Skip to content
2000
Volume 32, Issue 14
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aim

Providing insights into the chemoresistance of esophageal squamous cell carcinoma (ESCC) and its dependence on chemotherapy-induced autophagy.

Background

Autophagy is induced during chemotherapy of cancer cells, promoting resistance to anti-cancer treatments.

Objective

The objective of this study is to investigate the modulation of microRNA-30a (miR-30a), a known regulator of autophagy, in ESCC cells by all-trans retinoic acid (ATRA).

Methods

Treatment involved ESCC cells KYSE-30 and TE8 with cis-dichloro-diamine platinum (CDDP), enriching CDDP-surviving cells (CDDP-SCs). qRT-PCR and dual luciferase reporter assay (DLRA) were employed to evaluate miR-30a expression and its interaction with Beclin-1 (BECN1) in both CDDP-SCs and those treated with ATRA.

Results

Chemotherapy using CDDP led to a significant decrease in miR-30a expression within ESCC cells. Increased autophagy levels were identified in cancer cells exhibiting stem cell-like properties, characterized by the overexpression of specific stem cell markers. These results suggest that the downregulation of miR-30a induced by CDDP treatment may represent a potential underlying mechanism for increased autophagic activity, as evidenced by the upregulation of autophagy-related proteins, such as BECN1 and an elevated LC3-II/LC3-I ratio. ATRA treatment elevated miR-30a expression and disrupted hallmark cancer stem cell (CSC) features in ESCC cells. Further investigations demonstrated that increased miR-30a expression led to a reduction in the expression of its target gene, BECN1, and attenuated BECN1-mediated autophagy. This resulted in an augmentation of CDDP-induced apoptosis in ESCC cells and a G2/M cell cycle arrest.

Conclusion

CDDP chemotherapy reduced miR-30a, promoting ESCC cell resistance through autophagy and CSC-like features, a process that may be modulated by ATRA.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673285341231226111553
2024-01-29
2025-10-08
Loading full text...

Full text loading...

