC.E. MackayD.F. HoF. Celis-MoralesC.A. KatikireddiS.V. NiedzwiedzC.L. JaniB.D. WelshP. MairF.S. GrayS.R. O’DonnellC.A. GillJ.M.R. SattarN. PellJ.P. Vitamin D concentrations and COVID-19 infection in UK Biobank.Diabetes Metab. Syndr.202014456156510.1016/j.dsx.2020.04.05032413819
    [Google Scholar]
  80. BourBourF. Mirzaei DahkaS. GholamalizadehM. AkbariM.E. ShadnoushM. HaghighiM. Taghvaye-MasoumiH. AshooriN. DoaeiS. Nutrients in prevention, treatment, and management of viral infections; special focus on Coronavirus.Arch. Physiol. Biochem.20231291162510.1080/13813455.2020.179118832644876
    [Google Scholar]
  81. DancerR.C.A. ParekhD. LaxS. D’SouzaV. ZhengS. BassfordC.R. ParkD. BartisD.G. MahidaR. TurnerA.M. SapeyE. WeiW. NaiduB. StewartP.M. FraserW.D. ChristopherK.B. CooperM.S. GaoF. SansomD.M. MartineauA.R. PerkinsG.D. ThickettD.R. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS).Thorax201570761762410.1136/thoraxjnl‑2014‑20668025903964
    [Google Scholar]
  82. BokhareeN. KhanY.H. WasimT. MallhiT.H. AlotaibiN.H. IqbalM.S. RehmanK. AlzareaA.I. KhokharA. Daily versus stat vitamin D supplementation during pregnancy; A prospective cohort study.PLoS One2020154e023159010.1371/journal.pone.023159032298329
    [Google Scholar]
  83. OhaegbulamK.C. SwalihM. PatelP. SmithM.A. PerrinR. VitaminD. Vitamin D supplementation in COVID-19 patients: A clinical case series.Am. J. Ther.2020275e485e49010.1097/MJT.000000000000122232804682
    [Google Scholar]
  84. ShoemakerM.E. HuynhL.M. SmithC.M. MustadV.A. DuarteM.O. CramerJ.T. Immunomodulatory effects of vitamin D and prevention of respiratory tract infections and COVID-19.Topics Clin. Nutr.202237320321710.1097/TIN.000000000000028435761885
    [Google Scholar]
  85. Soltani-ZangbarM.S. MahmoodpoorA. DolatiS. ShamekhA. ValizadehS. YousefiM. SanaieS. Serum levels of vitamin D and immune system function in patients with COVID-19 admitted to intensive care unit.Gene Rep.20222610150910.1016/j.genrep.2022.10150935071823
    [Google Scholar]
  86. LauretaniF. SalviM. ZucchiniI. TestaC. CattabianiC. ArisiA. MaggioM. Relationship between Vitamin D and immunity in older people with COVID-19.Int. J. Environ. Res. Public Health2023208543210.3390/ijerph2008543237107714
    [Google Scholar]
  87. ALbuloshiT. KamelA.M. SpencerJ.P.E. Factors associated with low Vitamin D status among older adults in kuwait.Nutrients20221416334210.3390/nu1416334236014846
    [Google Scholar]
  88. BaeJ.H. ChoeH.J. HolickM.F. LimS. Association of vitamin D status with COVID-19 and its severity.Rev. Endocr. Metab. Disord.202223357959910.1007/s11154‑021‑09705‑634982377
    [Google Scholar]
  89. ThacherT.D. Evaluating the evidence in clinical studies of vitamin D in COVID-19.Nutrients202214346410.3390/nu1403046435276822
    [Google Scholar]
  90. LewisE.D. MeydaniS.N. WuD. Regulatory role of vitamin E in the immune system and inflammation.IUBMB Life201971448749410.1002/iub.197630501009
    [Google Scholar]
  91. WuD. MeydaniS. Vitamin E, immune function, and protection against infection. WeberP. BirringerM. BlumbergJB. EggersdorferM. Vitamin E in Human HealthSpringer NatureNew York, NY2019371384
    [Google Scholar]
  92. KieliszekM. LipinskiB. Selenium supplementation in the prevention of coronavirus infections (COVID-19).Med. Hypotheses202014310987810.1016/j.mehy.2020.10987832464491
    [Google Scholar]
