Skip to content
2000
Volume 32, Issue 16
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Nucleotide analogs known as acyclic and cyclic nucleoside phosphonates (ANPs and CNPs, respectively) have a variety of biological properties, including antibacterial, antiviral, antiparasitic, antineoplastic, and immunomodulatory. A strong reaction that has emerged in the last several decades has fundamentally changed our knowledge of the chemistry of nucleoside phosphonates. In particular, Olefin cross-metathesis (CM) has been a potent and practical synthesis route to produce functionalized olefins from essential alkene precursors. This review describes recent synthesis examples of ANPs and CNPs analogs using the Ru-catalyzed olefin cross-metathesis reactions. Olefin cross-metathesis reactions are performed in the olefinic parts of nucleoside and phosphonate produced by Grubbs, Hoveyda-Grubbs, and Nolan. This review presents a synthetic overview of a few chosen nucleosides with biological significance. Their biological activity results are briefly discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673280546240106123000
2025-05-01
2026-01-12
Loading full text...

Full text loading...

References

  1. CalderonN. ChenH.Y. ScottK.W. Olefin metathesis - A novel reaction for skeletal transformations of unsaturated hydrocarbons.Tetrahedron Lett.19678343327332910.1016/S0040‑4039(01)89881‑6
    [Google Scholar]
  2. MartinW. BlechertS. Ring closing metathesis in the synthesis of biologically interesting peptidomimetics, sugars and alkaloids.Curr. Top. Med. Chem.20055151521154010.2174/156802605775009757 16378490
    [Google Scholar]
  3. MadsenR. Synthetic strategies for converting carbohydrates into carbocycles by the use of olefin metathesis.Eur. J. Org. Chem.20072007339941510.1002/ejoc.200600614
    [Google Scholar]
  4. JoaquinP. GomezA.M. LopezJ.C. Synthesis of carbasugars based on ring closing metathesis: 2000-2006.Mini Rev. Org. Chem.20074320121610.2174/157019307781369931
    [Google Scholar]
  5. KothaS. DipakM.K. Strategies and tactics in olefin metathesis.Tetrahedron201268239742110.1016/j.tet.2011.10.018
    [Google Scholar]
  6. BelovD.S. TejedaG. BukhryakovK.V. Olefin mrtathesis by first-low transition metals.ChemPlusChem202186692493710.1002/cplu.202100192 34160903
    [Google Scholar]
  7. CopéretC. BerksonZ.J. ChanK.W. de Jesus SilvaJ. GordonC.P. PucinoM. ZhizhkoP.A. Olefin metathesis: What have we learned about homogeneous and heterogeneous catalysts from surface organometallic chemistry?Chem. Sci.20211293092311510.1039/D0SC06880B 34164078
    [Google Scholar]
  8. BlackwellH.E. O’LearyD.J. ChatterjeeA.K. WashenfelderR.A. BussmannD.A. GrubbsR.H. New approaches to olefin cross-metathesis.J. Am. Chem. Soc.20001221587110.1021/ja993063u
    [Google Scholar]
  9. VernallA.J. AbellA.D. Cross metathesis of nitrogen-containing systems.Aldrichim Acta200336393105
    [Google Scholar]
  10. ConnonS.J. BlechertS. Recent developments in olefin cross-metathesis.Angew. Chem. Int. Ed.200342171900192310.1002/anie.200200556 12730969
    [Google Scholar]
  11. PedersonR.L. FellowsI.M. UngT.A. IshiharaH. HajelaS.P. Applications of olefin cross metathesis to commercial products.Adv. Synth. Catal.20023446-772873510.1002/1615‑4169(200208)344:6/7<728:AID‑ADSC728>3.0.CO;2‑4
    [Google Scholar]
  12. ChatterjeeA.K. ChoiT.L. SandersD.P. GrubbsR.H. A general model for selectivity in olefin cross metathesis.J. Am. Chem. Soc.200312537113601137010.1021/ja0214882 16220959
    [Google Scholar]
  13. DeclercqE. The acyclic nucleoside phosphonates from inception to clinical use: Historical perspective.Antiviral Res.200775111310.1016/j.antiviral.2006.10.006 17116336
    [Google Scholar]
  14. ClercqE.D. HolýA. Acyclic nucleoside phosphonates: A key class of antiviral drugs.Nat. Rev. Drug Discov.200541192894010.1038/nrd1877 16264436
    [Google Scholar]
  15. HolyA. Phosphonomethoxyalkyl analogs of nucleotides.Curr. Pharm. Des.20039312567259210.2174/1381612033453668 14529543
    [Google Scholar]
  16. ShenG.H. HongJ.H. Chemical synthesis of acyclic nucleoside phosphonate analogs linked with cyclic systems between the phosphonate and the base moieties.Curr. Med. Chem.202027355918594810.2174/0929867326666190620100217 31250746
    [Google Scholar]
  17. TeránD. Acyclic nucleoside phosphonates as possible chemotherapeutics against Trypanosoma brucei.Drug Discov. Today20202561043105310.1016/j.drudis.2020.02.008 32135205
    [Google Scholar]
  18. KrečmerováM. MajerP. RaisR. SlusherB.S. Phosphonates and phosphonate prodrugs in medicinal chemistry: Past successes and future prospects.Front Chem.20221010.3389.
