Skip to content
2000
Volume 32, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background/Aim

The global pandemic caused by the novel SARS-CoV-2 virus underscores the urgent need for therapeutic interventions. Targeting the virus's main protease (Mpro), crucial for viral replication, is a promising strategy.

Objective

The current study aims to discover novel inhibitors of Mpro.

Methods

The current study identified five natural compounds (myrrhanol B (), myrrhanone B (), catechin (), quercetin (), and feralolide () with strong inhibitory potential against Mpro through virtual screening and computational methods, predicting their binding efficiencies and validated it using the inhibition activity. The selected compound's toxicity was examined using the MTT assay on a human BJ cell line.

Results

Compound exhibited the highest binding affinity, with a docking score of -9.82 kcal/mol and strong hydrogen bond interactions within Mpro's active site. A microscale molecular dynamics simulation confirmed the stability and tight fit of the compounds in the protein's active pocket, showing superior binding interactions. assays validated their inhibitory effects, with having the most significant potency (IC = 2.85 µM). The non-toxic nature of these compounds in human BJ cell lines was also confirmed, advocating their safety profile.

Conclusion

These findings highlight the effectiveness of combining computational and experimental approaches to identify potential lead compounds for SARS-CoV-2, with emerging as promising candidates for further drug development against this virus.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673292839240329081008
2024-04-05
2025-09-11
Loading full text...

Full text loading...