  93. KieliszekM. Selenium in the prevention of SARS-CoV-2 and other viruses.Biol. Trace Elem. Res.2023201265566210.1007/s12011‑022‑03208‑435305539
    [Google Scholar]
  94. MashimaR. OkuyamaT. The role of lipoxygenases in pathophysiology; new insights and future perspectives.Redox Biol.2015629731010.1016/j.redox.2015.08.00626298204
    [Google Scholar]
  95. TavakolS. SeifalianA. Vitamin E at a high dose as an anti ferroptosis drug and not just a supplement for COVID-19 treatment.Biotechnol. Appl. Biochem.202156933938041
    [Google Scholar]
  96. HinmanA. HolstC.R. LathamJ.C. BrueggerJ.J. UlasG. McCuskerK.P. AmagataA. DavisD. HoffK.G. Kahn-KirbyA.H. KimV. KosakaY. LeeE. MaloneS.A. MeiJ.J. RichardsS.J. RiveraV. MillerG. TrimmerJ.K. ShraderW.D. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase.PLoS One2018138e020136910.1371/journal.pone.020136930110365
    [Google Scholar]
  97. ŽarkovićN. JastrząbA. Jarocka-KarpowiczI. OrehovecB. BaršićB. TarleM. KmetM. LukšićI. ŁuczajW. SkrzydlewskaE. the impact of severe COVID-19 on plasma antioxidants.Molecules20222716532310.3390/molecules2716532336014561
    [Google Scholar]
  98. RogeroM.M. LeãoM.C. SantanaT.M. PimentelM.V.M.B. CarliniG.C.G. da SilveiraT.F.F. GonçalvesR.C. CastroI.A. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19.Free Radic. Biol. Med.202015619019910.1016/j.freeradbiomed.2020.07.00532653511
    [Google Scholar]
  99. YangC.P. ChangC.M. YangC.C. ParianteC.M. SuK.P. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19.Brain Behav. Immun.2022103192710.1016/j.bbi.2022.04.00135390469
    [Google Scholar]
  100. CalderP.C. Bioactive omega-3 fatty acids are associated with reduced risk and severity of SARS-CoV-2 infection.Am. J. Clin. Nutr.2023117221321510.1016/j.ajcnut.2022.12.00736863820
    [Google Scholar]
  101. HathawayD.III PandavK. PatelM. Riva-MoscosoA. SinghB.M. PatelA. MinZ.C. Singh-MakkarS. SanaM.K. Sanchez-DopazoR. DesirR. FahemM.M.M. ManellaS. RodriguezI. AlvarezA. AbreuR. Omega 3 fatty acids and COVID-19: A comprehensive review.Infect. Chemother.202052447849510.3947/ic.2020.52.4.47833377319
    [Google Scholar]
  102. DoaeiS. GholamiS. RastgooS. GholamalizadehM. BourbourF. BagheriS.E. SamipoorF. AkbariM.E. ShadnoushM. GhoratF. Mosavi JarrahiS.A. Ashouri MirsadeghiN. HajipourA. JoolaP. MoslemA. GoodarziM.O. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: A randomized clinical trial.J. Transl. Med.202119112810.1186/s12967‑021‑02795‑533781275
    [Google Scholar]
  103. YueH.Y. ZengJ. WangY. DengM.J. PengW. TanX. JiangH. Efficacy of omega-3 fatty acids for hospitalized COVID-19 patients: A systematic review and meta-analysis of randomized controlled trials.Asia Pac. J. Clin. Nutr.202332330832037789651
    [Google Scholar]
  104. SimuS.Y. AlamM.B. KimS.Y. The Activation of Nrf2/HO-1 by 8-Epi-7-deoxyloganic acid attenuates inflammatory symptoms through the suppression of the MAPK/NF-κB signaling cascade in In vitro and In vivo Models.Antioxidants2022119176510.3390/antiox1109176536139839
    [Google Scholar]
  105. ShioiA. MoriokaT. ShojiT. EmotoM. The inhibitory roles of vitamin K in progression of vascular calcification.Nutrients202012258310.3390/nu1202058332102248
    [Google Scholar]
  106. DahlbergS. SchurgersL. SchöttU. KanderT. Vitamin K deficiency in critical ill patients; a prospective observational study.J. Crit. Care20194910510910.1016/j.jcrc.2018.10.02230415179
    [Google Scholar]