    [Google Scholar]
  19. HockováD. JanebaZ. NaesensL. EdsteinM.D. ChavchichM. KeoughD.T. GuddatL.W. Antimalarial activity of prodrugs of N-branched acyclic nucleoside phosphonate inhibitors of 6-oxopurine phosphoribosyltransferases.Bioorg. Med. Chem.201523175502551010.1016/j.bmc.2015.07.038 26275679
    [Google Scholar]
  20. KaiserM.M. BaszczyňskiO. HockováD. Poštová-SlavětínskáL. DračínskýM. KeoughD.T. GuddatL.W. JanebaZ. Acyclic nucleoside phosphonates containing 9‐deazahypoxanthine and a five‐membered heterocycle as selective inhibitors of plasmodial 6‐oxopurine phosphoribosyltransferases.ChemMedChem201712141133114110.1002/cmdc.201700293 28628279
    [Google Scholar]
  21. KaiserM.M. HockováD. WangT.H. DračínskýM. Poštová-SlavětínskáL. ProcházkováE. EdsteinM.D. ChavchichM. KeoughD.T. GuddatL.W. JanebaZ. Synthesis and evaluation of novel acyclic nucleoside phosphonates as inhibitors of plasmodium falciparum and human 6‐oxopurine phosphoribosyltransferases.ChemMedChem201510101707172310.1002/cmdc.201500322 26368337
    [Google Scholar]
  22. JanebaZ. HockováD. The role of acyclic nucleoside phosphonates as potential antimalarials.Chem. Listy20141084335343
    [Google Scholar]
  23. ŠpačekP. KeoughD.T. ChavchichM. DračínskýM. JanebaZ. NaesensL. EdsteinM.D. GuddatL.W. HockováD. Synthesis and evaluation of symmetric acyclic nucleoside bisphosphonates as inhibitors of the Plasmodium falciparum, Plasmodium vivax and human 6-oxopurine phosphoribosyltransferases and the antimalarial activity of their prodrugs.Bioorg. Med. Chem.201725154008403010.1016/j.bmc.2017.05.048 28601510
    [Google Scholar]
  24. HazletonK.Z. HoM.C. CasseraM.B. ClinchK. CrumpD.R. RosarioI.Jr MerinoE.F. AlmoS.C. TylerP.C. SchrammV.L. Acyclic immucillin phosphonates: second-generation inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase.Chem. Biol.201219672173010.1016/j.chembiol.2012.04.012 22726686
    [Google Scholar]
  25. KeoughD.T. HockováD. HolýA. NaesensL.M.J. Skinner-AdamsT.S. JerseyJ. GuddatL.W. Inhibition of hypoxanthine-guanine phosphoribosyltransferase by acyclic nucleoside phosphonates: A new class of antimalarial therapeutics.J. Med. Chem.200952144391439910.1021/jm900267n 19527031
    [Google Scholar]
  26. EngW.S. HockováD. ŠpačekP. BaszczyňskiO. JanebaZ. NaesensL. KeoughD.T. GuddatL.W. Crystal structures of acyclic nucleoside phosphonates in complex with Escherichia coli hypoxanthine phosphoribosyltransferase.ChemistrySelect20161196267627610.1002/slct.201601679
    [Google Scholar]
  27. BřehováP. ŠmídkováM. SkácelJ. DračínskýM. Mertlíková-KaiserováH. VelasquezM.P.S. WattsV.J. JanebaZ. Design and synthesis of fluorescent acyclic nucleoside phosphonates as potent inhibitors of bacterial adenylate cyclases.ChemMedChem201611222534254610.1002/cmdc.201600439 27775243
    [Google Scholar]
  28. ČesnekM. JansaP. ŠmídkováM. Mertlíková-KaiserováH. DračínskýM. BrustT.F. PávekP. TrejtnarF. WattsV.J. JanebaZ. Bisamidate prodrugs of 2‐substituted 9‐[2‐(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as selective inhibitors of adenylate cyclase toxin from bordetella pertussis.ChemMedChem20151081351136410.1002/cmdc.201500183 26136378
    [Google Scholar]
  29. SerpiM. FerrariV. PertusatiF. Nucleoside derived antibiotics to fight microbial drug resistance: New utilities for an established class of drugs?J. Med. Chem.20165923103431038210.1021/acs.jmedchem.6b00325 27607900
    [Google Scholar]
  30. EngW.S. HockováD. ŠpačekP. JanebaZ. WestN.P. WoodsK. NaesensL.M.J. KeoughD.T. GuddatL.W. First crystal structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase: Complexes with gmp and pyrophosphate and with acyclic nucleoside phosphonates whose prodrugs have antituberculosis activity.J. Med. Chem.201558114822483810.1021/acs.jmedchem.5b00611 25915781
    [Google Scholar]
  31. KeitaM. KumarA. DaliB. MegnassanE. SiddiqiM.I. FrecerV. MiertusS. Quantitative structure–activity relationships and design of thymine-like inhibitors of thymidine monophosphate kinase of Mycobacterium tuberculosis with favourable pharmacokinetic profiles.RSC Advances2014499558535586610.1039/C4RA06917J
    [Google Scholar]
  32. De ClercqE. Acyclic nucleoside phosphonates: Past, present and future.Biochem. Pharmacol.200773791192210.1016/j.bcp.2006.09.014 17045247
    [Google Scholar]
  33. BalzariniJ. PannecouqueC. De ClercqE. AquaroS. PernoC.F. EgberinkH. HolýA. Antiretrovirus activity of a novel class of acyclic pyrimidine nucleoside phosphonates.Antimicrob. Agents Chemother.20024672185219310.1128/AAC.46.7.2185‑2193.2002 12069973
    [Google Scholar]
  34. De ClercqE. LiG. Approved antiviral drugs over the past 50 years.Clin. Microbiol. Rev.201629369574710.1128/CMR.00102‑15 27281742
    [Google Scholar]
  35. NiuH.Y. DuC. XieM.S. WangY. ZhangQ. QuG.R. GuoH.M. Diversity-oriented synthesis of acyclic nucleosides via ring-opening of vinyl cyclopropanes with purines.Chem. Commun.201551163328333110.1039/C4CC09844G 25572827
    [Google Scholar]
  36. WeiT. XieM.S. QuG.R. NiuH.Y. GuoH.M. A new strategy to construct acyclic nucleosides via Ag(I)-catalyzed addition of pronucleophiles to 9-allenyl-9H-purines.Org. Lett.201416390090310.1021/ol4036566 24437554
