Skip to content
2000
Volume 32, Issue 15
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Cells of different human organs and tissues contain different numbers of mitochondria. In these organelles, there are different copies of the mitochondrial genome, which is characteristic of a certain organ or tissue.

Objective

The aim of the investigation was to analyze the results of scientific works dedicated to the analysis of heteroplasmy levels of mitochondrial genome mutations in a number of organs and tissues.

Methods

Based on literature data, the level of heteroplasmy of mitochondrial genome mutations was analyzed in organs such as the liver, lungs, muscles, small intestine, large intestine, spleen, kidney, brain, heart, and hair. In addition, this parameter was studied in such tissues as leukocytes, buccal epithelium, and epithelial cells from urine.

Results

Significant differences in the mutational burden of the mitochondrial genome were found in various samples of organs and tissues. The highest heteroplasmy level for mtDNA mutations was in muscles; it was lower in buccal epithelium; and in human blood cells, the heteroplasmy level of mitochondrial mutations turned out to be significantly lower compared to other tissues. During the comparison of samples of patients with different diseases and healthy people, significant differences were found in the heteroplasmy level between some organs and tissues.

Conclusion

The heteroplasmy level of mitochondrial genome mutations can significantly differ in the organs and tissues of individuals. In addition, in a number of literature sources, it is noted that there is a dependence on the mutational burden of the mitochondrial genome from the type of disease, sex, and age of a person.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673296881240816065357
2024-08-23
2025-10-29
Loading full text...

Full text loading...

References

  1. StefanoG.B. Mitochondrial heteroplasmy.Adv. Exp. Med. Biol.201798257759410.1007/978‑3‑319‑55330‑6_3028551808
    [Google Scholar]
  2. GonzálezM.M. RamosA. AlujaM.P. SantosC. Sensitivity of mitochondrial DNA heteroplasmy detection using Next Generation Sequencing.Mitochondrion202050889310.1016/j.mito.2019.10.00631669622
    [Google Scholar]
  3. GradyJ.P. PickettS.J. NgY.S. AlstonC.L. BlakelyE.L. HardyS.A. FeeneyC.L. BrightA.A. SchaeferA.M. GormanG.S. McNallyR.J.Q. TaylorR.W. TurnbullD.M. McFarlandR. mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease.EMBO Mol. Med.2018106e826210.15252/emmm.20170826229735722
    [Google Scholar]
  4. Imai-OkazakiA. NittaK.R. YatsukaY. SugiuraA. AraoM. ShimuraM. EbiharaT. OnukiT. IchimotoK. OhtakeA. MurayamaK. OkazakiY. Impact of measuring heteroplasmy of a pathogenic mitochondrial DNA variant at the single-cell level in individuals with mitochondrial disease.J. Inherit. Metab. Dis.20224561143115010.1002/jimd.1254736053827
    [Google Scholar]
  5. YangZ. SloneJ. HuangT. Next-generation sequencing to characterize mitochondrial genomic DNA heteroplasmy.Curr. Protoc.202225e41210.1002/cpz1.41235532282
    [Google Scholar]
  6. AtilanoS.R. UdarN. SatalichT.A. UdarV. ChwaM. KenneyM.C. Low frequency mitochondrial DNA heteroplasmy SNPs in blood, retina, and [RPE+choroid] of age-related macular degeneration subjects.PLoS One2021161e024611410.1371/journal.pone.024611433513185
    [Google Scholar]
  7. SazonovaM.A. ChichevaM.M. ZhelankinA.V. SobeninI.A. BobryshevY.V. OrekhovA.N. Association of mutations in the mitochondrial genome with the subclinical carotid atherosclerosis in women.Exp. Mol. Pathol.2015991253210.1016/j.yexmp.2015.04.00325910413
    [Google Scholar]
  8. GuptaR. KanaiM. DurhamT.J. TsuoK. McCoyJ.G. KotrysA.V. ZhouW. ChinneryP.F. KarczewskiK.J. CalvoS.E. NealeB.M. MoothaV.K. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans.Nature2023620797583984810.1038/s41586‑023‑06426‑537587338