  107. PiscaerI. van den OuwelandJ.M.W. VermeerschK. ReynaertN.L. FranssenF.M.E. KeeneS. WoutersE.F.M. JanssensW. VermeerC. JanssenR. Low vitamin K status is associated with increased elastin degradation in chronic obstructive pulmonary disease.J. Clin. Med.201988111610.3390/jcm808111631357639
    [Google Scholar]
  108. LinnebergA. KampmannF.B. IsraelsenS.B. AndersenL.R. JørgensenH.L. SandholtH. JørgensenN.R. ThysenS.M. BenfieldT. The association of low vitamin K status with mortality in a cohort of 138 hospitalized patients with COVID-19.Nutrients2021136198510.3390/nu1306198534207745
    [Google Scholar]
  109. CaluwéR. VerbekeF. De VrieseA.S. Evaluation of vitamin K status and rationale for vitamin K supplementation in dialysis patients.Nephrol. Dial. Transplant.2020351233330590803
    [Google Scholar]
  110. DofferhoffA. PiscaerI. SchurgersL. VisserM. OuwelandJ. JongP. GosensR. HackengT. DaalH. LuxP. MaassenC. KarssemeijerE. WoutersF. KistemakerL. WalkJ. JanssenR. Reduced vitamin K status as a potentially modifiable risk factor of severe COVID-19.Clin. Infect. Dis.20217311e4039e4046
    [Google Scholar]
  111. JanssenR. VisserM. DofferhoffA. VermeerC. JanssensW. WalkJ. Vitamin K metabolism as the potential missing link between lung damage and thromboembolism in COVID-19.Br. J. Nutr.20205126
    [Google Scholar]
  112. TizabiY. GetachewB. LandisH.E. ManayeK.F. COVID-19-associated coagulopathy: Role of vitamins D and K.Curr. Pharm. Biotechnol.202324340141010.2174/138920102366622052711045535638271
    [Google Scholar]
  113. WeyhC. KrügerK. PeelingP. CastellL. The role of minerals in the optimal functioning of the immune system.Nutrients202214364410.3390/nu1403064435277003
    [Google Scholar]
  114. TanC.W. HoL.P. KalimuddinS. CherngB.P.Z. TehY.E. ThienS.Y. WongH.M. TernP.J.W. ChandranM. ChayJ.W.M. NagarajanC. SultanaR. LowJ.G.H. NgH.J. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19).Nutrition202079-8011101710.1016/j.nut.2020.11101733039952
    [Google Scholar]
  115. WallaceT.C. Combating COVID-19 and building immune resilience: A potential role for magnesium nutrition?J. Am. Coll. Nutr.202039868569310.1080/07315724.2020.178597132649272
    [Google Scholar]
  116. DominguezL.J. VeroneseN. Guerrero-RomeroF. BarbagalloM. Magnesium in infectious diseases in older people.Nutrients202113118010.3390/nu1301018033435521
    [Google Scholar]
  117. MaierJ.A. CastiglioniS. LocatelliL. ZocchiM. MazurA. Magnesium and inflammation: Advances and perspectives.Semin. Cell Dev. Biol.2021115374410.1016/j.semcdb.2020.11.00233221129
    [Google Scholar]
  118. DiNicolantonioJ.J. O’KeefeJ.H. Magnesium and Vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients.Mo. Med.20211181687333551489
    [Google Scholar]
  119. GłąbskaD. KołotaA. LachowiczK. SkolmowskaD. StachońM. GuzekD. VitaminD. Vitamin D supplementation and mental health in multiple sclerosis patients: A systematic review.Nutrients20211312420710.3390/nu1312420734959758
    [Google Scholar]
  120. TrapaniV. RosanoffA. BaniasadiS. BarbagalloM. CastiglioniS. Guerrero-RomeroF. IottiS. MazurA. MickeO. PourdowlatG. ScarpatiG. WolfF.I. MaierJ.A. The relevance of magnesium homeostasis in COVID-19.Eur. J. Nutr.202261262563610.1007/s00394‑021‑02704‑y34687321
    [Google Scholar]
  121. BjorklundG. LysiukR. SemenovaY. LenchykL. DubN. DoşaM. HanganT. Herbal substances with antiviral effects: Features and prospects for the treatment of viral diseases with emphasis on pro-inflammatory cytokines.Curr. Med. Chem.202431439340936698239