References

  1. ThenE.O. LopezM. SaleemS. GayamV. SunkaraT. CullifordA. GaduputiV. Esophageal cancer: An updated surveillance epidemiology and end results database analysis.World J. Oncol.2020112556410.14740/wjon125432284773
    [Google Scholar]
  2. HaradaK. RogersJ.E. IwatsukiM. YamashitaK. BabaH. AjaniJ.A. Recent advances in treating oesophageal cancer.F1000 Res.20209118910.12688/f1000research.22926.133042518
    [Google Scholar]
  3. ChenW. LiD. BianX. WuY. XuM. WuM. TaoM. Peripheral blood markers predictive of progression-free survival in advanced esophageal squamous cell carcinoma patients treated with PD-1 inhibitors plus chemotherapy as first-line therapy.Nutr. Cancer202375120721810.1080/01635581.2022.212353336190755
    [Google Scholar]
  4. LiuY. AoX. JiG. ZhangY. YuW. WangJ. Mechanisms of action and clinical implications of microRNAs in the drug resistance of gastric cancer.Front. Oncol.20211176891810.3389/fonc.2021.76891834912714
    [Google Scholar]
  5. ZhuY. LiuK. DingD. ZhouY. PengL. Pembrolizumab plus chemotherapy as first-line treatment for advanced esophageal cancer: A cost-effectiveness analysis.Adv. Ther.20223962614262910.1007/s12325‑022‑02101‑935394255
    [Google Scholar]
  6. BrownY. HuaS. TanwarP.S. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance.Int. J. Biochem. Cell Biol.20191099010410.1016/j.biocel.2019.02.00230743057
    [Google Scholar]
  7. AtashzarM.R. BaharlouR. KaramiJ. AbdollahiH. RezaeiR. PourramezanF. Zoljalali MoghaddamS.H. Cancer stem cells: A review from origin to therapeutic implications.J. Cell. Physiol.2020235279080310.1002/jcp.2904431286518
    [Google Scholar]
  8. WuQ. WuZ. BaoC. LiW. HeH. SunY. ChenZ. ZhangH. NingZ. Cancer stem cells in esophageal squamous cell cancer (Review).Oncol. Lett.20191855022503210.3892/ol.2019.1090031612013
    [Google Scholar]
  9. ShuvalovO. DaksA. FedorovaO. PetukhovA. BarlevN. Linking metabolic reprogramming, plasticity and tumor progression.Cancers202113476210.3390/cancers1304076233673109
    [Google Scholar]
  10. Chavez-DominguezR. Perez-MedinaM. Lopez-GonzalezJ.S. Galicia-VelascoM. Aguilar-CazaresD. The double-edge sword of autophagy in cancer: From tumor suppression to pro-tumor activity.Front. Oncol.20201057841810.3389/fonc.2020.57841833117715
    [Google Scholar]
  11. DasC.K. BanerjeeI. MandalM. Pro-survival autophagy: An emerging candidate of tumor progression through maintaining hallmarks of cancer.Semin. Cancer202066597410.1016/j.semcancer.2019.08.02031430557
    [Google Scholar]
  12. ZhaoY. WangZ. ZhangW. ZhangL. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes.Biofactors201945684485610.1002/biof.155531418958
    [Google Scholar]
  13. ChenQ. HouJ. WuZ. ZhaoJ. MaD. miR-145 Regulates the sensitivity of esophageal squamous cell carcinoma cells to 5-FU via targeting REV3L.Pathol. Res. Pract.2019215715242710.1016/j.prp.2019.04.01931072625
    [Google Scholar]
  14. Al-GazallyM.E. KhanR. ImranM. Ramírez-CoronelA.A. AlshahraniS.H. AltalbawyF.M.A. Turki JalilA. Romero-ParraR.M. ZabibahR.S. Shahid IqbalM. KarampoorS. MirzaeiR. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver.Int. Immunopharmacol.202312311071310.1016/j.intimp.2023.11071337523968
    [Google Scholar]
  15. PanG. LiuY. ShangL. ZhouF. YangS. EMT-associated microRNAs and their roles in cancer stemness and drug resistance.Cancer Commun.202141319921710.1002/cac2.1213833506604
    [Google Scholar]
  16. YuX. JiangX. LiH. GuoL. JiangW. LuS.H. miR-203 inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1.Stem Cells Dev.201423657658510.1089/scd.2013.030824219349
    [Google Scholar]
  17. KanthajeS. BaikunjeN. KandalI. RatnacaramC.K. Repertoires of MicroRNA-30 family as gate-keepers in lung cancer.Front. Biosci.202113214115610.52586/S55834879467
    [Google Scholar]