    [Google Scholar]
  9. SoltészB. PösO. WlachovskaZ. BudisJ. HekelR. StrieskovaL. LiptakJ.B. KramplW. StykJ. NémethN. KeserűJ.S. JeneiA. BuglyóG. KleknerÁ. NagyB. SzemesT. Mitochondrial DNA copy number changes, heteroplasmy, and mutations in plasma-derived exosomes and brain tissue of glioblastoma patients.Mol. Cell. Probes20226610187510.1016/j.mcp.2022.10187536379303
    [Google Scholar]
  10. DugganA.T. StonekingM. A highly unstable recent mutation in human mtDNA.Am. J. Hum. Genet.201392227928410.1016/j.ajhg.2012.12.00423313375
    [Google Scholar]
  11. FanX.Y. GuoL. ChenL.N. YinS. WenJ. LiS. MaJ.Y. JingT. JiangM.X. SunX.H. ChenM. WangF. WangZ.B. ZhangC.F. WangX.H. GeZ.J. HuC. ZengL. ShenW. SunQ.Y. OuX.H. LuoS.M. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy.Nat. Biomed. Eng.20226433935010.1038/s41551‑022‑00881‑735437313
    [Google Scholar]
  12. RaiP.K. CravenL. HoogewijsK. RussellO.M. LightowlersR.N. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome.Essays Biochem.201862345546510.1042/EBC2017011329950320
    [Google Scholar]
  13. SongW.H. BallardJ.W.O. YiY.J. SutovskyP. Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility.BioMed Res. Int.2014201411610.1155/2014/98186725028670
    [Google Scholar]
  14. Galera-MongeT. Zurita-DíazF. GaresseR. GallardoM.E. The mutation m.13513G>A impairs cardiac function, favoring a neuroectoderm commitment, in a mutant-load dependent way.J. Cell. Physiol.201923411195111952210.1002/jcp.2854930950033
    [Google Scholar]
  15. HammondE.R. GreenM.P. ShellingA.N. BergM.C. PeekJ.C. CreeL.M. Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation.Mol. Hum. Reprod.201622426127110.1093/molehr/gaw00326792869
    [Google Scholar]
  16. LinD.S. HuangY.W. HoC.S. HuangT.S. LeeT.H. WuT.Y. HuangZ.D. WangT.J. Impact of mitochondrial A3243G heteroplasmy on mitochondrial bioenergetics and dynamics of directly reprogrammed MELAS neurons.Cells20221211510.3390/cells1201001536611807
    [Google Scholar]
  17. WongL.J.C. ChenT. SchmittE.S. WangJ. TangS. LandsverkM. LiF. ZhangS. WangY. ZhangV.W. CraigenW.J. Clinical and laboratory interpretation of mitochondrial mRNA variants.Hum. Mutat.202041101783179610.1002/humu.2408232652755
    [Google Scholar]
  18. VisuttijaiK. Hedberg-OldforsC. LindgrenU. NordströmS. ElíasdóttirÓ. LindbergC. OldforsA. Progressive external ophthalmoplegia associated with novel MT - TN mutations.Acta Neurol. Scand.2021143110310810.1111/ane.1333932869280
    [Google Scholar]
  19. SharmaM.A. LeeJ.Y.J. TamA. SatthaB. MackenzieI.R. VallanceH.D. SirrsS. Hannah-ShmouniF. CôtéH.C.F. MattmanA. A mitochondrial DNA D loop insertion detected almost exclusively in non-replicating tissues with maternal inheritance across three generations.Mitochondrion20194629830110.1016/j.mito.2018.08.00230114489
    [Google Scholar]
  20. SazonovaM.A. SinyovV.V. BarinovaV.A. RyzhkovaA.I. ZhelankinA.V. PostnovA.Y. SobeninI.A. BobryshevY.V. OrekhovA.N. Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta.BioMed Res. Int.201520151910.1155/2015/82546825834827
    [Google Scholar]
  21. van den AmeeleJ. LiA.Y.Z. MaH. ChinneryP.F. Mitochondrial heteroplasmy beyond the oocyte bottleneck.Semin. Cell Dev. Biol.20209715616610.1016/j.semcdb.2019.10.00131611080
    [Google Scholar]
  22. MoraesC.T. MoraesC.T. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy.Front. Biosci.2017226991101010.2741/452927814659
    [Google Scholar]
  23. HeftiE. BlancoJ.G. Mitochondrial DNA heteroplasmy in cardiac tissue from individuals with and without coronary artery disease.Mitochondrial DNA A. DNA Mapp. Seq. Anal.201829458759310.1080/24701394.2017.132548028521548
    [Google Scholar]
  24. MoraesC.T. Genetics: segregation of mitochondrial genomes in the germline.Curr. Biol.20192915R746R74810.1016/j.cub.2019.06.02931386851
    [Google Scholar]
