Skip to content
2000
Volume 32, Issue 16
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Recent studies have found that Phosphodiesterase-4 (PDE4) is closely related to the pathogenesis of depression, cognitive impairment and neurological impairment.

Objective

Our objective is to develop potent inhibitors of the high-affinity phosphodiesterase 4D isoform (PDE4D) that can serve as radioligands for Positron Emission Tomography (PET) imaging, thereby advancing research in the field of neurological diseases.

Methods

We employed a multi-step approach combining three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, classification techniques, and CoMSIA analysis to investigate the conformational relationship of high-affinity PDE4D inhibitors as PET ligands. ADMET and Drug-likeness predictions were also conducted. By utilizing these methods, our aim was to identify more potent PDE4D inhibitors.

Results

The results showed that the CoMSIA model with the best principal component scores (n=7) had a cross-validated Q2 value of 0.602 and a non-cross-validated R2 value of 0.976. These results affirmed the excellent predictive capability of the established CoMSIA model. Analysis of the generated 3D-QSAR contour plots highlighted specific regions in the molecular structure of the compounds that can be further optimized and modified. Guided by the contour plots, we designed 100 novel PDE4D inhibitors, and molecular docking was performed for the top 4 compounds with high activity. The molecular docking scores were promising, and ADMET and drug similarity predictions yielded satisfactory results. Taking into consideration these factors, compound was determined to be the optimal compound, laying a solid foundation for further research.

Conclusion

For the continued development of PDE4D PET radioligand, these models and new compounds' developing methodology offer a theoretical foundation and crucial references.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673275082231220074933
2024-01-12
2026-02-18
Loading full text...

Full text loading...

References

  1. SchepersM. PaesD. TianeA. RombautB. PiccartE. van VeggelL. GervoisP. WolfsE. LambrichtsI. BrulloC. BrunoO. FedeleE. RicciarelliR. ffrench-Constant, C.; Bechler, M.E.; van Schaik, P.; Baron, W.; Lefevere, E.; Wasner, K.; Grünewald, A.; Verfaillie, C.; Baeten, P.; Broux, B.; Wieringa, P.; Hellings, N.; Prickaerts, J.; Vanmierlo, T. Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis.Brain Behav. Immun.202310912210.1016/j.bbi.2022.12.020 36584795
    [Google Scholar]
  2. FrancisS.H. BlountM.A. CorbinJ.D. Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions.Physiol. Rev.201191265169010.1152/physrev.00030.2010 21527734
    [Google Scholar]
  3. SunJ. XiaoZ. HaiderA. GebhardC. XuH. LuoH.B. ZhangH.T. JosephsonL. WangL. LiangS.H. Advances in cyclic nucleotide phosphodiesterase-targeted PET imaging and drug discovery.J. Med. Chem.202164117083710910.1021/acs.jmedchem.1c00115 34042442
    [Google Scholar]
  4. FleischhackerW.W. HinterhuberH. BauerH. PflugB. BernerP. SimhandlC. WolfR. GerlachW. JaklitschH. Sastre-y-HernándezM. Schmeding-WiegelH. Sperner-UnterwegerB. VoetB. SchubertH. A multicenter double-blind study of three dif-ferent doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder.Neuropsychobiology1992261-2596410.1159/000118897 1475038
    [Google Scholar]
  5. ScottA.I.F. PeriniA.F. SheringP.A. WhalleyL.J. In-patient major depression: Is rolipram as effective as amitriptyline?Eur. J. Clin. Pharmacol.199140212712910.1007/BF00280065 2065693