    [Google Scholar]
  122. QuilliotD. BonsackO. JaussaudR. MazurA. Dysmagnesemia in COVID-19 cohort patients: Prevalence and associated factors.Magnes. Res.202033411412210.1684/mrh.2021.047633678604
    [Google Scholar]
  123. ZhuL. BaoX. BiJ. LinY. ShanC. FanX. BianJ. WangX. Serum magnesium in patients with severe acute respiratory syndrome coronavirus 2 from Wuhan, China.Magnes. Res.202134310311334642156
    [Google Scholar]
  124. ComanA.E. CeasovschihA. PetroaieA.D. PopaE. LionteC. BologaC. HaligaR.E. CosmescuA. SlăninăA.M. BacușcăA.I. ȘorodocV. ȘorodocL. The significance of low magnesium levels in COVID-19 patients.Medicina202359227910.3390/medicina5902027936837480
    [Google Scholar]
  125. EskanderM. RazzaqueM.S. Can maintaining optimal magnesium balance reduce the disease severity of COVID-19 patients?Front. Endocrinol.20221384315210.3389/fendo.2022.84315235422757
    [Google Scholar]
  126. TianJ. TangL. LiuX. LiY. ChenJ. HuangW. LiuM. Populations in low-magnesium areas were associated with higher risk of infection in COVID-19’s early transmission: A nationwide retrospective cohort study in the united states.Nutrients202214490910.3390/nu1404090935215558
    [Google Scholar]
  127. AlamdariN.M. AfaghiS. RahimiF.S. TarkiF.E. TavanaS. ZaliA. FathiM. BesharatS. BagheriL. PourmotahariF. IrvaniS.S.N. DabbaghA. MousaviS.A. Mortality risk factors among hospitalized COVID-19 patients in a major referral center in Iran.Tohoku J. Exp. Med.20202521738410.1620/tjem.252.7332908083
    [Google Scholar]
  128. ZengH.L. YangQ. YuanP. WangX. ChengL. Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19.FASEB J.2021353e2139210.1096/fj.202002346RR33577131
    [Google Scholar]
  129. Nouri-MajdS. EbrahimzadehA. MousaviS.M. ZargarzadehN. EslamiM. SantosH.O. TaghizadehM. MilajerdiA. Higher intake of dietary magnesium is inversely associated with COVID-19 severity and symptoms in hospitalized patients: A cross-sectional study.Front. Nutr.2022987316210.3389/fnut.2022.87316235634398
    [Google Scholar]
  130. SharmaR. HeidariA. JohnsonR.H. AdvaniS. PetersenG. Serum magnesium levels in hospitalized patients with SARS-CoV-2.J. Investig. Med.202270240941410.1136/jim‑2021‑00194834580159
    [Google Scholar]
  131. LiY. LuoW. LiangB. Circulating trace elements status in COVID-19 disease: A meta-analysis.Front. Nutr.2022998203210.3389/fnut.2022.98203236034929
    [Google Scholar]
  132. SarvazadH. CahngaripourS.H. Eskandari RoozbahaniN. IzadiB. Evaluation of electrolyte status of sodium, potassium and magnesium, and fasting blood sugar at the initial admission of individuals with COVID-19 without underlying disease in Golestan Hospital, Kermanshah.New Microbes New Infect.20203810080710.1016/j.nmni.2020.10080733294198
    [Google Scholar]
  133. BeigmohammadiM.T. BitarafanS. AbdollahiA. AmoozadehL. SalahshourF. Mahmoodi ali abadiM. SoltaniD. MotallebnejadZ.A. The association between serum levels of micronutrients and the severity of disease in patients with COVID-19.Nutrition202191-9211140010.1016/j.nut.2021.11140034388583
    [Google Scholar]
  134. Mirjanić-AzarićB. PejićI. MijićS. PejčićA. Đurđević-SvrakaA. SvrakaD. KneževićD. MilivojacT. Bogavac-StanojevićN. The predictive role of biochemical markers on outcomes of severe COVID-19 patients admitted to intensive care unit.J. Med. Biochem.202342351352310.5937/jomb0‑4064137790205