    [Google Scholar]
  37. ZhangQ. MaB.W. WangQ.Q. WangX.X. HuX. XieM.S. QuG.R. GuoH.M. The synthesis of tenofovir and its analogues via asymmetric transfer hydrogenation.Org. Lett.20141672014201710.1021/ol500583d 24650095
    [Google Scholar]
  38. ZhangQ. GuoH-M. MaB-W. HuangY-Z. WangQ.Q. WangX-X. QuG-R. Efficient synthesis of purine derivatives by one-pot three-component mannich type reaction.Heterocycles201387102081209110.3987/COM‑13‑12793
    [Google Scholar]
  39. De ClercqE. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates. The magic of the phosphonate bond.Biochem. Pharmacol.20118229910910.1016/j.bcp.2011.03.027 21501598
    [Google Scholar]
  40. De ClercqE. Antiviral drug discovery: Ten more compounds, and ten more stories (part B).Med. Res. Rev.200929457161010.1002/med.20149 19219846
    [Google Scholar]
  41. De ClercqE. The acyclic nucleoside phosphonates (ANPs): Antonín Holý’s legacy.Med. Res. Rev.20133361278130310.1002/med.21283 23568857
    [Google Scholar]
  42. ShenG.H. HongJ.H. Recent advances in the synthesis of 5′-deoxynucleoside phosphonate analogs.Curr. Med. Chem.202229223857392110.2174/0929867328666211111162447 34766884
    [Google Scholar]
  43. WuT. FroeyenM. KempeneersV. PannecouqueC. WangJ. BussonR. De ClercqE. HerdewijnP. Deoxythreosyl phosphonate nucleosides as selective anti-HIV agents.J. Am. Chem. Soc.2005127145056506510.1021/ja043045z 15810840
    [Google Scholar]
  44. KohY. ShimJ.H. WuJ.Z. ZhongW. HongZ. GirardetJ.L. Design, synthesis, and antiviral activity of adenosine 5′-phosphonate analogues as chain terminators against hepatitis C virus.J. Med. Chem.20054882867287510.1021/jm049029u 15828825
    [Google Scholar]
  45. KimC.U. LuhB.Y. MiscoP.F. BronsonJ.J. HitchcockM.J.M. GhazzouliI. MartinJ.C. Acyclic purine phosphonate analogs as antiviral agents. Synthesis and structure-activity relationships.J. Med. Chem.19903341207121310.1021/jm00166a019 2157012
    [Google Scholar]
  46. D’ErricoS. BorboneN. CatalanottiB. SecondoA. PetrozzielloT. PiccialliI. PannaccioneA. CostantinoV. MayolL. PiccialliG. OlivieroG. Synthesis and biological evaluation of a new structural simplified analogue of cadpr, a calcium-mobilizing secondary messenger firstly isolated from sea urchin eggs.Mar. Drugs2018163898910.3390/md16030089 29534435
    [Google Scholar]
  47. AgrofoglioL. NolanS. Olefin metathesis route to antiviral nucleosides.Curr. Top. Med. Chem.20055151541155810.2174/156802605775009739 16378491
    [Google Scholar]
  48. AmblardF. NolanS.P. SchinaziR.F. AgrofoglioL.A. Efficient synthesis of various acycloalkenyl derivatives of pyrimidine using cross-metathesis and Pd(0) methodologies.Tetrahedron200561353754410.1016/j.tet.2004.11.019
    [Google Scholar]
  49. RoyV. KumamotoH. Berteina-RaboinS. NolanS.P. TopalisD. Deville-BonneD. BalzariniJ. NeytsJ. AndreiG. SnoeckR. AgrofoglioL.A. Cross-metathesis mediated synthesis of new acyclic nucleoside phosphonates.Nucleosides Nucleotides Nucleic Acids20072610-121399140210.1080/15257770701534196 18066791
    [Google Scholar]
  50. TopalisD. PradèreU. RoyV. CaillatC. AzzouziA. BroggiJ. SnoeckR. AndreiG. LinJ. ErikssonS. AlexandreJ.A.C. El-AmriC. Deville-BonneD. MeyerP. BalzariniJ. AgrofoglioL.A. Novel antiviral C5-substituted pyrimidine acyclic nucleoside phosphonates selected as human thymidylate kinase substrates.J. Med. Chem.201154122223210.1021/jm1011462 21128666
    [Google Scholar]
  51. KumamotoH. TopalisD. BroggiJ. PradèreU. RoyV. Berteina-RaboinS. NolanS.P. Deville-BonneD. AndreiG. SnoeckR. GarinD. CranceJ.M. AgrofoglioL.A. Preparation of acyclo nucleoside phosphonate analogues based on cross-metathesis.Tetrahedron200864163517352610.1016/j.tet.2008.01.140
    [Google Scholar]
  52. CruickshankK.A. JiricnyJ. ReeseC.B. The benzoylation of uracil and thymine.Tetrahedron Lett.198425668168410.1016/S0040‑4039(00)99971‑4
    [Google Scholar]
  53. VepsäläinenJ.J. Bisphosphonate prodrugs: A new synthetic strategy to tetraacyloxymethyl esters of methylenebisphosphonates.Tetrahedron Lett.199940488491849310.1016/S0040‑4039(99)01799‑2
    [Google Scholar]
  54. MontaguA. PradéreU. RoyV. NolanS.P. AgrofoglioL.A. Expeditious convergent procedure for the preparation of bis(POC) prodrugs of new (E)-4-phosphono-but-2-en-1-yl nucleosides.Tetrahedron201167295319532810.1016/j.tet.2011.05.017
    [Google Scholar]
  55. JonesA.S. VerhelstG. WalkerR.T. The synthesis of the potent antiherpes virus agent, E-5(2-bromovinyl)-2′-deoxyuridine and related compounds.Tetrahedron Lett.197920454415441810.1016/S0040‑4039(01)86605‑3
    [Google Scholar]
  56. BellinaF. ColziF. ManninaL. RossiR. VielS. Reaction of alkynes with iodine monochloride revisited.J. Org. Chem.20036826101751017710.1021/jo035372f 14682720
    [Google Scholar]
  57. HeasleyV.L. BuczalaD.M. ChappellA.E. HillD.J. WhisenandJ.M. ShellhamerD.F. Addition of bromine chloride and iodine monochloride to carbonyl-conjugated, acetylenic ketones: synthesis and mechanisms.J. Org. Chem.20026772183218710.1021/jo011031v 11925226
    [Google Scholar]
  58. RobinsM.J. BarrP.J. Nucleic acid related compounds. 39. Efficient conversion of 5-iodo to 5-alkynyl and derived 5-substituted uracil bases and nucleosides.J. Org. Chem.198348111854186210.1021/jo00159a012