    [Google Scholar]
  6. KrauseW. KühneG. SauerbreyN. Pharmacokinetics of (+)-rolipram and (-)-rolipram in healthy volunteers.Eur. J. Clin. Pharmacol.1990381717510.1007/BF00314807 2328751
    [Google Scholar]
  7. HebenstreitG. FellererK. FichteK. FischerG. GeyerN. MeyaU. Sastre-y-HernándezM. SchönyW. SchratzerM. SoukopW. TrampitschE. VarosanecS. ZawadaE. ZöchlingR. Rolipram in major depressive disorder: Results of a double-blind comparative study with imipramine.Pharmacopsychiatry198922415616010.1055/s‑2007‑1014599 2668980
    [Google Scholar]
  8. HorowskiR. Clinical effects of the neurotropic selective cAMP phosphodiesterase inhibitor rolipram in depressed patients: Global evaluation of the preliminary reports.Curr. Therapeutic Researc19853812329
    [Google Scholar]
  9. BobonD. BreuletM. Gerard-VandenhoveM.A. Guiot-GoffioulF. PlomteuxG. Sastre-y-HernándezM. SchratzerM. TroisfontainesB. von FrenckellR. WachtelH. Is phosphodiesterase inhibition a new mechanism of antidepressant action? A double blind double-dummy study between rolipram and desipramine in hospitalized major and/or endogenous depressives.Eur. Arch. Psychiatry Neurol. Sci.198823812610.1007/BF00381071 3063534
    [Google Scholar]
  10. ZellerE. StiefH. PflugB. Sastre-y-HernándezM. Results of a phase II study of the antidepressant effect of rolipram.Pharmacopsychiatry198417618819010.1055/s‑2007‑1017435 6393150
    [Google Scholar]
  11. Van DuinenM.A. SambethA. HeckmanP.R.A. SmitS. TsaiM. LahuG. UzT. BloklandA. PrickaertsJ. Acute administration of roflumilast enhances immediate recall of verbal word memory in healthy young adults.Neuropharmacology2018131313810.1016/j.neuropharm.2017.12.019 29241652
    [Google Scholar]
  12. HeckmanP.R.A. Van DuinenM.A. BloklandA. UzT. PrickaertsJ. SambethA. Acute administration of roflumilast enhances sensory gating in healthy young humans in a randomized trial.Psychopharmacology2018235130130810.1007/s00213‑017‑4770‑y 29098341
    [Google Scholar]
  13. PrickaertsJ. HeckmanP.R.A. BloklandA. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease.Expert Opin. Investig. Drugs20172691033104810.1080/13543784.2017.1364360 28772081
    [Google Scholar]
  14. BloklandA. Van DuinenM.A. SambethA. HeckmanP.R.A. TsaiM. LahuG. UzT. PrickaertsJ. Acute treatment with the PDE4 inhibitor roflumilast improves verbal word memory in healthy old individuals: a double-blind placebo-controlled study.Neurobiol. Aging201977374310.1016/j.neurobiolaging.2019.01.014 30776650
    [Google Scholar]
  15. MuellerE.M. HofmannS.G. CherryJ.A. The type IV phosphodiesterase inhibitor rolipram disturbs expression and extinction of conditioned fear in mice.Neuropharmacology2010591-21810.1016/j.neuropharm.2010.03.002 20362594
    [Google Scholar]
  16. RuttenK. BasileJ.L. PrickaertsJ. BloklandA. VivianJ.A. Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques.Psychopharmacology 2008196464364810.1007/s00213‑007‑0999‑1 18034336
    [Google Scholar]
  17. RuttenK. MisnerD.L. WorksM. BloklandA. NovakT.J. SantarelliL. WallaceT.L. Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D−/−) mice.Eur. J. Neurosci.200828362563210.1111/j.1460‑9568.2008.06349.x 18702734
    [Google Scholar]
  18. KanesS.J. TokarczykJ. SiegelS.J. BilkerW. AbelT. KellyM.P. Rolipram: A specific phosphodiesterase 4 inhibitor with potential antipsychotic activity.Neuroscience2007144123924610.1016/j.neuroscience.2006.09.026 17081698
    [Google Scholar]