  18. HuaX. ChuH. WangC. ShiX. WangA. ZhangZ. Targeting USP22 with miR-30-5p to inhibit the hypoxia-induced expression of PD-L1 in lung adenocarcinoma cells.Oncol. Rep.202146421510.3892/or.2021.816634396448
    [Google Scholar]
  19. FanY. BianX. QianP. WenJ. YanP. LuoY. WuJ. ZhangQ. MiRNA-30a-3p inhibits metastasis and enhances radiosensitivity in esophageal carcinoma by targeting insulin-like growth factor 1 receptor.Mol. Med. Rep.2019201819410.3892/mmr.2019.1022231115568
    [Google Scholar]
  20. ZhouL. JiaS. DingG. ZhangM. YuW. WuZ. CaoL. Down-regulation of miR-30a-5p is associated with poor prognosis and promotes chemoresistance of gemcitabine in pancreatic ductal adenocarcinoma.J. Cancer201910215031504010.7150/jca.3119131602254
    [Google Scholar]
  21. LimaL. de MeloT.C.T. MarquesD. de AraújoJ.N.G. LeiteI.S.F. AlvesC.X. GenreJ. SilbigerV.N. Modulation of all-trans retinoic acid-induced MiRNA expression in neoplastic cell lines: A systematic review.BMC Cancer201919186610.1186/s12885‑019‑6081‑731470825
    [Google Scholar]
  22. Gholikhani-DarbroudR. MicroRNA and retinoic acid.Clin. Chim. Acta2020502152410.1016/j.cca.2019.12.00331812758
    [Google Scholar]
  23. ZhuH. WuH. LiuX. LiB. ChenY. RenX. LiuC.G. YangJ.M. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells.Autophagy20095681682310.4161/auto.906419535919
    [Google Scholar]
  24. BasuS. DongY. KumarR. JeterC. TangD.G. Slow cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis, Seminars in cancer biology.Semin. Cancer Biol.20229010310.1016/j.semcancer.2021.04.02133979674PMC8576068
    [Google Scholar]
  25. Kasimir-BauerS. HoffmannO. WallwienerD. KimmigR. FehmT. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells.Breast Cancer Res.2012141R1510.1186/bcr309922264265
    [Google Scholar]
  26. AkkocY. PekerN. AkcayA. GozuacikD. Autophagy and cancer dormancy.Front. Oncol.20211162702310.3389/fonc.2021.62702333816262
    [Google Scholar]
  27. StamenkovicM. JanjetovicK. PaunovicV. CiricD. Kravic-StevovicT. TrajkovicV. Comparative analysis of cell death mechanisms induced by lysosomal autophagy inhibitors.Eur. J. Pharmacol.201985917254010.1016/j.ejphar.2019.17254031310755
    [Google Scholar]
  28. ZhouC. FanN. LiuF. FangN. PlumP.S. ThiemeR. GockelI. GromnitzaS. HillmerA.M. ChonS.H. SchlösserH.A. BrunsC.J. ZhaoY. Linking cancer stem cell plasticity to therapeutic resistance-mechanism and novel therapeutic strategies in esophageal cancer.Cells202096148110.3390/cells906148132560537
    [Google Scholar]
  29. RezayatmandH. RazmkhahM. Razeghian-JahromiI. Drug resistance in cancer therapy: The Pandora’s Box of cancer stem cells.Stem Cell Res. Ther.202213118110.1186/s13287‑022‑02856‑635505363
    [Google Scholar]
  30. ZaarourR.F. AzakirB. HajamE.Y. NawaflehH. ZeinelabdinN.A. EngelsenA.S.T. ThieryJ. JamoraC. ChouaibS. Role of hypoxia-mediated autophagy in tumor cell death and survival.Cancers202113353310.3390/cancers1303053333573362
    [Google Scholar]
  31. SaboowalaH. Understanding “AUTOPHAGY”-A Lysosomal Degradation Pathway, essential for Survival, Differentiation, Development & Homeostasis, Dr.Hakim Saboowalahttps://books.google.com.pk/books/about/Understanding_AUTOPHAGY_A_Lysosomal_Degr.html?id=ZsH4DwAAQBAJ&source=kp_book_description&redir_esc=y 2020170
    [Google Scholar]
  32. WangD. GuoH. YangH. WangD. GaoP. WeiW. Pterostilbene, an active constituent of blueberries, suppresses proliferation potential of human cholangiocarcinoma via enhancing the autophagic flux.Front. Pharmacol.201910123810.3389/fphar.2019.0123831695612
    [Google Scholar]
  33. LoizzoD. PandolfoS.D. RogersD. CerratoC. di MeoN.A. AutorinoR. MironeV. FerroM. PortaC. StellaA. BizzocaC. VincentiL. SpilotrosM. RutiglianoM. BattagliaM. DitonnoP. LucarelliG. Novel insights into autophagy and prostate cancer: A comprehensive review.Int. J. Mol. Sci.2022237382610.3390/ijms2307382635409187
    [Google Scholar]