    [Google Scholar]
  59. RobinsM.J. BarrP.J. Nucleic acid related compounds. 31. Smooth and efficient palladium-copper catalyzed coupling of terminal alkynes with 5-iodouracil nucleosides.Tetrahedron Lett.198122542142410.1016/0040‑4039(81)80115‑3
    [Google Scholar]
  60. BoedaF. ClavierH. NolanS.P. Ruthenium–indenylidene complexes: Powerful tools for metathesis transformations.Chem. Commun.2008242726274010.1039/b718287b 18688294
    [Google Scholar]
  61. HuangJ. StevensE.D. NolanS.P. PetersenJ.L. Olefin metathesis-active ruthenium complexes bearing a nucleophilic carbene ligand.J. Am. Chem. Soc.1999121122674267810.1021/ja9831352
    [Google Scholar]
  62. BessièresM. De SchutterC. RoyV. AgofoglioL.A. Olefin cross-metathesis for the synthesis of alkenyl acyclonucleoside phosphonates.Curr. Protoc. Nucleic Acid Chem.201459111.11710.1002/0471142700.nc1411s5925501590
    [Google Scholar]
  63. SariO. HamadaM. RoyV. NolanS.P. AgrofoglioL.A. The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis.Org. Lett.201315174390439310.1021/ol401922r 23961760
    [Google Scholar]
  64. PradereU. ClavierH. RoyV. NolanS.P. AgrofoglioL.A. The shortest strategy for generating phosphonate prodrugs by olefin cross‐metathesis – application to acyclonucleoside phosphonates.Eur. J. Med. Chem.20113673247330
    [Google Scholar]
  65. AzzouzM. SorianoS. Escudero-CasaoM. MatheuM.I. CastillónS. DíazY. Palladium-catalyzed allylic amination: A powerful tool for the enantioselective synthesis of acyclic nucleoside phosphonates.Org. Biomol. Chem.201715347227723410.1039/C7OB01478C 28816328
    [Google Scholar]
  66. AndreaP. GiampaoloG. IvanaP. MariolinoC. GiammarioN. A practical and efficient approach to pna monomers compatible with fmoc-mediated solid-phase synthesis protocols.Eur. J. Org. Chem.20083457865797
    [Google Scholar]
  67. HansonP.R. StoianovaD.S. Ring closing metathesis reactions on a phosphonate template.Tetrahedron Lett.199839233939394210.1016/S0040‑4039(98)00728‑X
    [Google Scholar]
  68. HansonP.R. StoianovaD.S. Ring-closing metathesis strategy to P-heterocycles.Tetrahedron Lett.199940173297330010.1016/S0040‑4039(99)00479‑7
    [Google Scholar]
  69. BujardM. GouverneurV. MioskowskiC. A highly efficient and practical synthesis of cyclic phosphinates using ring-closing metathesis.J. Org. Chem.19996462119212310.1021/jo981795j 11674310
    [Google Scholar]
  70. TomiokaT. YabeY. TakahashiT. SimmonsT.K. DIBAL-mediated reductive transformation of trans-dimethyl tartrate acetonide into ε-hydroxy α,β-unsaturated ester and its derivatives.J. Org. Chem.201176114669467410.1021/jo200019j 21526866
    [Google Scholar]
  71. BessièresM. HervinV. RoyV. ChartierA. SnoeckR. AndreiG. LohierJ.F. AgrofoglioL.A. Highly convergent synthesis and antiviral activity of (E)-but-2-enyl nucleoside phosphonoamidates.Eur. J. Med. Chem.201814667868610.1016/j.ejmech.2018.01.086 29407990
    [Google Scholar]
  72. Hernández-ReyesC.X. Angeles-BeltránD. Lomas-RomeroL. González-ZamoraE. GaviñoR. CárdenasJ. Morales-SernaJ.A. Negrón-SilvaG.E. Synthesis of azanucleosides through regioselective ring-opening of epoxides catalyzed by sulphated zirconia under microwave and solvent-free conditions.Molecules20121733359336910.3390/molecules17033359 22421790
    [Google Scholar]
  73. BessièresM. RoyV. AgrofoglioL.A. A convenient, highly selective and eco-friendly N-Boc protection of pyrimidines under microwave irradiation.RSC Advances20144104597475974910.1039/C4RA13033B
    [Google Scholar]
  74. SikoraD. NonasT. GajdaT. O-Ethyl 1-azidoalkylphosphonic acids-versatile reagents for the synthesis of protected phosphonamidate peptides.Tetrahedron20015781619162510.1016/S0040‑4020(00)01143‑1
    [Google Scholar]
  75. SchollM. DingS. LeeC.W. GrubbsR.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands.Org. Lett.19991695395610.1021/ol990909q 10823227
    [Google Scholar]
  76. GarberS.B. KingsburyJ.S. GrayB.L. HoveydaA.H. Efficient and recyclable monomeric and dendritic ru-based metathesis catalysts.J. Am. Chem. Soc.2000122348168817910.1021/ja001179g
    [Google Scholar]
  77. EttariR. MicaleN. SchirmeisterT. GelhausC. LeippeM. NiziE. Di FrancescoM.E. GrassoS. ZappalàM. Novel peptidomimetics containing a vinyl ester moiety as highly potent and selective falcipain-2 inhibitors.J. Med. Chem.20095272157216010.1021/jm900047j 19296600
    [Google Scholar]
  78. YangQ. XiaoW.J. YuZ. Lewis acid assisted ring-closing metathesis of chiral diallylamines: an efficient approach to enantiopure pyrrolidine derivatives.Org. Lett.20057587187410.1021/ol047356q 15727462
    [Google Scholar]
  79. GułajskiŁ. ŚledźP. LupaA. GrelaK. Olefin metathesis in water using acoustic emulsification.Green Chem.200810327127410.1039/b719493e
    [Google Scholar]
  80. LipshutzB.H. GhoraiS. Olefin metathesis in water and aqueous media.Green Chem.2014152317233810.1002/9781118711613.ch21
    [Google Scholar]
  81. PileggiE. SerpiM. AndreiG. ScholsD. SnoeckR. PertusatiF. Expedient synthesis and biological evaluation of alkenyl acyclic nucleoside phosphonate prodrugs.Bioorg. Med. Chem.201826123596360910.1016/j.bmc.2018.05.034 29880251