  19. RuttenK. PrickaertsJ. SchaenzleG. RosenbrockH. BloklandA. Sub-chronic rolipram treatment leads to a persistent improvement in long-term object memory in rats.Neurobiol. Learn. Mem.200890356957510.1016/j.nlm.2008.04.016 18558503
    [Google Scholar]
  20. LiY.F. HuangY. AmsdellS.L. XiaoL. O’DonnellJ.M. ZhangH.T. Antidepressant- and anxiolytic-like effects of the phosphodiesterase-4 inhibitor rolipram on behavior depend on cyclic AMP response element binding protein-mediated neurogenesis in the hippocampus.Neuropsychopharmacology2009341124042419
    [Google Scholar]
  21. RuttenK. Van DonkelaarE.L. FerringtonL. BloklandA. BollenE. SteinbuschH.W. KellyP.A. PrickaertsJ.H. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats.Neuropsychopharmacology200934819141925
    [Google Scholar]
  22. VecseyC.G. BaillieG.S. JaganathD. HavekesR. DanielsA. WimmerM. HuangT. BrownK.M. LiX.Y. DescalziG. KimS.S. ChenT. ShangY.Z. ZhuoM. HouslayM.D. AbelT. Sleep deprivation impairs cAMP signalling in the hippocampus.Nature200946172671122112510.1038/nature08488 19847264
    [Google Scholar]
  23. ChengY.F. WangC. LinH.B. LiY.F. HuangY. XuJ.P. ZhangH.T. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ25–35 or Aβ1–40 peptide in rats.Psychopharmacology2010212218119110.1007/s00213‑010‑1943‑3 20640406
    [Google Scholar]
  24. WangC. YangX.M. ZhuoY.Y. ZhouH. LinH.B. ChengY.F. XuJ.P. ZhangH.T. The phosphodiesterase-4 inhibitor rolipram reverses Aβ-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats.Int. J. Neuropsychopharmacol.201215674976610.1017/S1461145711000836 21733236
    [Google Scholar]
  25. WereniczA. ChristoffR.R. BlankM. JobimP.F.C. PedrosoT.R. ReolonG.K. SchröderN. RoeslerR. Administration of the phosphodiesterase type 4 inhibitor rolipram into the amygdala at a specific time interval after learning increases recognition memory persistence.Learn. Mem.2012191049549810.1101/lm.026997.112 22993171
    [Google Scholar]
  26. WiescholleckV. Manahan-VaughanD. PDE4 inhibition enhances hippocampal synaptic plasticity in vivo and rescues MK801-induced impairment of long-term potentiation and object recognition memory in an animal model of psychosis.Transl. Psychiatry201223e8910.1038/tp.2012.17 22832854
    [Google Scholar]
  27. VanmierloT. CreemersP. AkkermanS. van DuinenM. SambethA. De VryJ. UzT. BloklandA. PrickaertsJ. The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses.Behav. Brain Res.2016303263310.1016/j.bbr.2016.01.031 26794595
    [Google Scholar]
  28. ZhangC. XuY. ZhangH.T. GurneyM.E. O’DonnellJ.M. Comparison of the pharmacological profiles of selective PDE4B and PDE4D inhibitors in the central nervous system.Sci. Rep.2017714011510.1038/srep40115 28054669
    [Google Scholar]
  29. WachtelH. Potential antidepressant activity of rolipram and other selective cyclic adenosine 3′,5′-monophosphate phosphodiesterase inhibitors.Neuropharmacology198322326727210.1016/0028‑3908(83)90239‑3 6302550
    [Google Scholar]
  30. WachtelH. SchneiderH.H. Rolipram, a novel antidepressant drug, reverses the hypothermia and hypokinesia of monoamine-depleted mice by an action beyond postsynaptic monoamine receptors.Neuropharmacology198625101119112610.1016/0028‑3908(86)90159‑0 2946976
    [Google Scholar]
  31. BaradM. BourtchouladzeR. WinderD.G. GolanH. KandelE. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory.Proc. Natl. Acad. Sci. USA19989525150201502510.1073/pnas.95.25.15020 9844008
    [Google Scholar]
  32. BachM.E. BaradM. SonH. ZhuoM. LuY.F. ShihR. MansuyI. HawkinsR.D. KandelE.R. Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway.Proc. Natl. Acad. Sci. USA19999695280528510.1073/pnas.96.9.5280 10220457