  25. HummelE.M. PiovesanK. BergF. HerpertzS. KesslerH. KumstaR. MoserD.A. Mitochondrial DNA as a marker for treatment-response in post-traumatic stress disorder.Psychoneuroendocrinology202314810599310.1016/j.psyneuen.2022.10599336462294
    [Google Scholar]
  26. WallaceD.C. BrownM.D. LottM.T. Mitochondrial DNA variation in human evolution and disease.Gene1999238121123010.1016/S0378‑1119(99)00295‑410570998
    [Google Scholar]
  27. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑833883728
    [Google Scholar]
  28. WallaceD.C. Mitochondrial genetic medicine.Nat. Genet.201850121642164910.1038/s41588‑018‑0264‑z30374071
    [Google Scholar]
  29. YangX. ZhangR. NakahiraK. GuZ. Mitochondrial DNA mutation, diseases, and nutrient-regulated mitophagy.Annu. Rev. Nutr.201939120122610.1146/annurev‑nutr‑082018‑12464331433742
    [Google Scholar]
  30. WangA.S. DreesenO. Biomarkers of cellular senescence and skin aging.Front. Genet.2018924710.3389/fgene.2018.0024730190724
    [Google Scholar]
  31. SarbacherC.A. HalperJ.T. Connective tissue and age-related diseases.Subcell. Biochem.20199128131010.1007/978‑981‑13‑3681‑2_1130888657
    [Google Scholar]
  32. NaueJ. HörerS. SängerT. StroblC. Hatzer-GrubwieserP. ParsonW. Lutz-BonengelS. Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA.Mitochondrion201520829410.1016/j.mito.2014.12.00225526677
    [Google Scholar]
  33. LiY. MaY. DangQ.Y. FanX.R. HanC.T. XuS.Z. LiP.Y. Assessment of mitochondrial dysfunction and implications in cardiovascular disorders.Life Sci.202230612083410.1016/j.lfs.2022.12083435902031
    [Google Scholar]
  34. ZhouH. HeL. XuG. ChenL. Mitophagy in cardiovascular disease.Clin. Chim. Acta202050721021810.1016/j.cca.2020.04.03332360616
    [Google Scholar]
  35. LeeS.R. HanJ. Mitochondrial mutations in cardiac disorders.Adv. Exp. Med. Biol.20179828111110.1007/978‑3‑319‑55330‑6_528551783
    [Google Scholar]
  36. ChakrabartyS. GovindarajP. SankaranB.P. NagappaM. KabekkoduS.P. JayaramP. MallyaS. DeephaS. PonmalarJ.N.J. ArivindaH.R. MeenaA.K. JhaR.K. SinhaS. GayathriN. TalyA.B. ThangarajK. SatyamoorthyK. Contribution of nuclear and mitochondrial gene mutations in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome.J. Neurol.202126862192220710.1007/s00415‑020‑10390‑933484326
    [Google Scholar]
  37. SazonovaM.A. ZhelankinA.V. BarinovaV.A. SinyovV.V. KhasanovaZ.B. PostnovA.Y. SobeninI.A. BobryshevY.V. OrekhovA.N. Dataset of mitochondrial genome variants associated with asymptomatic atherosclerosis.Data Brief201671570157510.1016/j.dib.2016.04.05527222855
    [Google Scholar]
  38. CampbellT. SloneJ. HuangT. Mitochondrial genome variants as a cause of mitochondrial cardiomyopathy.Cells20221118283510.3390/cells1118283536139411
    [Google Scholar]
  39. MitrofanovK.Y. ZhelankinA.V. ShiganovaG.M. SazonovaM.A. BobryshevY.V. PostnovA.Y. Sobenin I АI.A. OrekhovA.N. Analysis of mitochondrial DNA heteroplasmic mutations A1555G, C3256T, T3336C, С5178А, G12315A, G13513A, G14459A, G14846А and G15059A in CHD patients with the history of myocardial infarction.Exp. Mol. Pathol.20161001879110.1016/j.yexmp.2015.12.00326654794
    [Google Scholar]
  40. LaticN. ErbenR.G. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure.Int. J. Mol. Sci.20202118648310.3390/ijms2118648332899880
    [Google Scholar]
  41. KeeterW.C. MaS. StahrN. MoriartyA.K. GalkinaE.V. Atherosclerosis and multi-organ-associated pathologies.Semin. Immunopathol.202244336337410.1007/s00281‑022‑00914‑y35238952
    [Google Scholar]
  42. BlahaM.J. DeFilippisA.P. Multi-ethnic study of atherosclerosis (MESA).J. Am. Coll. Cardiol.202177253195321610.1016/j.jacc.2021.05.00634167645
    [Google Scholar]
  43. NayorM. BrownK.J. VasanR.S. The molecular basis of predicting atherosclerotic cardiovascular disease risk.Circ. Res.2021128228730310.1161/CIRCRESAHA.120.31589033476202
    [Google Scholar]