    [Google Scholar]
  82. BessièresM. SariO. RoyV. WarszyckiD. BojarskiA.J. NolanS.P. SnoeckR. AndreiG. SchinaziR.F. AgrofoglioL.A. Sonication-Assisted Synthesis of (E) -2-Methyl-but-2-enyl nucleoside phosphonate prodrugs.ChemistrySelect20161123108311310.1002/slct.201600879
    [Google Scholar]
  83. WheelerP. PhillipsJ.H. PedersonR.L. Scalable methods for the removal of ruthenium impurities from metathesis reaction mixtures.Org. Process Res. Dev.20162071182119010.1021/acs.oprd.6b00138
    [Google Scholar]
  84. AbuduainiT. RoyV. MarletJ. Gaudy-GraffinC. BrandD. BarontiC. TouretF. CoutardB. McBrayerT.R. SchinaziR.F. AgrofoglioL.A. Synthesis and antiviral evaluation of (1,4-Disubstituted-1,2,3-Triazol)-(E)-2-Methyl-but-2-enyl nucleoside phosphonate prodrugs.Molecules2021265149310.3390/molecules26051493 33803417
    [Google Scholar]
  85. TornøeC.W. ChristensenC. MeldalM. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.J. Org. Chem.20026793057306410.1021/jo011148j 11975567
    [Google Scholar]
  86. RostovtsevV.V. GreenL.G. FokinV.V. SharplessK.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596:AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  87. ZhengH. McDonaldR. HallD.G. Boronic acid catalysis for mild and selective [3+2] dipolar cycloadditions to unsaturated carboxylic acids.Chemistry201016185454546010.1002/chem.200903484 20373314
    [Google Scholar]
  88. BiteauN.G. RoyV. LambryJ.C. BeckerH.F. MyllykallioH. AgrofoglioL.A. Synthesis of acyclic nucleoside phosphonates targeting flavin-dependent thymidylate synthase in Mycobacterium tuberculosis.Bioorg. Med. Chem.20214611635110.1016/j.bmc.2021.116351 34391120
    [Google Scholar]
  89. McKennaC.E. HigaM.T. CheungN.H. McKennaM.C. The facile dealkylation of phosphonic acid dialkyl esters by bromotrimethylsilane.Tetrahedron Lett.197718215515810.1016/S0040‑4039(01)92575‑4
    [Google Scholar]
  90. NomuraR. TabeiJ. MasudaT. Effect of side chain structure on the conformation of Poly(N-propargylalkylamide).Macromolecules20023582955296110.1021/ma0117155
    [Google Scholar]
  91. AgrofoglioL.A. GillaizeauI. SaitoY. Palladium-assisted routes to nucleosides.Chem. Rev.200310351875191610.1021/cr010374q 12744695
    [Google Scholar]
  92. KöglerM. BussonR. De JongheS. RozenskiJ. Van BelleK. LouatT. Munier-LehmannH. HerdewijnP. Synthesis and evaluation of 6-aza-2′-deoxyuridine monophosphate analogs as inhibitors of thymidylate synthases, and as substrates or inhibitors of thymidine monophosphate kinase in Mycobacterium tuberculosis.Chem. Biodivers.20129353655610.1002/cbdv.201100285 22422522
    [Google Scholar]
  93. JoharM. ManningT. TseC. DesrochesN. AgrawalB. KunimotoD.Y. KumarR. Growth inhibition of Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium in vitro: effect of 1-β-D-2′-arabinofuranosyl and 1-(2′-deoxy-2′-fluoro-β-D-2′-ribofuranosyl) pyrimidine nucleoside analogs.J. Med. Chem.200750153696370510.1021/jm0703901 17602465
    [Google Scholar]
  94. ParchinaA. FroeyenM. MargamuljanaL. RozenskiJ. De JongheS. BriersY. LavigneR. HerdewijnP. LescrinierE. Discovery of an acyclic nucleoside phosphonate that inhibits Mycobacterium tuberculosis ThyX based on the binding mode of a 5-alkynyl substrate analogue.ChemMedChem2013881373138310.1002/cmdc.201300146 23836539
    [Google Scholar]
  95. BleackleyR.C. JonesA.S. WalkerR.T. Incorporation of 5-substituted uracil derivatives into nucleic acids-III.Tetrahedron197632222795279710.1016/0040‑4020(76)80125‑1
    [Google Scholar]
  96. KrasovskiyA. KoppF. KnochelP. Soluble lanthanide salts (LnCl3.2LiCl) for the improved addition of organomagnesium reagents to carbonyl compounds.Angew. Chem. Int. Ed.200645349750010.1002/anie.200502485 16397856
    [Google Scholar]
  97. FangW.P. ChengY.T. ChengY.R. CherngY.J. Synthesis of substituted uracils by the reactions of halouracils with selenium, sulfur, oxygen and nitrogen nucleophiles under focused microwave irradiation.Tetrahedron200561123107311310.1016/j.tet.2005.01.085
    [Google Scholar]
  98. KlejchT. KeoughD.T. KingG. DoleželováE. ČesnekM. BuděšínskýM. ZíkováA. JanebaZ. GuddatL.W. HockováD. Stereo-defined acyclic nucleoside phosphonates are selective and potent inhibitors of parasite 6-oxopurine phosphoribosyltransferases.J. Med. Chem.20226554030405710.1021/acs.jmedchem.1c01881 35175749
    [Google Scholar]
  99. BalaK. HailesH.C. Nitrile oxide 1,3-dipolar cycloadditions in water: Novel isoxazoline and cyclophane synthesis.Synthesis20051934233427
    [Google Scholar]
  100. KeoughD.T. RejmanD. PohlR. ZborníkováE. HockováD. CrollT. EdsteinM.D. BirrellG.W. ChavchichM. NaesensL.M.J. PierensG.K. BreretonI.M. GuddatL.W. Design of Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase inhibitors as Potential antimalarial therapeutics.ACS Chem. Biol.2018131829010.1021/acschembio.7b00916 29161011
    [Google Scholar]
  101. KlejchT. PohlR. JanebaZ. SunM. KeoughD.T. GuddatL.W. HockováD. Acyclic nucleoside phosphonates with unnatural nucleobases, favipiravir and allopurinol, designed as potential inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases.Tetrahedron201874405886589710.1016/j.tet.2018.08.014