References

  1. HeF. DengY. LiW. Coronavirus disease 2019: What we know?J. Med. Virol.202092771972510.1002/jmv.2576632170865
    [Google Scholar]
  2. GilbertG.L. Commentary: SARS, MERS and COVID-19-new threats; Old lessons.Int. J. Epidemiol.202049372672810.1093/ije/dyaa06132361759
    [Google Scholar]
  3. BhattH. Should COVID-19 mother breastfeed her newborn child? A literature review on the safety of breastfeeding for pregnant women with COVID-19.Curr. Nutr. Rep.2021101717510.1007/s13668‑020‑00343‑z33394459
    [Google Scholar]
  4. LiY.C. BaiW.Z. HashikawaT. The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients.J. Med. Virol.202092655255510.1002/jmv.2572832104915
    [Google Scholar]
  5. FanelliD. PiazzaF. Analysis and forecast of COVID-19 spreading in China, Italy and France.Chaos Solitons Fractals202013410976110.1016/j.chaos.2020.10976132308258
    [Google Scholar]
  6. KimD. LeeJ.Y. YangJ.S. KimJ.W. KimV.N. ChangH. The architecture of SARS-CoV-2 transcriptome.Cell20201814914921.e1010.1016/j.cell.2020.04.01132330414
    [Google Scholar]
  7. ZengW. LiuG. MaH. ZhaoD. YangY. LiuM. MohammedA. ZhaoC. YangY. XieJ. DingC. MaX. WengJ. GaoY. HeH. JinT. Biochemical characterization of SARS-CoV-2 nucleocapsid protein.Biochem. Biophys. Res. Commun.2020527361862310.1016/j.bbrc.2020.04.13632416961
    [Google Scholar]
  8. RohaimM. A. El NaggarR. F. ClaytonE. MunirM. Structural and functional insights into non-structural proteins of coronaviruses.Microb. Pathog.202115010464110.1016/j.micpath.2020.104641
    [Google Scholar]
  9. WHO COVID-19 dashboard.2020Available from: https://covid19.who.int/ (accessed 5th April 2023).
  10. TadesseS. MuluyeW. The impact of COVID-19 pandemic on education system in developing countries: A review.Open J. Social Sci.202081015917010.4236/jss.2020.810011
    [Google Scholar]
  11. NdwandweD. WiysongeC.S. COVID-19 vaccines.Curr. Opin. Immunol.20217111111610.1016/j.coi.2021.07.00334330017
    [Google Scholar]
  12. KimJ.H. MarksF. ClemensJ.D. Looking beyond COVID-19 vaccine phase 3 trials.Nat. Med.202127220521110.1038/s41591‑021‑01230‑y33469205
    [Google Scholar]
  13. Şi̇mşek YavuzS. Komşuoğlu Çeli̇kyurtİ. An update of anti-viral treatment of COVID-19.Turk. J. Med. Sci.202151SI-13372339010.3906/sag‑2106‑25034391321
    [Google Scholar]
  14. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132010.1038/s41580‑021‑00418‑x34611326
    [Google Scholar]
  15. MengistH.M. DilnessaT. JinT. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease.Front Chem.2021962289810.3389/fchem.2021.62289833889562
    [Google Scholar]
  16. MahdiM. MótyánJ.A. SzojkaZ.I. GoldaM. MicziM. TőzsérJ. Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2 main protease.Virol. J.202017119010.1186/s12985‑020‑01457‑033243253
    [Google Scholar]
  17. VangeelL. ChiuW. De JongheS. MaesP. SlechtenB. RaymenantsJ. AndréE. LeyssenP. NeytsJ. JochmansD. Remdesivir, molnupiravir and nirmatrelvir remain active against SARS-CoV-2 omicron and other variants of concern.Antiviral Res.202219810525210.1016/j.antiviral.2022.10525235085683
    [Google Scholar]
  18. Dai, W.; Zhang, B .; Jiang, X.-M.; Su, H.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Chen, X.; Cen, X.; Hu, X.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Xu, Y.; Yang, H.; Liu, H. Structure-Based Design, Synthesis and Biological Evaluation of Peptidomimetic Aldehydes as a Novel Series of Antiviral Drug Candidates Targeting the SARS-CoV-2 Main Protease. BioRxiv, 2020.10.1101/2020.03.25.996348
  19. HooperA. MacdonaldJ.D. ReillyB. MawJ. WirrickA.P. HanS.H. LindseyA.A. RicoE.G. RomighT. GoinsC.M. SARS-CoV-2 3CL-protease inhibitors derived from ML300: Investigation of P1 and replacements of the 1,2,3-benzotriazole. Res. Med. Chem.20233271383139010.21203/rs.3.rs‑2880312/v1
    [Google Scholar]
  20. JoS. KimS. KimD.Y. KimM.S. ShinD.H. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro.J. Enzyme Inhib. Med. Chem.20203511539154410.1080/14756366.2020.180167232746637
    [Google Scholar]