    [Google Scholar]
  135. RahaS. MallickR. BasakS. DuttaroyA.K. Is copper beneficial for COVID-19 patients?Med. Hypotheses202014210981410.1016/j.mehy.2020.10981432388476
    [Google Scholar]
  136. SalahI. ParkinI.P. AllanE. Copper as an antimicrobial agent: Recent advances.RSC Advances20211130181791818610.1039/D1RA02149D35480904
    [Google Scholar]
  137. RenataR.B.N. ArelyG.R.A. GabrielaL.M.A. EstherM.L.M. Immunomodulatory role of microelements in COVID-19 outcome: A relationship with nutritional status.Biol. Trace Elem. Res.202320141596161410.1007/s12011‑022‑03290‑835668151
    [Google Scholar]
  138. RaniI. GoyalA. BhatnagarM. ManhasS. GoelP. PalA. PrasadR. Potential molecular mechanisms of zinc and copper-mediated antiviral activity on COVID-19.Nutr. Res.20219210912810.1016/j.nutres.2021.05.00834284268
    [Google Scholar]
  139. HacklerJ. HellerR.A. SunQ. SchwarzerM. DiegmannJ. BachmannM. MoghaddamA. SchomburgL. Relation of serum copper status to survival in COVID-19.Nutrients2021136189810.3390/nu1306189834072977
    [Google Scholar]
  140. SkalnyA. RinkL. AjsuvakovaO. AschnerM. GritsenkoV. AlekseenkoS. SvistunovA. PetrakisD. SpandidosD. AasethJ. TsatsakisA. TinkovA. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review).Int. J. Mol. Med.2020461172610.3892/ijmm.2020.457532319538
    [Google Scholar]
  141. AlbalawiS.A. AlbalawiR.A. AlbalawiA.A. AlanaziR.F. AlmahlawiR.M. AlhwityB.S. AlatawiB.D. ElsherbinyN. AlqifariS.F. Abdel-MaksoudM.S. The possible mechanisms of Cu and Zn in the treatment and prevention of HIV and COVID-19 viral infection.Biol. Trace Elem. Res.202420241524153837608131
    [Google Scholar]
  142. CherayilB.J. Iron and immunity: Immunological consequences of iron deficiency and overload.Arch. Immunol. Ther. Exp.201058640741510.1007/s00005‑010‑0095‑920878249
    [Google Scholar]
  143. HabibH.M. IbrahimS. ZaimA. IbrahimW.H. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators.Biomed. Pharmacother.202113611122810.1016/j.biopha.2021.11122833454595
    [Google Scholar]
  144. ColafrancescoS. AlessandriC. ContiF. PrioriR. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome?Autoimmun. Rev.202019710257310.1016/j.autrev.2020.10257332387470
    [Google Scholar]
  145. MahroumN. AlghoryA. KiyakZ. AlwaniA. SeidaR. AlraisM. ShoenfeldY. Ferritin – from iron, through inflammation and autoimmunity, to COVID-19.J. Autoimmun.202212610277810.1016/j.jaut.2021.10277834883281
    [Google Scholar]
  146. AlunnoA. CarubbiF. Rodríguez-CarrioJ. Storm, typhoon, cyclone or hurricane in patients with COVID-19? Beware of the same storm that has a different origin.RMD Open202061e00129510.1136/rmdopen‑2020‑00129532423970
    [Google Scholar]
  147. RuscittiP. BerardicurtiO. Di BenedettoP. CiprianiP. IagnoccoA. ShoenfeldY. GiacomelliR. Severe COVID-19, another piece in the puzzle of the hyperferritinemic syndrome. an immunomodulatory perspective to alleviate the storm.Front. Immunol.202011113010.3389/fimmu.2020.0113032574264
    [Google Scholar]
  148. Gómez-PastoraJ. WeigandM. KimJ. WuX. StrayerJ. PalmerA.F. ZborowskiM. YazerM. ChalmersJ.J. Hyperferritinemia in critically ill COVID-19 patients : Is ferritin the product of inflammation or a pathogenic mediator?Clin. Chim. Acta202050924925110.1016/j.cca.2020.06.03332579952
    [Google Scholar]
  149. RuscittiP. BerardicurtiO. BarileA. CiprianiP. ShoenfeldY. IagnoccoA. GiacomelliR. Severe COVID-19 and related hyperferritinaemia: More than an innocent bystander?Ann Rheum Dis202079111515151610.1136/annrheumdis‑2020‑217618