    [Google Scholar]
  102. PorchedduA. GiacomelliG. PireddaI. CartaM. NiedduG. A practical and efficient approach to pna monomers compatible with fmoc‐mediated solid‐phase synthesis protocols.Eur. J. Org. Chem.20082008345786579710.1002/ejoc.200800891
    [Google Scholar]
  103. KrawczykH. WąsekK. KędziaJ. A Novel Approach to γ-Hydroxy-α,β-unsaturated Compounds.Synthesis20082008203299330610.1055/s‑0028‑1083162
    [Google Scholar]
  104. KlejchT. KeoughD.T. ChavchichM. TravisJ. SkácelJ. PohlR. JanebaZ. EdsteinM.D. AveryV.M. GuddatL.W. HockováD. Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation.Eur. J. Med. Chem.201918311166710.1016/j.ejmech.2019.111667 31536893
    [Google Scholar]
  105. DaleJ.A. MosherH.S. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and. alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters.J. Am. Chem. Soc.197395251251910.1021/ja00783a034
    [Google Scholar]
  106. HuangQ. HerdewijnP. Synthesis of (E)-3′-phosphonoal-] kenyl modified nucleoside phosphonates via a highly stereoselective olefin cross-metathesis reaction.J. Org. Chem.201176103742375310.1021/jo200033p 21462931
    [Google Scholar]
  107. MoravcováJ. ČapkováJ. StaněkJ. One-pot synthesis of 1,2-O-isopropylidene-α-d-xylofuranose.Carbohydr. Res.19942631616610.1016/0008‑6215(94)00165‑0
    [Google Scholar]
  108. Cruz-GregorioS. HernandezL. VargasM. QuinteroL. Sartillo-PiscilF. J. Mex. Chem. Soc.2005492023
    [Google Scholar]
  109. Hernández-GarcíaL. QuinteroL. SánchezM. Sartillo-PiscilF. Beneficial effect of internal hydrogen bonding interactions on the β-fragmentation of primary alkoxyl radicals. Two-step conversion of D-xylo- and D-ribofuranoses into L-threose and D-erythrose, respectively.J. Org. Chem.200772228196820110.1021/jo0709551 17900138
    [Google Scholar]
  110. JinD.Z. KwonS.H. MoonH.R. GunagaP. KimH.O. KimD.K. ChunM.W. JeongL.S. Synthesis of d - and l -apio nucleo-side analogues with 2′-hydroxyl group as potential anti-HIV agents.Bioorg. Med. Chem.20041251101110910.1016/j.bmc.2003.12.002 14980622
    [Google Scholar]
  111. BenderS.L. MoffettK.K. Organocerium additions to 2′-deoxy-3′-ketonucleosides.J. Org. Chem.19925761646164710.1021/jo00032a008
    [Google Scholar]
  112. Harry-O’kuruR.E. SmithJ.M. WolfeM.S. ShortA. A short, flexible route toward 2‘- c -branched ribonucleosides.J. Org. Chem.19976261754175910.1021/jo961893+
    [Google Scholar]
  113. ShenG.H. KangL. KimE. HongJ.H. Synthesis of novel 3′-hydroxymethyl 5′-deoxythreosyl phosphonic acid nucleoside analogues as potent antiviral agents.Nucleosides Nucleotides Nucleic Acids2012311072073510.1080/15257770.2012.724134 23067124
    [Google Scholar]
  114. KoO.H. HongJ.H. Efficient synthesis of novel carbocyclic nucleosides via sequential Claisen rearrangement and ring-closing metathesis.Tetrahedron Lett.200243366399640210.1016/S0040‑4039(02)01384‑9
    [Google Scholar]
  115. HockováD. HolýA. MasojídkováM. KeoughD.T. JerseyJ. GuddatL.W. Synthesis of branched 9-[2-(2-phosphonoethoxy)ethyl]purines as a new class of acyclic nucleoside phosphonates which inhibit Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase.Bioorg. Med. Chem.200917176218623210.1016/j.bmc.2009.07.044 19666228
    [Google Scholar]
  116. RobinsM.J. UznanskiB. Non-aqueous diazotization with t-butyl nitrite. introduction of fluorine, chlorine, and bromine at C-2 of purine nucleoside.Can. J. Chem.198159172608261110.1139/v81‑375
    [Google Scholar]
  117. TongG.L. RyanK.J. LeeW.W. ActonE.M. GoodmanL. Nucleosides of thioguanine and other 2-amino-6-substituted purines from 2-acetamido-5-chloropurine.J. Org. Chem.196732385986210.1021/jo01278a095 6042133
    [Google Scholar]
  118. ShenG.H. KangL. KimE.A. LeeW.J. HongJ.H. Synthesis and conformation of novel 3′-branched threosyl-5′-deoxyphosphonic acid nucleoside analogues.Bull. Korean Chem. Soc.20123382574258010.5012/bkcs.2012.33.8.2574
    [Google Scholar]
  119. HongJ.H. Synthesis of novel 2′-methyl carbovir analogues as potent antiviral agents.Arch. Pharm. Res.200730213113710.1007/BF02977684 17366731
    [Google Scholar]
  120. YangY.Y. MengW.D. QingF.L. Synthesis of 2′,3′-dideoxy-6′,6′-difluorocarbocyclic nucleosides.Org. Lett.20046234257425910.1021/ol0482947 15524457
    [Google Scholar]
  121. MancusoA.J. HuangS.L. SwernD. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride.J. Org. Chem.197843122480248210.1021/jo00406a041
    [Google Scholar]
  122. MaryanoffB.E. ReitzA.B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects.Chem. Rev.198989486392710.1021/cr00094a007
    [Google Scholar]
  123. TanakaM. NorimineY. FujitaT. SuemuneH. SakaiK. Chemoenzymatic synthesis of antiviral carbocyclic nucleosides: Asymmetric hydrolysis of meso -3,5-bis (acetoxymethyl) cyclopentenes using rhizopus delemar lipase.J. Org. Chem.199661206952695710.1021/jo9608230 11667592
    [Google Scholar]
  124. LiuL.J. KimS.W. LeeW.J. HongJ.H. Selective ring-opening fluorination of epoxide: an efficient synthesis of 2′-c-fluoro-2′-c-methyl carbocyclic nucleosides.Bull. Korean Chem. Soc.200930122989299210.5012/bkcs.2009.30.12.2989
    [Google Scholar]