  21. GaoK. WangR. ChenJ. TepeJ.J. HuangF. WeiG.W. Perspectives on SARS-CoV-2 main protease inhibitors.J. Med. Chem.20216423169221695510.1021/acs.jmedchem.1c0040934798775
    [Google Scholar]
  22. dos Santos NascimentoI.J. da Silva-JúniorE.F. de AquinoT.M. Molecular modeling targeting transmembrane serine protease 2 (TMPRSS2) as an alternative drug target against coronaviruses.Curr. Drug Targets202223324025910.2174/138945012266621080909090934370633
    [Google Scholar]
  23. dos Santos NascimentoI.J. de MouraR.O. Would the development of a multitarget inhibitor of 3CLpro and TMPRSS2 be promising in the fight against SARS-CoV-2?Med. Chem.202319540541210.2174/157340641866622101109343936221875
    [Google Scholar]
  24. WaqasM. UllahS. HalimS.A. RehmanN.U. AliA. JanA. MuhsinahA.B. KhanA. Al-HarrasiA. Targeting papain-like protease by natural products as novel therapeutic potential SARS-CoV-2.Int. J. Biol. Macromol.202425812881210.1016/j.ijbiomac.2023.12881238114011
    [Google Scholar]
  25. HemaiswaryaS. KruthiventiA.K. DobleM. Synergism between natural products and antibiotics against infectious diseases.Phytomedicine200815863965210.1016/j.phymed.2008.06.00818599280
    [Google Scholar]
  26. ShahrajabianM.H. SunW. ShenH. ChengQ. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak.Acta Agric. Scand. B Soil Plant Sci.202070543744310.1080/09064710.2020.1763448
    [Google Scholar]
  27. HalimS.A. In silico prediction of novel inhibitors of SARS-CoV-2 main protease through structure-based virtual screening and molecular dynamic simulation.Pharmaceuticals 202314989610.3390/ph14090896
    [Google Scholar]
  28. FuL. F. YeF. FengY. YuF. WangQ. S. WuY. ZhaoC. SunH. HuangB. Y. NiuP. H. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease.Nat. Commun.2020111441710.1038/s41467‑020‑18233‑x
    [Google Scholar]
  29. Molecular Operating Environment (MOE),Chemical Computing Group ULC: 1010 Sherbooke St. West, Suite 910,Montreal, QC, Canada2022
    [Google Scholar]
  30. GerberP. R. MullerK. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry.J. Comput. Aided. Mol. Des. 20159325125810.1007/BF00124456
    [Google Scholar]
  31. Tools for Molecular Simulation. 2022. Available from: https://ambermd.org/
  32. TianC. KasavajhalaK. BelfonK.A.A. RaguetteL. HuangH. MiguesA.N. BickelJ. WangY. PincayJ. WuQ. SimmerlingC. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution.J. Chem. Theory Comput.202016152855210.1021/acs.jctc.9b0059131714766
    [Google Scholar]
  33. VassettiD. PagliaiM. ProcacciP. Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules.J. Chem. Theory Comput.20191531983199510.1021/acs.jctc.8b0103930694667
    [Google Scholar]
  34. JakalianA. BushB.L. JackD.B. BaylyC.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method.J. Comput. Chem.200021213214610.1002/(SICI)1096‑987X(20000130)21:2<132::AID‑JCC5>3.0.CO;2‑P
    [Google Scholar]
  35. WangJ. WangW. KollmanP.A. CaseD.A. Antechamber: An accessory software package for molecular mechanical calculations.J. Am. Chem. Soc.20012221p.2001
    [Google Scholar]
  36. Salomon-FerrerR. GötzA.W. PooleD. Le GrandS. WalkerR.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald.J. Chem. Theory Comput.2013993878388810.1021/ct400314y26592383
    [Google Scholar]
  37. ZiegelE. Numerical recipes: The art of scientific computing.Taylor & Francis1987501502
    [Google Scholar]
  38. SindhikaraD.J. KimS. VoterA.F. RoitbergA.E. Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules.J. Chem. Theory Comput.2009561624163110.1021/ct800573m26609854
    [Google Scholar]
  39. KräutlerV. Van GunsterenW.F. HünenbergerP.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations.J. Comput. Chem.200122550150810.1002/1096‑987X(20010415)22:5<501::AID‑JCC1021>3.0.CO;2‑V
    [Google Scholar]
  40. RoeD.R. CheathamT.E.III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data.J. Chem. Theory Comput.2013973084309510.1021/ct400341p26583988
    [Google Scholar]
  41. WeiserJ. ShenkinP.S. StillW.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO).J. Comput. Chem.199920221723010.1002/(SICI)1096‑987X(19990130)20:2<217::AID‑JCC4>3.0.CO;2‑A