    [Google Scholar]
  150. LiD. MartinezD.R. SchäferA. ChenH. BarrM. SutherlandL.L. LeeE. ParksR. MielkeD. EdwardsW. NewmanA. BockK.W. MinaiM. NagataB.M. GagneM. DouekD.C. DeMarcoC.T. DennyT.N. OguinT.H.III BrownA. RountreeW. WangY. MansouriK. EdwardsR.J. FerrariG. SempowskiG.D. EatonA. TangJ. CainD.W. SantraS. PardiN. WeissmanD. TomaiM.A. FoxC.B. MooreI.N. AndersenH. LewisM.G. GoldingH. SederR. KhuranaS. BaricR.S. MontefioriD.C. SaundersK.O. HaynesB.F. Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine.Nat. Commun.2022131630910.1038/s41467‑022‑33985‑436274085
    [Google Scholar]
  151. JoyceM.G. KingH.A.D. Elakhal-NaouarI. AhmedA. PeachmanK.K. Macedo CincottaC. SubraC. ChenR.E. ThomasP.V. ChenW.H. SankhalaR.S. HajduczkiA. MartinezE.J. PetersonC.E. ChangW.C. ChoeM. SmithC. LeeP.J. HeadleyJ.A. TaddeseM.G. ElyardH.A. CookA. AndersonA. McGuckin WuertzK. DongM. SwaffordI. CaseJ.B. CurrierJ.R. LalK.G. MolnarS. NairM.S. DussuptV. DayeS.P. ZengX. BarkeiE.K. StaplesH.M. AlfsonK. CarrionR. KrebsS.J. Paquin-ProulxD. KarasavvaN. PolonisV.R. JagodzinskiL.L. AmareM.F. VasanS. ScottP.T. HuangY. HoD.D. de ValN. DiamondM.S. LewisM.G. RaoM. MatyasG.R. GromowskiG.D. PeelS.A. MichaelN.L. BoltonD.L. ModjarradK. A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates.Sci. Transl. Med.202214632eabi573510.1126/scitranslmed.abi573534914540
    [Google Scholar]
  152. Antonyak, H.; Iskra, R.; Panas, N.; Lysiuk, R.; Selenium. In: Trace Elements and Minerals in Health and Longevity, M. Malavolta and E. Mocchegiani, Eds., Springer International Publishing, 2018, pp. 63–68.
  153. BjørklundG. ShanaidaM. LysiukR. AntonyakH. KlishchI. ShanaidaV. PeanaM. Selenium: An antioxidant with a critical role in anti-aging.Molecules20222719661310.3390/molecules2719661336235150
    [Google Scholar]
  154. ZhangL. LiuY. Potential interventions for novel coronavirus in China: A systematic review.J. Med. Virol.202092547949010.1002/jmv.2570732052466
    [Google Scholar]
  155. GuillinO. VindryC. OhlmannT. ChavatteL. Selenium, selenoproteins and viral infection.Nutrients2019119210110.3390/nu1109210131487871
    [Google Scholar]
  156. MoghaddamA. HellerR. SunQ. SeeligJ. CherkezovA. SeibertL. HacklerJ. SeemannP. DiegmannJ. PilzM. BachmannM. MinichW. SchomburgL. Selenium deficiency is associated with mortality risk from COVID-19.Nutrients2020127209810.3390/nu1207209832708526
    [Google Scholar]
  157. MunteanuC. SchwartzB. The relationship between nutrition and the immune system.Front. Nutr.20229108250010.3389/fnut.2022.108250036570149
    [Google Scholar]
  158. XuJ. GongY. SunY. CaiJ. LiuQ. BaoJ. YangJ. ZhangZ. Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages.Biol. Trace Elem. Res.2020194123724310.1007/s12011‑019‑01775‑731218646
    [Google Scholar]
  159. FakhrolmobasheriM. Mazaheri-TehraniS. KieliszekM. ZeinalianM. AbbasiM. KarimiF. MozafariA.M. COVID-19 and selenium deficiency: A systematic review.Biol. Trace Elem. Res.202220093945395610.1007/s12011‑021‑02997‑434739678
    [Google Scholar]
  160. ZhangJ. TaylorE.W. BennettK. SaadR. RaymanM.P. Association between regional selenium status and reported outcome of COVID-19 cases in China.Am. J. Clin. Nutr.202011161297129910.1093/ajcn/nqaa09532342979
    [Google Scholar]
  161. SchomburgL. Selenium deficiency in COVID-19 : A possible long-lasting toxic relationship.Nutrients202214228310.3390/nu1402028335057464