    [Google Scholar]
  33. TitusD.J. SakuraiA. KangY. FuronesC. JergovaS. SantosR. SickT.J. AtkinsC.M. Phosphodiesterase inhibition rescues chronic cognitive deficits induced by traumatic brain injury.J. Neurosci.201333125216522610.1523/JNEUROSCI.5133‑12.2013 23516287
    [Google Scholar]
  34. NibuyaM. NestlerE.J. DumanR.S. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.J. Neurosci.19961672365237210.1523/JNEUROSCI.16‑07‑02365.1996 8601816
    [Google Scholar]
  35. ZhongP. WangW. YuF. NazariM. LiuX. LiuQ.S. Phosphodiesterase 4 inhibition impairs cocaine-induced inhibitory synaptic plasticity and conditioned place preference.Neuropsychopharmacology2012371123772387
    [Google Scholar]
  36. VilligerJ.W. DunnA.J. Phosphodiesterase inhibitors facilitate memory for passive avoidance conditioning.Behav. Neural Biol.198131335435910.1016/S0163‑1047(81)91424‑2 6164361
    [Google Scholar]
  37. ThompsonB.E. SachsB.D. KantakK.M. CherryJ.A. The Type IV phosphodiesterase inhibitor rolipram interferes with drug-induced conditioned place preference but not immediate early gene induction in mice.Eur. J. Neurosci.20041992561256810.1111/j.0953‑816X.2004.03357.x 15128409
    [Google Scholar]
  38. ZhangH.T. ZhaoY. HuangY. DorairajN.R. ChandlerL.J. O’DonnellJ.M. Inhibition of the phosphodiesterase 4 (PDE4) enzyme reverses memory deficits produced by infusion of the MEK inhibitor U0126 into the CA1 subregion of the rat hippocampus.Neuropsychopharmacology200429814321439
    [Google Scholar]
  39. RuttenK. PrickaertsJ. BloklandA. Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action.Neurobiol. Learn. Mem.200685213213810.1016/j.nlm.2005.09.002 16242977
    [Google Scholar]
  40. ZhangH.T. ZhaoY. HuangY. DengC. HopperA.T. De VivoM. RoseG.M. O’DonnellJ.M. Antidepressant-like effects of PDE4 inhibitors mediated by the high-affinity rolipram binding state (HARBS) of the phosphodiesterase-4 enzyme (PDE4) in rats.Psychopharmacology2006186220921710.1007/s00213‑006‑0369‑4 16586089
    [Google Scholar]
  41. WangC. ZhangJ. LuY. LinP. PanT. ZhaoX. LiuA. WangQ. ZhouW. ZhangH.T. Antidepressant-like effects of the phosphodiesterase-4 inhibitor etazolate and phosphodiesterase-5 inhibitor sildenafil via cyclic AMP or cyclic GMP signaling in mice.Metab. Brain Dis.201429367368210.1007/s11011‑014‑9533‑4 24705918
    [Google Scholar]
  42. LiuX. HaoP.D. YangM.F. SunJ.Y. MaoL.L. FanC.D. ZhangZ.Y. LiD.W. YangX.Y. SunB.L. ZhangH.T. The phosphodiesterase-4 inhibitor roflumilast decreases ethanol consumption in C57BL/6J mice.Psychopharmacology2017234162409241910.1007/s00213‑017‑4631‑8 28477089
    [Google Scholar]
  43. ZhongY. ZhuY. HeT. LiW. YanH. MiaoY. Rolipram-induced improvement of cognitive function correlates with changes in hippocampal CREB phosphorylation, BDNF and Arc protein levels.Neurosci. Lett.201661017117610.1016/j.neulet.2015.09.023 26552011
    [Google Scholar]
  44. AkarF. MutluO. CelikyurtI.K. UlakG. ErdenF. BektasE. TanyeriP. Effects of rolipram and zaprinast on learning and memory in the Morris water maze and radial arm maze tests in naive mice.Drug Res.20156528690 24764251
    [Google Scholar]
  45. SierksmaA.S.R. van den HoveD.L.A. PfauF. PhilippensM. BrunoO. FedeleE. RicciarelliR. SteinbuschH.W.M. VanmierloT. PrickaertsJ. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D.Neuropharmacology20147712013010.1016/j.neuropharm.2013.09.015 24067928
    [Google Scholar]