  125. ChongY. GuminaG. ChuC.K. A divergent synthesis of d - and l -carbocyclic 4′-fluoro-2′,3′-dideoxynucleosides as potential antiviral agents.Tetrahedron Asymmetry200011244853487510.1016/S0957‑4166(00)00482‑1
    [Google Scholar]
  126. KimK.M. HongJ.H. Efficient electrophilic fluorination for the synthesis of novel 2′-fluoro-3′-methyl-5′-deoxyphosphonic acid apiosyl nucleoside analogues.Nucleosides Nucleotides Nucleic Acids2013321055557010.1080/15257770.2013.832774 24124689
    [Google Scholar]
  127. HongJ.H. KoO.H. Synthesis and antiviral evaluation of novel acyclic nucleosides.Bull. Korean Chem. Soc.20032491284128810.5012/bkcs.2003.24.9.1284
    [Google Scholar]
  128. McAteeJ.J. SchinaziR.F. LiottaD.C. A completely diastereoselective electrophilic fluorination of a chiral, noncarbohydrate sugar ring precursor: Application to the synthesis of several novel 2‘-fluoronucleosides.J. Org. Chem.19986372161216710.1021/jo9717898
    [Google Scholar]
  129. ShenG.H. HongJ.H. Synthesis of Novel 2′-Fluoro-5′-deoxyphosphonic Acids and Bis (SATE) adenine analogue as potent antiviral agents.Bull. Korean Chem. Soc.201334123621362810.5012/bkcs.2013.34.12.3621
    [Google Scholar]
  130. HongJ.H. KimH.O. MoonH.R. JeongL.S. Synthesis and antiviral activity of fluoro-substituted apio dideoxynucleosides.Arch. Pharm. Res.2001242959910.1007/BF02976474 11339639
    [Google Scholar]
  131. AmeyR.L. An alkoxyaryltrifluoroperiodinane. A stable heterocyclic derivative of pentacoordinated organoiodine (V).J. Am. Chem. Soc.1978100130030110.1021/ja00469a060
    [Google Scholar]
  132. AmeyR.L. MartinJ.C. Synthesis and reactions of stable alkoxyaryltrifluoroperiodinanes. A “tamed” analog of iodine pentafluoride for use in oxidations of amines, alcohols, and other species.J. Am. Chem. Soc.1979101185294529910.1021/ja00512a030
    [Google Scholar]
  133. LefebvreI. PérigaudC. PomponA. AubertinA.M. GirardetJ.L. KirnA. GosselinG. ImbachJ.L. Mononucleoside phosphotriester derivatives with S-acyl-2-thioethyl bioreversible phosphate-protecting groups: intracellular delivery of 3′-azido-2′,3′-dideoxythymidine 5′-monophosphate.J. Med. Chem.199538203941395010.1021/jm00020a007 7562927
    [Google Scholar]
  134. PérigaudC. GosselinG. LefebvreI. GirardetJ.L. BenzariaS. BarberI. ImbachJ.L. Rational design for cytosolic delivery of nucleoside monphosphates: “SATE” and “DTE” as enzyme-labile transient phosphate protecting groups.Bioorg. Med. Chem. Lett.19933122521252610.1016/S0960‑894X(01)80709‑5
    [Google Scholar]
  135. ShenG.H. HongJ.H. Synthesis of novel 2′-spirocyclopropanoid 4′-deoxythreosyl phosphonic acid nucleoside analogues. Bull. Korean Chem.Soc.201334386887410.5012/bkcs.2013.34.3.868
    [Google Scholar]
  136. RuderS.M. RonaldR.C. 2-Chloroethyl dimethyl sulfonium iodide. A convenient reagent for spiroannelation of ketones.Tetrahedron Lett.198425485501550410.1016/S0040‑4039(01)81610‑5
    [Google Scholar]
  137. KigoshiH. ImamuraY. MizutaK. NiwaH. YamadaK. Total synthesis of natural (-)-ptaquilosin, the aglycon of a potent bracken carcinogen ptaquiloside and the (+)-enantiomer, and their DNA cleaving activities.J. Am. Chem. Soc.199311583056306510.1021/ja00061a003
    [Google Scholar]
  138. KimE. KimS. HongJ.H. Synthesis and antiretroviral activity of novel 4′-fluoro-5′-deoxyphosphonic acid carbocyclic nucleoside analogs.Nucleosides Nucleotides Nucleic Acids2014331067869510.1080/15257770.2014.920506 25222521
    [Google Scholar]
  139. KangL. KimE. ChoiE.J. YooJ.C. LeeW. HongJ.H. Synthesis and conformation of novel 4′-fluorinated 5′-deoxythreosyl phosphonic acid nucleosides as antiviral agents.Bull. Korean Chem. Soc.201233124007401410.5012/bkcs.2012.33.12.4007
    [Google Scholar]
  140. MarshallJ.A. Yi GungW. On the 1,3-isomerization of nonracemic α-(alkoxy) allylstannanes.Tetrahedron Lett.198930527349735210.1016/S0040‑4039(00)70694‑0
    [Google Scholar]
  141. KozikowskiA.P. WuJ.P. Protection of alcohols as their (p-methoxybenzyloxy) methyl ethers.Tetrahedron Lett.198728435125512810.1016/S0040‑4039(00)95608‑9
    [Google Scholar]
  142. WachtmeisterJ. ClassonB. SamuelssonB. KvarnströmI. Synthesis of 2′,3′-dideoxycyclo-2′-pentenyl-3′-C-hydro-] xymethyl carbocyclic nucleoside analogues as potential anti-viral agents.Tetrahedron19955172029203810.1016/0040‑4020(94)01067‑A
    [Google Scholar]
  143. CadetG. ChanC.S. DanielR.Y. DavisC.P. GuiadeenD. RodriguezG. ThomasT. WalcottS. ScheinerP. Ring-expanded nucleoside analogues. 1,3-dioxan-5-yl pyrimidines.J. Org. Chem.199863144574458010.1021/jo9715231
    [Google Scholar]
  144. DíazY. BravoF. CastillónS. Synthesis of purine and pyrimidine isodideoxynucleosides from (s)-glycydol using iodoetherification as key step. synthesis of (S,S)-iso-ddA.J. Org. Chem.199964176508651110.1021/jo990495e
    [Google Scholar]
  145. KimS. KimE. LeeW. Hee HongJ. Synthesis and antiviral evaluation of novel 4′-trifluoromethylated 5′-deoxyapiosyl nucleoside phosphonic acids.Nucleosides Nucleotides Nucleic Acids2014331274776610.1080/15257770.2014.938753 25372991
    [Google Scholar]