    [Google Scholar]
  162. HifflerL. RakotoambininaB. Selenium and RNA virus interactions: Potential implications for SARS-CoV-2 Infection (COVID-19).Front. Nutr.2020716410.3389/fnut.2020.0016433015130
    [Google Scholar]
  163. SadeghsoltaniF. MohammadzadehI. SafariM.M. HassanpourP. IzadpanahM. QujeqD. MoeinS. Vaghari-TabariM. Zinc and respiratory viral infections: Important trace element in anti-viral response and immune regulation.Biol. Trace Elem. Res.202220062556257110.1007/s12011‑021‑02859‑z34368933
    [Google Scholar]
  164. EspositoS. D’AbroscaG. AntolakA. PedoneP.V. IserniaC. MalgieriG. Host and viral zinc-finger proteins in COVID-19.Int. J. Mol. Sci.2022237371110.3390/ijms2307371135409070
    [Google Scholar]
  165. RerksuppapholS. RerksuppapholL. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children.Pediatr. Rep.2019112795410.4081/pr.2019.795431214301
    [Google Scholar]
  166. JoachimiakM.P. Zinc against COVID-19? Symptom surveillance and deficiency risk groups.PLoS Negl. Trop. Dis.2021151e000889510.1371/journal.pntd.000889533395417
    [Google Scholar]
  167. MaywaldM. RinkL. Zinc in human health and infectious diseases.Biomolecules20221212174810.3390/biom1212174836551176
    [Google Scholar]
  168. LuanR. DingD. XueQ. LiH. WangY. YangJ. Protective role of zinc in the pathogenesis of respiratory diseases.Eur. J. Clin. Nutr.202377442743510.1038/s41430‑022‑01191‑635982216
    [Google Scholar]
  169. FinziE. Treatment of SARS-CoV-2 with high dose oral zinc salts: A report on four patients.Int. J. Infect. Dis.20209930730910.1016/j.ijid.2020.06.00632522597
    [Google Scholar]
  170. ThomasS. PatelD. BittelB. WolskiK. WangQ. KumarA. Il’GiovineZ.J. MehraR. McWilliamsC. NissenS.E. DesaiM.Y. Effect of high-dose zinc and ascorbic acid supplementation vs usual Care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection.JAMA Netw. Open202142e21036910.1001/jamanetworkopen.2021.036933576820
    [Google Scholar]
  171. ScholzM. DerwandR. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win todays battle against COVID-19?Med Hypotheses.2020142109815
    [Google Scholar]
  172. PereraM. El KhouryJ. ChinniV. BoltonD. QuL. JohnsonP. TrubianoJ. McDonaldC.F. JonesD. BellomoR. PatelO. IschiaJ. Randomised controlled trial for high-dose intravenous zinc as adjunctive therapy in SARS-CoV-2 (COVID-19) positive critically ill patients: trial protocol.BMJ Open20201012e04058010.1136/bmjopen‑2020‑04058033268419
    [Google Scholar]
  173. TabatabaeizadehS.A. Zinc supplementation and COVID-19 mortality: a meta-analysis.Eur. J. Med. Res.20222717010.1186/s40001‑022‑00694‑z35599332
    [Google Scholar]
  174. PelucelliA. PeanaM. OrzełB. PiastaK. Gumienna-KonteckaE. MediciS. ZorodduM.A. Zn2+ and Cu2+ interaction with the recognition interface of ACE2 for SARS-CoV-2 spike protein.Int. J. Mol. Sci.20232411920210.3390/ijms2411920237298154
    [Google Scholar]
  175. ŠkrbićR. TravarM. StojiljkovićM.P. DjuricD.M. SuručićR. Folic acid and leucovorin have potential to prevent SARS-CoV-2-virus internalization by interacting with s-glycoprotein/neuropilin-1 receptor complex.Molecules2023285229410.3390/molecules2805229436903540
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673301578240515095227
Loading
/content/journals/cmc/10.2174/0109298673301578240515095227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test