  46. TitusD.J. WilsonN.M. FreundJ.E. CarballosaM.M. SikahK.E. FuronesC. DietrichW.D. GurneyM.E. AtkinsC.M. Chronic cognitive dysfunction after traumatic brain injury is improved with a phosphodiesterase 4B inhibitor.J. Neurosci.201636277095710810.1523/JNEUROSCI.3212‑15.2016 27383587
    [Google Scholar]
  47. WilsonN.M. GurneyM.E. DietrichW.D. AtkinsC.M. Therapeutic benefits of phosphodiesterase 4B inhibition after traumatic brain injury.PLoS One2017125e017801310.1371/journal.pone.0178013 28542295
    [Google Scholar]
  48. HeddeJ.R. HanksA.N. SchmidtC.J. HughesZ.A. The isozyme selective phosphodiesterase-4 inhibitor, ABI-4, attenuates the effects of lipopolysaccharide in human cells and rodent models of peripheral and CNS inflammation.Brain Behav. Immun.20176428529510.1016/j.bbi.2017.04.015 28438557
    [Google Scholar]
  49. RicciarelliR. BrulloC. PrickaertsJ. ArancioO. VillaC. RebosioC. CalcagnoE. BalbiM. van HagenB.T.J. ArgyrousiE.K. ZhangH. PronzatoM.A. BrunoO. FedeleE. Memory-enhancing effects of GEBR-32a, a new PDE4D inhibitor holding promise for the treatment of Alzheimer’s disease.Sci. Rep.2017714632010.1038/srep46320 28402318
    [Google Scholar]
  50. ZhangC. XuY. ChowdharyA. FoxD.3rd GurneyM.E. ZhangH.T. AuerbachB.D. SalviR.J. YangM. LiG. O’DonnellJ.M. Memory enhancing effects of BPN14770, an allosteric inhibitor of phosphodiesterase-4D, in wild-type and humanized mice.Neuropsychopharmacology2018431122992309
    [Google Scholar]
  51. BurginA.B. MagnussonO.T. SinghJ. WitteP. StakerB.L. BjornssonJ.M. ThorsteinsdottirM. HrafnsdottirS. HagenT. KiselyovA.S. StewartL.J. GurneyM.E. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety.Nat. Biotechnol.2010281637010.1038/nbt.1598 20037581
    [Google Scholar]
  52. GurneyM.E. NugentR.A. MoX. SindacJ.A. HagenT.J. FoxD.III O’DonnellJ.M. ZhangC. XuY. ZhangH.T. GroppiV.E. BailieM. WhiteR.E. RomeroD.L. VellekoopA.S. WalkerJ.R. SurmanM.D. ZhuL. CampbellR.F. Design and syn-thesis of selective phosphodiesterase 4D (PDE4D) allosteric inhibitors for the treatment of fragile X syndrome and other brain disorders.J. Med. Chem.201962104884490110.1021/acs.jmedchem.9b00193 31013090
    [Google Scholar]
  53. Tetra Discovery Partners A Study of BPN14770 in Male Adults (Aged 18 to 45) with Fragile X Syndrome.2022Available from classic.clinicaltrials.gov/ct2/show/NCT05358886
    [Google Scholar]
  54. HagenT.J. MoX. BurginA.B. FoxD.III ZhangZ. GurneyM.E. Discovery of triazines as selective PDE4B versus PDE4D inhibitors.Bioorg. Med. Chem. Lett.201424164031403410.1016/j.bmcl.2014.06.002 24998378
    [Google Scholar]
  55. AspiotisR. DeschênesD. DubéD. GirardY. HuangZ. LalibertéF. LiuS. PappR. NicholsonD.W. YoungR.N. The discovery and synthesis of highly potent subtype selective phosphodiesterase 4D inhibitors.Bioorg. Med. Chem. Lett.201020185502550510.1016/j.bmcl.2010.07.076 20709547
    [Google Scholar]
  56. BrulloC. MassaM. VillaC. RicciarelliR. RiveraD. PronzatoM.A. FedeleE. BarocelliE. BertoniS. FlamminiL. BrunoO. Synthesis, biological activities and pharmacokinetic properties of new fluorinated derivatives of selective PDE4D inhibitors.Bioorg. Med. Chem.201523133426343510.1016/j.bmc.2015.04.027 25936260
    [Google Scholar]
  57. BrulloC. RapettiF. AbbateS. ProsdocimiT. TorrettaA. SemrauM. MassaM. AlfeiS. StoriciP. ParisiniE. BrunoO. Design, synthesis, biological evaluation and structural characterization of novel GEBR library PDE4D inhibitors.Eur. J. Med. Chem.202122311363810.1016/j.ejmech.2021.113638 34171658
    [Google Scholar]