  44. FloridoR. DayaN.R. NdumeleC.E. KotonS. RussellS.D. PrizmentA. BlumenthalR.S. MatsushitaK. MokY. FelixA.S. CoreshJ. JoshuC.E. PlatzE.A. SelvinE. Cardiovascular disease risk among cancer survivors.J. Am. Coll. Cardiol.2022801223210.1016/j.jacc.2022.04.04235772913
    [Google Scholar]
  45. SazonovaM.A. PostnovA.Iu. OrekhovA.N. SobeninI.A. A new method of quantitative estimation of mutant allele in mitochondrial genome.Patol. Fiziol. Eksp. Ter.201148184
    [Google Scholar]
  46. SarigO. SprecherE. The molecular revolution in cutaneous biology: Era of next-generation sequencing.J. Invest. Dermatol.20171375e79e8210.1016/j.jid.2016.02.81828411851
    [Google Scholar]
  47. MukhopadhyayA. SavithaD. KurpadA. Introducing a molecular basis to physiology in undergraduate medical education.Natl. Med. J. India201831422823010.4103/0970‑258X.25822531134931
    [Google Scholar]
  48. SazonovaM. BudnikovE. KhasanovaZ. SobeninI. PostnovA. OrehovA. Studies of the human aortic intima by a direct quantitative assay of mutant alleles in the mitochondrial genome.Atherosclerosis2009204118419010.1016/j.atherosclerosis.2008.09.00118849029
    [Google Scholar]
  49. AnJ. MinK.I. JuY.S. Identifying somatic mitochondrial DNA mutations.Methods Mol. Biol.2022249315316510.1007/978‑1‑0716‑2293‑3_1035751814
    [Google Scholar]
  50. SazonovaM.A. SinyovV.V. RyzhkovaA.I. GalitsynaE.V. KhasanovaZ.B. PostnovA.Y. YaryginaE.I. OrekhovA.N. SobeninI.A. Role of mitochondrial genome mutations in pathogenesis of carotid atherosclerosis.Oxid. Med. Cell. Longev.20172017693439410.1155/2017/6934394
    [Google Scholar]
  51. SinyovV.V. ChichevaM.M. BarinovaV.A. RyzhkovaA.I. ZilinyiR.I. KaragodinV.P. PostnovA.Y. SobeninI.A. OrekhovA.N. SazonovaM.A. The heteroplasmy level of some mutations in gene MT-CYB among women with asymptomatic atherosclerosis.Russ. J. Genet.201652884785210.1134/S102279541608012329368910
    [Google Scholar]
  52. SazonovaM.A. ShkuratT.P. DemakovaN.A. ZhelankinA.V. BarinovaV.A. SobeninI.A. OrekhovA.N. Mitochondrial genome sequencing in atherosclerosis: what’s next?Curr. Pharm. Des.201622339039610.2174/138161282266615111215233526561059
    [Google Scholar]
  53. SpyropoulosA. ManfordM. HorvathR. AlstonC.L. Yu-Wai-ManP. HeL. TaylorR.W. ChinneryP.F. Near-identical segregation of mtDNA heteroplasmy in blood, muscle, urinary epithelium, and hair follicles in twins with optic atrophy, ptosis, and intractable epilepsy.JAMA Neurol.201370121552155510.1001/jamaneurol.2013.411124126373
    [Google Scholar]
  54. SpyropoulosA.C. The HEP-COVID Trial.Heart Int.2021152626410.17925/HI.2021.15.2.6236277825
    [Google Scholar]
  55. de LaatP. KoeneS. den van HeuvelL.P.W.J. RodenburgR.J.T. JanssenM.C.H. SmeitinkJ.A.M. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A > G mutation.J. Inherit. Metab. Dis.20123561059106910.1007/s10545‑012‑9465‑222403016
    [Google Scholar]
  56. de LaatP. RodenburgR.J. SmeitinkJ.A.M. JanssenM.C.H. Intra-patient variability of heteroplasmy levels in urinary epithelial cells in carriers of the m.3243A>G mutation.Mol. Genet. Genomic Med.201972e0052310.1002/mgg3.52330516030
    [Google Scholar]
  57. de LaatP. ZweersH.E. KnuijtS. SmeitinkJ.A. WantenG.J. JanssenM.C. Dysphagia, malnutrition and gastrointestinal problems in patients with mitochondrial disease caused by the m3243A>G mutation.Neth. J. Med.2015731303626219939
    [Google Scholar]
  58. NaueJ. SängerT. SchmidtU. KleinR. Lutz-BonengelS. Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing.Int. J. Legal Med.2011125342743610.1007/s00414‑011‑0549‑621249378
    [Google Scholar]
  59. ChinneryP.F. ZwijnenburgP.J.G. WalkerM. HowellN. TaylorR.W. LightowlersR.N. BindoffL. TurnbullD.M. Nonrandom tissue distribution of mutant mtDNA.Am. J. Med. Genet.199985549850110.1002/(SICI)1096‑8628(19990827)85:5<498::AID‑AJMG13>3.0.CO;2‑810405450
    [Google Scholar]