    [Google Scholar]
  42. Santos NascimentoI.J. AquinoT.M. Silva-JúniorE.F. Repurposing FDA-approved drugs targeting SARS-CoV2 3CLpro: A study by applying virtual screening, molecular dynamics, MM-PBSA calculations and Covalent docking.Lett. Drug Des. Discov.202219763765310.2174/1570180819666220106110133
    [Google Scholar]
  43. de BarrosW.A. NunesC.S. SouzaJ.A.C.R. NascimentoI.J.S. FigueiredoI.M. de AquinoT.M. VieiraL. FariasD. SantosJ.C.C. de FátimaÂ. The new psychoactive substances 25H-NBOMe and 25H-NBOH induce abnormal development in the zebrafish embryo and interact in the DNA major groove.Current Research in Toxicology2021238639810.1016/j.crtox.2021.11.00234888530
    [Google Scholar]
  44. WenJ. ScolesD.R. FacelliJ.C. Molecular dynamics analysis of the aggregation propensity of polyglutamine segments.PLoS One2017125e017833310.1371/journal.pone.017833328542401
    [Google Scholar]
  45. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.103293625835573
    [Google Scholar]
  46. OnufrievA. BashfordD. CaseD.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model.Proteins200455238339410.1002/prot.2003315048829
    [Google Scholar]
  47. KhamtoN. UtamaK. TateingS. SangthongP. RithchumponP. CheechanaN. SaiaiA. SemakulN. PunyodomW. MeepowpanP. Discovery of natural bisbenzylisoquinoline analogs from the library of thai traditional plants as SARS-CoV-2 3CLpro inhibitors: In silico molecular docking, molecular dynamics, and in vitro enzymatic activity.J. Chem. Inf. Model.20236372104212110.1021/acs.jcim.2c0130936647612
    [Google Scholar]
  48. Blender - a 3D modelling and rendering package. 2018. Available from: https://manpages.ubuntu.com/manpages/xenial/en/man1/blender.1.html
  49. SwiftM.L. GraphPad prism, data analysis, and scientific graphing.J. Chem. Inf. Comput. Sci.199737241141210.1021/ci960402j
    [Google Scholar]
  50. KhanA. GulR. RehmanN.U. KhanH. KarimN. HalimS.A. AhmedS. Al-HarrasiA. Myrrhanone B and Myrrhanol B from resin of Commipohora mukul exhibit hepatoprotective effects in vivo.Biomed. Pharmacother.202114311213110.1016/j.biopha.2021.11213134560545
    [Google Scholar]
  51. RehmanN.U. HussainH. KhanH.Y. CsukR. AbbasG. GreenI.R. Al-HarrasiA. A norterpenoid and tripenoids from Commiphora mukul : Isolation and biological activity.Z. Naturforsch. B. J. Chem. Sci.2017721111510.1515/znb‑2016‑0062
    [Google Scholar]
  52. Ur RehmanN. HalimS.A. KhanM. HussainH. Yar KhanH. KhanA. AbbasG. RafiqK. Al-HarrasiA. Antiproliferative and carbonic anhydrase II inhibitory potential of chemical constituents from Lycium shawii and Aloe vera: Evidence from in silico target fishing and in vitro testing.Pharmaceuticals20201359410.3390/ph1305009432414030
    [Google Scholar]
  53. ZorM. AydinS. GünerN.D. BaşaranN. BaşaranA.A. Antigenotoxic properties of Paliurus spina-christi Mill fruits and their active compounds.BMC Complement. Altern. Med.201717122910.1186/s12906‑017‑1732‑128446228
    [Google Scholar]
  54. RehmanN.U. HussainH. AliL. KhanA. MaboodF. ShinwariZ.K. HussainJ. Al-HarrasiA. Chemical constituents of Acridocarpus orientalis and their chemotaxonomic significance.Chem. Nat. Compd.201955358658810.1007/s10600‑019‑02752‑1
    [Google Scholar]
  55. SinhaR. GadhwalM. JoshiU. SrivastavaS. GovilG. Modifying effect of quercetin on model biomembranes: Studied by molecular dynamic simulation, DSC and NMR.Int. J. Curr. Pharm. Res.2012417079
    [Google Scholar]
  56. RehmanN.U. HussainH. KhiatM. KhanH.Y. AbbasG. GreenI.R. Al-HarrasiA. Bioactive chemical constituents from the resin of Aloe vera.Z. Naturforsch. B. J. Chem. Sci.2017721295595810.1515/znb‑2017‑0117
    [Google Scholar]
  57. SperanzaG. ManittoP. Cassara’P. MontiD. Feralolide, a dihydroisocoumarin from cape aloe.Phytochemistry199333117517810.1016/0031‑9422(93)85417‑P
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673292839240329081008
Loading
/content/journals/cmc/10.2174/0109298673292839240329081008
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test