  58. WakabayashiY. TeluS. DickR.M. FujitaM. OomsM. MorseC.L. LiowJ.S. HongJ.S. GladdingR.L. ManlyL.S. ZoghbiS.S. MoX. D’AmatoE.C. SindacJ.A. NugentR.A. MarronB.E. GurneyM.E. InnisR.B. PikeV.W. Discovery, radio-labeling, and evaluation of subtype-selective inhibitors for positron emission tomography imaging of brain phosphodiesterase-4D.ACS Chem. Neurosci.20201191311132310.1021/acschemneuro.0c00077 32212718
    [Google Scholar]
  59. CardG. L. EnglandB. P. SuzukiY. FongD. PowellB. LeeB. LuuC. TabrizizadM. GilletteS. IbrahimP. N. ArtisD. R. BollagG. MilburnM. V. KimS. H. SchlessingerJ. ZhangK.Y. Structure basis for the activity of drugs that inhibit phosphodiesterases.200412122233224710.1016/j.str.2004.10.004
    [Google Scholar]
  60. CedervallP. AulabaughA. GeogheganK.F. McLellanT.J. PanditJ. Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4.Proc. Natl. Acad. Sci. USA201511212E1414E142210.1073/pnas.1419906112 25775568
    [Google Scholar]
  61. JiangM. LuS. TeluS. PikeV.W. An empirical quantitative structure-activity relationship equation assists the discovery of high-affinity phosphodiesterase 4D inhibitors as leads to PET radioligands.J. Med. Chem.20236621543156110.1021/acs.jmedchem.2c01745 36608175
    [Google Scholar]
  62. Garnock-JonesK.P. Roflumilast: A Review in COPD.Drugs201575141645165610.1007/s40265‑015‑0463‑1 26338438
    [Google Scholar]
  63. HookerJ.M. CarsonR.E. Human positron emission tomography neuroimaging.Annu. Rev. Biomed. Eng.201921155158110.1146/annurev‑bioeng‑062117‑121056 31167104
    [Google Scholar]
  64. FryeL. BhatS. AkinsanyaK. AbelR. From computer-aided drug discovery to computer-driven drug discovery.Drug Discov. Today. Technol.20213911111710.1016/j.ddtec.2021.08.001 34906321
    [Google Scholar]
  65. CerchiaC. LavecchiaA. New avenues in artificial-intelligence-assisted drug discovery.Drug Discov. Today202328410351610.1016/j.drudis.2023.103516 36736583
    [Google Scholar]
  66. SabeV.T. NtombelaT. JhambaL.A. MaguireG.E.M. GovenderT. NaickerT. KrugerH.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review.Eur. J. Med. Chem.202122411370510.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  67. Jiménez-LunaJ. GrisoniF. WeskampN. SchneiderG. Artificial intelligence in drug discovery: recent advances and future perspec-tives.Expert Opin. Drug Discov.202116994995910.1080/17460441.2021.1909567 33779453
    [Google Scholar]
  68. ZhaoL. CiallellaH.L. AleksunesL.M. ZhuH. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling.Drug Discov. Today20202591624163810.1016/j.drudis.2020.07.005 32663517
    [Google Scholar]
  69. LeelanandaS.P. LindertS. Computational methods in drug discovery.Beilstein J. Org. Chem.2016122694271810.3762/bjoc.12.267 28144341
    [Google Scholar]
  70. MacalinoS.J.Y. GosuV. HongS. ChoiS. Role of computer-aided drug design in modern drug discovery.Arch. Pharm. Res.20153891686170110.1007/s12272‑015‑0640‑5 26208641
    [Google Scholar]
  71. MuratovE.N. BajorathJ. SheridanR.P. TetkoI.V. FilimonovD. PoroikovV. OpreaT.I. BaskinI.I. VarnekA. RoitbergA. IsayevO. CurtaloloS. FourchesD. CohenY. Aspuru-GuzikA. WinklerD.A. AgrafiotisD. CherkasovA. TropshaA. QSAR without borders.Chem. Soc. Rev.202049113525356410.1039/D0CS00098A 32356548
    [Google Scholar]
  72. GasteigerJ. MarsiliM.J.T. Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges.1980363219322810.1016/0040‑4020(80)80168‑
    [Google Scholar]
  73. ClarkM. CramerR.D. Van OpdenboschN.J.J.o.C.C. Validation of the general purpose tripos 5.2 force field.J. Comput. Chem.198910982 https://doi.org/10.1002/jcc.540100804
    [Google Scholar]