  60. ChiarattiM.R. ChinneryP.F. Modulating mitochondrial DNA mutations: factors shaping heteroplasmy in the germ line and somatic cells.Pharmacol. Res.202218510646610.1016/j.phrs.2022.10646636174964
    [Google Scholar]
  61. BurrS.P. PezetM. ChinneryP.F. Mitochondrial DNA heteroplasmy and purifying selection in the mammalian female germ line.Dev. Growth Differ.2018601213210.1111/dgd.1242029363102
    [Google Scholar]
  62. NieY. MurleyA. GolderZ. RoweJ.B. AllinsonK. ChinneryP.F. Heteroplasmic mitochondrial DNA mutations in frontotemporal lobar degeneration.Acta Neuropathol.2022143668769510.1007/s00401‑022‑02423‑635488929
    [Google Scholar]
  63. LeeH.Y. ChungU. ParkM.J. YooJ.E. HanG.R. ShinK.J. Differential distribution of human mitochondrial DNA in somatic tissues and hairs.Ann. Hum. Genet.2006701596510.1111/j.1529‑8817.2005.00217.x16441257
    [Google Scholar]
  64. ChungU. LeeH.Y. YooJ.E. ParkM.J. ShinK.J. Mitochondrial DNA CA dinucleotide repeats in Koreans: the presence of length heteroplasmy.Int. J. Legal Med.20051191505310.1007/s00414‑004‑0487‑715378308
    [Google Scholar]
  65. LeeH.Y. ChungU. YooJ.E. ParkM.J. ShinK.J. Quantitative and qualitative profiling of mitochondrial DNA length heteroplasmy.Electrophoresis2004251283410.1002/elps.20030568114730565
    [Google Scholar]
  66. FrederiksenA.L. AndersenP.H. KyvikK.O. JeppesenT.D. VissingJ. SchwartzM. Tissue specific distribution of the 3243A->G mtDNA mutation.J. Med. Genet.200643867167710.1136/jmg.2005.03933916490799
    [Google Scholar]
  67. LangdahlJ.H. LarsenM. FrostM. AndersenP.H. YderstrædeK.B. VissingJ. DunøM. ThomassenM. FrederiksenA.L. Lecocytes mutation load declines with age in carriers of the m.3243A>G mutation: A 10-year Prospective Cohort.Clin. Genet.201893492592810.1111/cge.1320129266179
    [Google Scholar]
  68. FrederiksenA.L. JeppesenT.D. VissingJ. SchwartzM. KyvikK.O. SchmitzO. PoulsenP.L. AndersenP.H. High prevalence of impaired glucose homeostasis and myopathy in asymptomatic and oligosymptomatic 3243A>G mitochondrial DNA mutation-positive subjects.J. Clin. Endocrinol. Metab.20099482872287910.1210/jc.2009‑023519470628
    [Google Scholar]
  69. PyleA. TaylorR.W. DurhamS.E. DeschauerM. SchaeferA.M. SamuelsD.C. ChinneryP.F. Depletion of mitochondrial DNA in leucocytes harbouring the 3243A->G mtDNA mutation.J. Med. Genet.2006441697410.1136/jmg.2006.04310916950816
    [Google Scholar]
  70. GuyattA.L. BrennanR.R. BurrowsK. GuthrieP.A.I. AscioneR. RingS.M. GauntT.R. PyleA. CordellH.J. LawlorD.A. ChinneryP.F. HudsonG. RodriguezS. A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts.Hum. Genomics2019131610.1186/s40246‑018‑0190‑230704525
    [Google Scholar]
  71. PyleA. AnugrhaH. Kurzawa-AkanbiM. YarnallA. BurnD. HudsonG. Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease.Neurobiol. Aging201638216.e7216.e1010.1016/j.neurobiolaging.2015.10.03326639155
    [Google Scholar]
  72. LiM. SchröderR. NiS. MadeaB. StonekingM. Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations.Proc. Natl. Acad. Sci. USA201511282491249610.1073/pnas.141965111225675502
    [Google Scholar]
  73. BiC. WangL. FanY. YuanB. AlsolamiS. ZhangY. ZhangP.Y. HuangY. YuY. Izpisua BelmonteJ.C. LiM. Quantitative haplotype-resolved analysis of mitochondrial DNA heteroplasmy in Human single oocytes, blastoids, and pluripotent stem cells.Nucleic Acids Res.20235183793380510.1093/nar/gkad20937014011
    [Google Scholar]
  74. GiulianiC. BarbieriC. LiM. BucciL. MontiD. PassarinoG. LuiselliD. FranceschiC. StonekingM. GaragnaniP. Transmission from centenarians to their offspring of mtDNA heteroplasmy revealed by ultra-deep sequencing.Aging (Albany NY)20146645446710.18632/aging.10066125013208
    [Google Scholar]