  34. WangX. LeeJ. XieC. Autophagy regulation on cancer stem cell maintenance, metastasis, and therapy resistance.Cancers202214238110.3390/cancers1402038135053542
    [Google Scholar]
  35. GongC. BauvyC. TonelliG. YueW. DeloménieC. NicolasV. ZhuY. DomergueV. Marin-EstebanV. TharingerH. DelbosL. Gary-GouyH. MorelA-P. GhavamiS. SongE. CodognoP. MehrpourM. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells.Oncogene2013321822612272, 1-1110.1038/onc.2012.25222733132
    [Google Scholar]
  36. VodickaP. AnderaL. OpattovaA. VodickovaL. The interactions of DNA repair, telomere homeostasis, and p53 mutational status in solid cancers: Risk, prognosis, and prediction.Cancers (Basel)202113347910.3390/cancers1303047933513745
    [Google Scholar]
  37. TsunedomiR. YoshimuraK. SuzukiN. HazamaS. NaganoH. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact.Surg. Today202050121560157710.1007/s00595‑020‑01968‑x32025858
    [Google Scholar]
  38. MajcB. SeverT. ZarićM. BreznikB. TurkB. LahT.T. Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment.Biochim. Biophys. Acta Mol. Cell Res.202018671011878210.1016/j.bbamcr.2020.11878232554164
    [Google Scholar]
  39. KhanS.U. RayeesS. SharmaP. MalikF. Targeting redox regulation and autophagy systems in cancer stem cells.Clin. Exp. Med.20222351405142310.1007/s10238‑022‑00955‑536473988
    [Google Scholar]
  40. XuH.D. QinZ.H. Beclin, 1. Bcl-2 and Autophagy.Adv. Exp. Med. Biol.201910912610.1007/978‑981‑15‑0602‑4_531776982
    [Google Scholar]
  41. GlabJ.A. CaoZ. PuthalakathH. Bcl-2 family proteins, beyond the veil.Int. Rev. Cell Mol. Biol.202035112210.1016/bs.ircmb.2019.12.00132247577
    [Google Scholar]
  42. SiW. ShenJ. ZhengH. FanW. The role and mechanisms of action of microRNAs in cancer drug resistance.Clin. Epigenetics20191112510.1186/s13148‑018‑0587‑830744689
    [Google Scholar]
  43. CuiJ. GongM. FangS. HuC. WangY. ZhangJ. TangN. HeY. All-trans retinoic acid reverses malignant biological behavior of hepatocarcinoma cells by regulating miR-200 family members.Genes Dis.20218450952010.1016/j.gendis.2019.12.01234179313
    [Google Scholar]
  44. LiuD. ZhongL. YuanZ. YaoJ. ZhongP. LiuJ. YaoS. ZhaoY. LiuL. ChenM. LiL. LiuB. miR-382-5p modulates the ATRA-induced differentiation of acute promyelocytic leukemia by targeting tumor suppressor PTEN.Cell. Signal.2019541910.1016/j.cellsig.2018.11.01230453015
    [Google Scholar]
  45. HeH. LiD. TianY. WeiQ. AmevorF.K. SunC. YuC. YangC. DuH. JiangX. MaM. CuiC. ZhangZ. TianK. ZhangY. ZhuQ. YinH. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1.J. Anim. Sci. Biotechnol.20221315510.1186/s40104‑022‑00697‑035410457
    [Google Scholar]
  46. TanP. WangH. ZhanJ. MaX. CuiX. WangY. WangY. ZhongJ. LiuY. Rapamycin-induced miR-30a downregulation inhibits senescence of VSMCs by targeting Beclin1.Int. J. Mol. Med.20194331311132010.3892/ijmm.2019.407430747228
    [Google Scholar]
  47. KhanS. WallD. CurranC. NewellJ. KerinM.J. DwyerR.M. MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid.BMC Cancer201515134510.1186/s12885‑015‑1374‑y25934412
    [Google Scholar]
  48. MeseguerS. EscamillaJ.-M. BarettinoD. miRNAsasEssential mediators of theactions of retinoic acid in neuroblastoma cells.Neuroblastoma201324710.5772/55444
    [Google Scholar]
  49. WangL-L. ZhangX-H. ZhangX. ChuJ-K. MiR-30a increases cisplatin sensitivity of gastric cancer cells through suppressing epithelial-to-mesenchymal transition (EMT).Eur. Rev. Med. Pharmacol. Sci.20162091733173927212164
    [Google Scholar]
  50. De AngelisM. FrancescangeliF. ZeunerA. Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities.Cancers20191110156910.3390/cancers1110156931619007
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673285341231226111553
Loading
/content/journals/cmc/10.2174/0109298673285341231226111553
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ATRA; Autophagy; BECN1; CDDP; CSC; MiR-30a
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test