  74. KeZ. LuT. LiuH. YuanH. RanT. ZhangY. YaoS. XiongX. XuJ. XuA. ChenY. 3D-QSAR and molecular fragment replacement study on diaminopyrimidine and pyrrolotriazine ALK inhibitors.J. Mol. Struct.2014106712713710.1016/j.molstruc.2014.03.036
    [Google Scholar]
  75. AjalaA.O. OkoroC.O. 3D-QSAR topomer CoMFA studies on 10 N-substituted acridone derivatives.Open J. Med. Chem.201223434910.4236/ojmc.2012.23006
    [Google Scholar]
  76. YuZ. LiX. GeC. SiH. CuiL. GaoH. DuanY. ZhaiH. 3D-QSAR modeling and molecular docking study on Mer kinase inhibitors of pyridine-substituted pyrimidines.Mol. Divers.201519113514710.1007/s11030‑014‑9556‑0 25355276
    [Google Scholar]
  77. YangW. ShenS. MuL. YuH. Structure–activity relationship study on the binding of PBDEs with thyroxine transport proteins.Environ. Toxicol. Chem.201130112431243910.1002/etc.645 21842493
    [Google Scholar]
  78. LiX. YeL. WangX. WangX. LiuH. QianX. ZhuY. YuH. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on estrogenic activity of hydroxylated polychlorinated biphenyls.Sci. Total Environ.201244123023810.1016/j.scitotenv.2012.08.072 23137989
    [Google Scholar]
  79. HadniH. ElhallaouiM. J. N. J. o. C. 2D and 3D-QSAR, molecular docking and ADMET properties in silico studies of azaaurones as antimalarial agents.20204465536565https://pubs.rsc.org/en/content/articlelanding/2020/nj/c9nj05767f
  80. HuangS. FengK. RenY. Molecular modelling studies of quinazolinone derivatives as MMP-13 inhibitors by QSAR, molecular docking and molecular dynamics simulations techniques.MedChemComm201910110111510.1039/C8MD00375K 30774858
    [Google Scholar]
  81. JainA.N. Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search.J. Comput. Aided Mol. Des.200721528130610.1007/s10822‑007‑9114‑2 17387436
    [Google Scholar]
  82. JainA.N.J.J. o. C.-A.M.D. Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search.20072128130610.1007/s10822‑007‑9114‑2
    [Google Scholar]
  83. MouchlisV.D. MelagrakiG. MavromoustakosT. KolliasG. AfantitisA. Molecular modeling on pyrimidine-urea inhibitors of TNF-α production: an integrated approach using a combination of molecular docking, classification techniques, and 3D-QSAR CoMSIA.J. Chem. Inf. Model.201252371172310.1021/ci200579f 22360289
    [Google Scholar]
  84. Pratim RoyP. PaulS. MitraI. RoyK. On two novel parameters for validation of predictive QSAR models.Molecules20091451660170110.3390/molecules14051660 19471190
    [Google Scholar]
  85. CramerR.D. BunceJ.D. PattersonD.E. FrankI.E.J.Q.S-R. Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies.198871825
    [Google Scholar]
  86. PiresD. BlundellT.L. Ascher, D.B. pkCSM: predicting small-molecule pharmacokinetic properties using graph-based signatures.J. Med. Chem.201558940664072 https://biosig.lab.uq.edu.au/pkcsm/
    [Google Scholar]
  87. Swiss institute of bioinformatic. Available from: http://www.swissadme.ch/
  88. BenetL.Z. Zia-AmirhosseiniP. Basic principles of pharmacokinetics.Toxicol. Pathol.199523211512310.1177/019262339502300203 7569664
    [Google Scholar]
  89. ThaparM.M. AshtonM. LindegårdhN. BergqvistY. NiveliusS. JohanssonI. BjörkmanA. Time-dependent pharmacokinetics and drug metabolism of atovaquone plus proguanil (Malarone) when taken as chemoprophylaxis.Eur. J. Clin. Pharmacol.2002581192710.1007/s00228‑002‑0426‑9 11956669
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673275082231220074933
Loading
/content/journals/cmc/10.2174/0109298673275082231220074933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test