  75. SamuelsD.C. LiC. LiB. SongZ. TorstensonE. Boyd ClayH. RokasA. Thornton-WellsT.A. MooreJ.H. HughesT.M. HoffmanR.D. HainesJ.L. MurdockD.G. MortlockD.P. WilliamsS.M. Recurrent tissue-specific mtDNA mutations are common in humans.PLoS Genet.2013911e100392910.1371/journal.pgen.100392924244193
    [Google Scholar]
  76. ZhangP. SamuelsD.C. WangJ. ZhaoS. ShyrY. GuoY. Mitochondria single nucleotide variation across six blood cell types.Mitochondrion201628162210.1016/j.mito.2016.03.00126956645
    [Google Scholar]
  77. ZhangP. SamuelsD.C. ZhaoS. WangJ. ShyrY. GuoY. Practicability of mitochondrial heteroplasmy detection through an Illumina genotyping array.Mitochondrion201631757810.1016/j.mito.2016.08.01827628068
    [Google Scholar]
  78. PfeifferH. Lutz-BonengelS. PollakS. FimmersR. BaurM.P. BrinkmannB. Mitochondrial DNA control region diversity in hairs and body fluids of monozygotic triplets.Int. J. Legal Med.20041182717410.1007/s00414‑003‑0409‑014593484
    [Google Scholar]
  79. TullyG. BarrittS.M. BenderK. BrignonE. CapelliC. Dimo-SimoninN. EichmannC. ErnstC.M. LambertC. LareuM.V. LudesB. MevagB. ParsonW. PfeifferH. SalasA. SchneiderP.M. StaalstromE. Results of a collaborative study of the EDNAP group regarding mitochondrial DNA heteroplasmy and segregation in hair shafts.Forensic Sci. Int.2004140111110.1016/S0379‑0738(03)00181‑615013160
    [Google Scholar]
  80. HühneJ. PfeifferH. BrinkmannB. Heteroplasmic substitutions in the mitochondrial DNA control region in mother and child samples.Int. J. Legal Med.19981121273010.1007/s0041400501939932738
    [Google Scholar]
  81. RobertsK.A. CallowayC. Characterization of mitochondrial DNA sequence heteroplasmy in blood tissue and hair as a function of hair morphology.J. Forensic Sci.2011561466010.1111/j.1556‑4029.2010.01540.x20840293
    [Google Scholar]
  82. AndrewT. CallowayC.D. StuartS. LeeS.H. GillR. ClementG. ChowienczykP. SpectorT.D. ValdesA.M. A twin study of mitochondrial DNA polymorphisms shows that heteroplasmy at multiple sites is associated with mtDNA variant 16093 but not with zygosity.PLoS One201168e2233210.1371/journal.pone.002233221857921
    [Google Scholar]
  83. KrjutškovK. KoltšinaM. GrandK. VõsaU. SaukM. TõnissonN. SalumetsA. Tissue-specific mitochondrial heteroplasmy at position 16,093 within the same individual.Curr. Genet.2014601111610.1007/s00294‑013‑0398‑623842853
    [Google Scholar]
  84. CallowayC.D. ReynoldsR.L. HerrinG.L.Jr AndersonW.W. The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age.Am. J. Hum. Genet.20006641384139710.1086/30284410739761
    [Google Scholar]
  85. YaoY.G. KajigayaS. YoungN.S. Mitochondrial DNA mutations in single human blood cells.Mutat. Res.2015779687710.1016/j.mrfmmm.2015.06.00926149767
    [Google Scholar]
  86. LiH. BiR. FanY. WuY. TangY. LiZ. HeY. ZhouJ. TangJ. ChenX. YaoY.G. mtDNA heteroplasmy in monozygotic twins discordant for schizophrenia.Mol. Neurobiol.20175464343435210.1007/s12035‑016‑9996‑x27343181
    [Google Scholar]
  87. BiR. ZhangA.M. YuD. ChenD. YaoY.G. Screening the three LHON primary mutations in the general Chinese population by using an optimized multiplex allele-specific PCR.Clin. Chim. Acta201041121-221671167410.1016/j.cca.2010.06.02620599858
    [Google Scholar]
  88. Panadés-de OliveiraL. MontoyaJ. EmperadorS. Ruiz-PesiniE. JericóI. ArenasJ. Hernández-LainA. BlázquezA. MartínM.Á. Domínguez-GonzálezC. A novel mutation in the mitochondrial MT-ND5 gene in a family with MELAS. The relevance of genetic analysis on targeted tissues.Mitochondrion202050141810.1016/j.mito.2019.10.00131639449
    [Google Scholar]
  89. KleinH.U. TrumpffC. YangH.S. LeeA.J. PicardM. BennettD.A. De JagerP.L. Characterization of mitochondrial DNA quantity and quality in the human aged and Alzheimer’s disease brain.Mol. Neurodegener.20211617510.1186/s13024‑021‑00495‑834742335
    [Google Scholar]
