Skip to content
2000
Volume 32, Issue 18
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Tumor protein 53 (P53), as an intracellular regulator of antioxidant responses, participates in the expression of antioxidant defense and lipid metabolism as well as the synthesis of genes in cells. The balance of oxidation and reduction can be disrupted by many pathological conditions, and the role of the antioxidant system in protecting the equilibrium state from pathological effects, such as reactive lipids, is crucial. In particular, the excessive accumulation of lipid peroxidation products is a key factor driving the occurrence and development of various diseases. Ferroptosis is an iron-dependent, lipid peroxidation-driven cell death cascade reaction, which has become a key research area in cardiovascular diseases. Atherosclerosis (AS) is a pathological change caused by lipid metabolic disorder, inflammatory response, and endothelial cell injury, and is the most common cause of cardiovascular disease. This review briefly outlines lipid peroxidation and key components involving ferroptosis cascade reactions, summarizes and emphasizes the role of P53-related signaling pathways in mediating lipid peroxidation and ferroptosis, and focuses on the known P53 target genes that regulate these pathways, as well as explores the possibility of P53 intervention in the treatment of AS by regulating lipid peroxidation and ferroptosis processes.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673272862231230194711
2024-02-07
2025-10-15
Loading full text...

Full text loading...

References

  1. ChoS.S. YangJ.H. LeeJ.H. BaekJ.S. KuS.K. ChoI.J. KimK.M. KiS.H. Ferroptosis contribute to hepatic stellate cell activation and liver fibrogenesis.Free Radic. Biol. Med.2022193Pt 262063710.1016/j.freeradbiomed.2022.11.01136370962
    [Google Scholar]
  2. GogulamudiV.R. DurrantJ.R. AdeyemoA.O. HoH.M. WalkerA.E. LesniewskiL.A. Advancing age increases the size and severity of spontaneous atheromas in mouse models of atherosclerosis.Geroscience20234531913193110.1007/s11357‑023‑00776‑837086367
    [Google Scholar]
  3. Di CaraF. SavaryS. KovacsW.J. KimP. RachubinskiR.A. The peroxisome: An up-and-coming organelle in immunometabolism.Trends Cell Biol.2023331708610.1016/j.tcb.2022.06.00135788297
    [Google Scholar]
  4. RodolicoD. SchiattarellaG.G. TaegtmeyerH. The lure of cardiac metabolism in the diagnosis, prevention, and treatment of heart failure.JACC Heart Fail.2023116637645
    [Google Scholar]
  5. SiesH. Oxidative eustress: On constant alert for redox homeostasis.Redox Biol.20214110186710.1016/j.redox.2021.10186733657525
    [Google Scholar]
  6. LiangJ. GaoY. FengZ. ZhangB. NaZ. LiD. Reactive oxygen species and ovarian diseases: Antioxidant strategies.Redox Biol.20236210265910.1016/j.redox.2023.10265936917900
    [Google Scholar]
  7. DodsonM. Castro-PortuguezR. ZhangD.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol.20192310110710.1016/j.redox.2019.10110730692038
    [Google Scholar]
  8. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid. Med. Cell. Longev.2014201413110.1155/2014/36043824999379
    [Google Scholar]
  9. PabiszP. BazakJ. GirottiA.W. KorytowskiW. Anti-steroidogenic effects of cholesterol hydroperoxide trafficking in MA-10 Leydig cells: Role of mitochondrial lipid peroxidation and inhibition thereof by selenoperoxidase GPx4.Biochem. Biophys. Res. Commun.2022591828710.1016/j.bbrc.2021.12.11734999258
    [Google Scholar]
  10. TsikasD. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges.Anal. Biochem.2017524133010.1016/j.ab.2016.10.02127789233
    [Google Scholar]
  11. CeniniG. SultanaR. MemoM. ButterfieldD.A. Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease.Free Radic. Biol. Med.2008451818510.1016/j.freeradbiomed.2008.03.01518439434
    [Google Scholar]
  12. ZengJ. HillsS.A. OzonoE. DiffleyJ.F.X. Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication.Cell20231863528542.e1410.1016/j.cell.2022.12.03636681079
    [Google Scholar]
  13. LeeJ.H. KimD.H. KimM. JungK.H. LeeK.H. Mitochondrial ROS-mediated metabolic and cytotoxic effects of isoproterenol on cardiomyocytes are p53-dependent and reversed by curcumin.Molecules2022274134610.3390/molecules2704134635209134
    [Google Scholar]