  146. AllmendingerT. LangR.W. Fluorine-containing organozinc reagents-VI. The preparation of α-Trifluorome-] thyl-α,β-unsaturated carboxylic acid esters.Tetrahedron Lett.199132333934010.1016/S0040‑4039(00)92622‑4
    [Google Scholar]
  147. ZhangX. QingF.L. YuY. Synthesis of 2‘,3‘-Dideoxy-2‘-trifluoromethylnucleosides from α-Trifluoromethyl-α,β-unsaturated Ester.J. Org. Chem.200065217075708210.1021/jo005520r 11031031
    [Google Scholar]
  148. WipfP. HenningerT.C. GeibS.J. Methyl- and (trifluoromethyl)alkene peptide isosteres: Synthesis and evaluation of their potential as β-turn promoters and peptide mimetics.J. Org. Chem.199863186088608910.1021/jo981057v 11672228
    [Google Scholar]
  149. JohnsonT.R. SilvermanR.B. Syntheses of (Z)- and (E)-4-amino-2-(trifluoromethyl)-2-butenoic acid and Their inactivation of γ-aminobutyric acid aminotransferase.Bioorg. Med. Chem.1999781625163610.1016/S0968‑0896(99)00091‑7 10482455
    [Google Scholar]
  150. KimH.O. SchinaziR.F. ShanmuganathanK. JeongL.S. BeachJ.W. NampalliS. CannonD.L. ChuC.K. L-.β.-(2S,4S)- and L-.alpha.-(2S,4R)-dioxolanyl nucleosides as potential anti-HIV agents: Asymmetric synthesis and structure-activity relationships.J. Med. Chem.199336551952810.1021/jm00057a001 8496934
    [Google Scholar]
  151. JeeJ.P. KimS. HongJ.H. Synthesis and anti-HIV activity of novel 4′-trifluoromethylated 5′-deoxycarbocyclic nucleoside phosphonic acids.Nucleosides Nucleotides Nucleic Acids201534962063810.1080/15257770.2015.1047028 26252631
    [Google Scholar]
  152. KimS. HongJ.H. Synthesis and biological evaluation of 9-deazaadenine 5′-deoxy-6′,6′-difluoro-carbocyclic c-nu-] cleoside phosphonic acid derivatives.Nucleosides Nucleotides Nucleic Acids2015341070872810.1080/15257770.2015.1071847 26467263
    [Google Scholar]
  153. ChoiM.H. KimH.D. Synthesis of novel carboacyclic nucleosides with vinyl bromide moiety as open-chain analogues of neplanocin A.Arch. Pharm. Res.2003261299099610.1007/BF02994747 14723329
    [Google Scholar]
  154. KimE. ShenG.H. HongJ.H. Design and synthesis of carbocyclic versions of furanoid nucleoside phosphonic Acid analogues as potential anti-hiv agents.Nucleosides Nucleotides Nucleic Acids2011301079881310.1080/15257770.2011.605781 21967290
    [Google Scholar]
  155. JeongL.S. LeeJ.A. Recent advances in the synthesis of the carbocyclic nucleosides as potential antiviral agents.Antivir. Chem. Chemother.200415523525010.1177/095632020401500502 15535045
    [Google Scholar]
  156. AmblardF. NolanS.P. AgrofoglioL.A. Metathesis strategy in nucleoside chemistry.Tetrahedron200561307067708010.1016/j.tet.2005.04.040
    [Google Scholar]
  157. DessD.B. MartinJ.C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species.J. Am. Chem. Soc.1991113197277728710.1021/ja00019a027
    [Google Scholar]
  158. ChunB.K. SongG.Y. ChuC.K. Stereocontrolled syntheses of carbocyclic C-nucleosides and related compounds.J. Org. Chem.200166144852485810.1021/jo010224f 11442416
    [Google Scholar]
  159. LimM.I. KleinR.S. Synthesis of “9-deazaadenosine”; A new cytotoxic C-nucleoside isostere of adenosine.Tetrahedron Lett.1981221252810.1016/0040‑4039(81)80031‑7
    [Google Scholar]
  160. KamathV.P. AnanthS. BantiaS. MorrisP.E.Jr Synthesis of a potent transition-state inhibitor of 5′-deoxy-5′-methylthioadenosine phosphorylase.J. Med. Chem.20044761322132410.1021/jm030455+ 14998321
    [Google Scholar]
  161. MarquezV.E. LimB.B. DriscollJ.S. SnoekR. BalzariniJ. IkedaS. AndreiG. De ClercqE. Cyclopentene carbocyclic nucleo-sides related to the antitumor nucleoside clitocine and their conversion to 8‐Aza‐neplanocin analogues. Synthesis and antiviral activity.J. Heterocycl. Chem.19933051393139810.1002/jhet.5570300536
    [Google Scholar]
  162. RaoK.V.B. RenW-Y. BurchenalJ.H. KleinR.S. Synthetic Modification at the 2′-Position of Pyrrolo[3,2-d]Pyrimidine and Thieno[3,2-d]Pyrimidine C-Nucleosides, Synthesis of “2′-Deoxy-9-Deazaadenosine” and of “9-Deaza ara-A”.Nucleosides Nucleotides1986553956910.1080/07328318608068696
    [Google Scholar]
  163. FischerG.A. Studies of the culture of leukemic cells in vitro.Ann. N. Y. Acad. Sci.195876367368010.1111/j.1749‑6632.1958.tb54884.x 13627893
    [Google Scholar]
  164. BurchenalJ.H. ChouT-C. LokysL. SmithR.S. WatanabeK.A. SuT-L. FoxJ.J. Activity of 2-fluoro-5-methylarabinofuranosyluracil against mouse leukemias sensitive to and resistant to 1-β-D-arabinofuranosylcytosine.Cancer Res.198242725982600 7083153
    [Google Scholar]
  165. KimS. HongJ.H. Synthesis and Anti-HIV Activity of Novel 2′-Deoxy-2′-β-Fluoro-threosyl nucleoside phosphonic acid analogues.Nucleosides Nucleotides Nucleic Acids2015341281583310.1080/15257770.2015.1076840 26407633
    [Google Scholar]
  166. FortD.A. WolteringT.J. AlkerA.M. BachT. Photochemical reactions of prop-2-enyl and Prop-2-ynyl Substituted 4-Aminomethyl- and 4-Oxymethyl-2(5H)-Furanones.Heterocycles20048810791100
    [Google Scholar]
  167. CoreyE.J. VenkateswarluA. Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives.J. Am. Chem. Soc.197294176190619110.1021/ja00772a043
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673280546240106123000
Loading
/content/journals/cmc/10.2174/0109298673280546240106123000
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test