  90. ChenY.P. YuS.H. ZhangG.H. HouY.B. GuX.J. OuR.W. ShenY. SongW. ChenX.P. ZhaoB. CaoB. ZhangL.Y. SunM.M. LiuF.F. WeiQ.Q. LiuK.C. LinJ.Y. YangT.M. YangJ. WuY. JiangZ. LiuJ. ChengY.F. XiaoY. SuW.M. FengF. CaiY.Y. LiS.R. HuT. YuanX.Q. ZhouQ.Q. ShaoN. MaS. ShangH.F. The mutation spectrum of Parkinson-disease -related genes in early-onset Parkinson’s disease in ethnic Chinese.Eur. J. Neurol.202229113218322810.1111/ene.1550935861376
    [Google Scholar]
  91. Del BoR. CrimiM. SciaccoM. MalferrariG. BordoniA. NapoliL. PrelleA. BiunnoI. MoggioM. BresolinN. ScarlatoG. Pietro ComiG. High mutational burden in the mtDNA control region from aged muscles: a single-fiber study.Neurobiol. Aging200324682983810.1016/S0197‑4580(02)00233‑612927765
    [Google Scholar]
  92. LinM.T. SimonD.K. AhnC.H. KimL.M. BealM.F. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain.Hum. Mol. Genet.200211213314510.1093/hmg/11.2.13311809722
    [Google Scholar]
  93. MatthewsP.M. HopkinJ. BrownR.M. StephensonJ.B. Hilton-JonesD. BrownG.K. Comparison of the relative levels of the 3243 (A-->G) mtDNA mutation in heteroplasmic adult and fetal tissues.J. Med. Genet.1994311414410.1136/jmg.31.1.418151636
    [Google Scholar]
  94. MatthewsP.M. BrownR.M. MortenK. MarchingtonD. PoultonJ. BrownG. Intracellular heteroplasmy for disease-associated point mutations in mtDNA: implications for disease expression and evidence for mitotic segregation of heteroplasmic units of mtDNA.Hum. Genet.199596326126810.1007/BF002104047649539
    [Google Scholar]
  95. HarrisonT.J. BolesR.G. JohnsonD.R. LeblondC. WongL.J.C. Macular pattern retinal dystrophy, adult-onset diabetes, and deafness: a family study of A3243G mitochondrial heteroplasmy.Am. J. Ophthalmol.1997124221722110.1016/S0002‑9394(14)70787‑19262546
    [Google Scholar]
  96. PaiC.Y. HsiehL.L. LeeT.C. YangS.B. LinvilleJ. ChouS.L. YangC.H. Mitochondrial DNA sequence alterations observed between blood and buccal cells within the same individuals having betel quid (BQ)-chewing habit.Forensic Sci. Int.20061562-312413010.1016/j.forsciint.2004.12.02116410162
    [Google Scholar]
  97. ClaeysK.G. AbichtA. HäuslerM. KleinleS. WiesmannM. SchulzJ.B. HorvathR. WeisJ. Novel genetic and neuropathological insights in neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP).Muscle Nerve201654232833310.1002/mus.2512527015314
    [Google Scholar]
  98. AltmannJ. BüchnerB. Nadaj-PaklezaA. SchäferJ. JacksonS. LehmannD. DeschauerM. KopajtichR. LautenschlägerR. KuhnK.A. KarleK. SchölsL. SchulzJ.B. WeisJ. ProkischH. KornblumC. ClaeysK.G. KlopstockT. Expanded phenotypic spectrum of the m.8344A>G “MERRF” mutation: data from the German mitoNET registry.J. Neurol.2016263596197210.1007/s00415‑016‑8086‑326995359
    [Google Scholar]
  99. KärppäM. KytövuoriL. SaariM. MajamaaK. Mutation m.15923A>G in the MT-TT gene causes mild myopathy – case report of an adult-onset phenotype.BMC Neurol.201818114910.1186/s12883‑018‑1159‑430236074
    [Google Scholar]
  100. KytövuoriL. KärppäM. TuominenH. UusimaaJ. SaariM. HinttalaR. MajamaaK. Case report: a novel frameshift mutation in the mitochondrial cytochrome c oxidase II gene causing mitochondrial disorder.BMC Neurol.20171719610.1186/s12883‑017‑0883‑528521807
    [Google Scholar]
  101. KärppäM. SyrjäläP. TolonenU. MajamaaK. Peripheral neuropathy in patients with the 3243A>G mutation in mitochondrial DNA.J. Neurol.2003250221622110.1007/s00415‑003‑0981‑812574954
    [Google Scholar]
  102. SchlapakowE. PeevaV. ZsurkaG. JeubM. WabbelsB. KornblumC. KunzW.S. Distinct segregation of the pathogenic m.5667G>A mitochondrial tRNAAsn mutation in extraocular and skeletal muscle in chronic progressive external ophthalmoplegia.Neuromuscul. Disord.201929535836710.1016/j.nmd.2019.02.00930962064
    [Google Scholar]
  103. LitvinovaN.A. VoronkovaA.S. NikolaevaE.A. SukhorukovV.S. Tissue-specific features of mitochondrial DNA polymorphisms.Rossiyskiy Vestnik Perinatologii i Pediatrii.201557678[in Russian].
    [Google Scholar]
  104. SinyovV.V. SazonovaM.A. RyzhkovaA.I. GalitsynaE.V. MelnichenkoA.A. PostnovA.Y. OrekhovA.N. GrechkoA.V. SobeninI.A. Potential use of buccal epithelium for genetic diagnosis of atherosclerosis using mtDNA mutations.Vessel Plus20172017114515010.20517/2574‑1209.2016.04
    [Google Scholar]
  105. ArthurC.R. MortonS.L. DunhamL.D. KeeneyP.M. BennettJ.P.Jr. Parkinson’s disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance.Mol. Neurodegener.2009413710.1186/1750‑1326‑4‑3719775436
    [Google Scholar]
  106. KamiyaJ. AokiY. Associations between hyperglycaemia and somatic transversion mutations in mitochondrial DNA of people with diabetes mellitus.Diabetologia200346111559156610.1007/s00125‑003‑1215‑414530862
    [Google Scholar]
  107. WangW. WangX. New potentials of mitochondrial DNA editing.Cell Biol. Toxicol.202036539139310.1007/s10565‑020‑09549‑x32734362
    [Google Scholar]
  108. ZhangH. BurrS.P. ChinneryP.F. The mitochondrial DNA genetic bottleneck: inheritance and beyond.Essays Biochem.201862322523410.1042/EBC2017009629880721
    [Google Scholar]
  109. SazonovaM.A. RyzhkovaA.I. SinyovV.V. GalitsynaE.V. MelnichenkoA.A. DemakovaN.A. SobeninI.A. ShkuratT.P. OrekhovA.N. Mitochondrial genome mutations associated with myocardial infarction.Dis. Markers201820181974945710.1155/2018/974945729670672
    [Google Scholar]
  110. OrekhovA.N. IvanovaE.A. MarkinA.M. NikiforovN.G. SobeninI.A. Genetics of arterial-wall-specific mechanisms in atherosclerosis: focus on mitochondrial mutations.Curr. Atheroscler. Rep.202022105410.1007/s11883‑020‑00873‑532772280
    [Google Scholar]
  111. PereiraC.V. GitschlagB.L. PatelM.R. Cellular mechanisms of mtDNA heteroplasmy dynamics.Crit. Rev. Biochem. Mol. Biol.202156551052510.1080/10409238.2021.193481234120542
    [Google Scholar]
  112. HoltA.G. DaviesA.M. A comparison of mtDNA deletion mutant proliferation mechanisms.J. Theor. Biol.2022551-55211124410.1016/j.jtbi.2022.11124435973607
    [Google Scholar]
  113. AryamanJ. BowlesC. JonesN.S. JohnstonI.G. Mitochondrial network state scales mtDNA genetic dynamics.Genetics201921241429144310.1534/genetics.119.30242331253641
    [Google Scholar]
  114. BrockmannS.J. BuckE. CasoliT. MeirellesJ.L. RufW.P. FabbiettiP. HolzmannK. WeishauptJ.H. LudolphA.C. ContiF. DanzerK.M. Mitochondrial genome study in blood of maternally inherited ALS cases.Hum. Genomics20231717010.1186/s40246‑023‑00516‑137507754
    [Google Scholar]
  115. MaedaH. KamiD. MaedaR. ShikumaA. GojoS. Generation of somatic mitochondrial DNA-replaced cells for mitochondrial dysfunction treatment.Sci. Rep.20211111089710.1038/s41598‑021‑90316‑134035362
    [Google Scholar]
  116. SharbroughJ. BankersL. CookE. FieldsP.D. JalinskyJ. McElroyK.E. NeimanM. LogsdonJ.M.Jr. BooreJ.L. Single-molecule sequencing of an animal mitochondrial genome reveals chloroplast-like architecture and repeat-mediated recombination.Mol. Biol. Evol.2023401msad00710.1093/molbev/msad00736625177
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673296881240816065357
Loading
/content/journals/cmc/10.2174/0109298673296881240816065357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test