  14. ZhuY. GuL. LinX. ZhouX. LuB. LiuC. LiY. ProchownikE.V. KarinM. WangF. LiY. P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis.Hepatology20237751499151110.1002/hep.3251835398929
    [Google Scholar]
  15. LuJ. ZhangY. YangJ. CuiS. ZhangJ. LiuY. Editorial: Role of p53 in cell metabolism, ferroptosis, and stemness.Front. Genet.202314119864110.3389/fgene.2023.119864137124615
    [Google Scholar]
  16. NishizawaH. YamanakaM. IgarashiK. Ferroptosis: Regulation by competition between NRF2 and BACH1 and propagation of the death signal.FEBS J.202329071688170410.1111/febs.1638235107212
    [Google Scholar]
  17. ShengS. LiJ. HuX. WangY. Regulated cell death pathways in cardiomyopathy.Acta Pharmacol. Sin.20234481521153510.1038/s41401‑023‑01068‑936914852
    [Google Scholar]
  18. HuangY. WangS. KeA. GuoK. Ferroptosis and its interaction with tumor immune microenvironment in liver cancer.Biochim. Biophys. Acta Rev. Cancer20231878118884810.1016/j.bbcan.2022.18884836502929
    [Google Scholar]
  19. QianL. WangF. LuS. MiaoH. HeX. FengJ. HuangH. ShiR. ZhangJ. A comprehensive prognostic and immune analysis of ferroptosis-related genes identifies SLC7A11 as a novel prognostic biomarker in lung adenocarcinoma.J. Immunol. Res.2022202211310.1155/2022/195162035509981
    [Google Scholar]
  20. WangX. YangS. LiY. JinX. LuJ. WuM. Role of emodin in atherosclerosis and other cardiovascular diseases: Pharmacological effects, mechanisms, and potential therapeutic target as a phytochemical.Biomed. Pharmacother.202316111453910.1016/j.biopha.2023.11453936933375
    [Google Scholar]
  21. CaiW. LiuL. ShiX. LiuY. WangJ. FangX. ChenZ. AiD. ZhuY. ZhangX. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis.Circulation2023147191444146010.1161/CIRCULATIONAHA.122.06025736987924
    [Google Scholar]
  22. XuY. LiK. ZhaoY. ZhouL. LiuY. ZhaoJ. Role of ferroptosis in stroke.Cell. Mol. Neurobiol.202343120522210.1007/s10571‑022‑01196‑635102454
    [Google Scholar]
  23. FormanH.J. ZhangH. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy.Nat. Rev. Drug Discov.202120968970910.1038/s41573‑021‑00233‑134194012
    [Google Scholar]
  24. MorrisG. GevezovaM. SarafianV. MaesM. Redox regulation of the immune response.Cell. Mol. Immunol.202219101079110110.1038/s41423‑022‑00902‑036056148
    [Google Scholar]
  25. HigdonA. DiersA.R. OhJ.Y. LandarA. Darley-UsmarV.M. Cell signalling by reactive lipid species: New concepts and molecular mechanisms.Biochem. J.2012442345346410.1042/BJ2011175222364280
    [Google Scholar]
  26. TangZ. ZhaoP. WangH. LiuY. BuW. Biomedicine meets fenton chemistry.Chem. Rev.202112141981201910.1021/acs.chemrev.0c0097733492935
    [Google Scholar]
  27. CheungJ.C.T. DengG. WongN. DongY. NgS.S.M. More than a duologue: In-depth insights into epitranscriptomics and ferroptosis.Front. Cell Dev. Biol.20221098260610.3389/fcell.2022.98260636172270
    [Google Scholar]
  28. YuY. YanY. NiuF. WangY. ChenX. SuG. LiuY. ZhaoX. QianL. LiuP. XiongY. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases.Cell Death Discov.20217119310.1038/s41420‑021‑00579‑w34312370
    [Google Scholar]
  29. XieL.H. FefelovaN. PamarthiS.H. GwathmeyJ.K. Molecular mechanisms of ferroptosis and relevance to cardiovascular disease.Cells20221117272610.3390/cells1117272636078133
    [Google Scholar]
  30. LiM. WangZ.W. FangL.J. ChengS.Q. WangX. LiuN.F. Programmed cell death in atherosclerosis and vascular calcification.Cell Death Dis.202213546710.1038/s41419‑022‑04923‑535585052
    [Google Scholar]
  31. PuylaertP. ZurekM. RaynerK.J. De MeyerG.R.Y. MartinetW. Regulated necrosis in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.202242111283130610.1161/ATVBAHA.122.31817736134566
    [Google Scholar]
  32. AnandhanA. DodsonM. SchmidlinC.J. LiuP. ZhangD.D. Breakdown of an ironclad defense system: The critical role of NRF2 in mediating ferroptosis.Cell Chem. Biol.202027443644710.1016/j.chembiol.2020.03.01132275864
    [Google Scholar]
  33. MeeranM.F.N. AzimullahS. AdeghateE. OjhaS. Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats.Phytomedicine20218415340510.1016/j.phymed.2020.15340533636578
    [Google Scholar]
  34. LiD. YouJ. MaoC. ZhouE. HanZ. ZhangJ. ZhangT. WangC. Circular RNA Fbxl5 regulates cardiomyocyte apoptosis during ischemia reperfusion injury via sponging microRNA-146a.J. Inflamm. Res.2022152539255010.2147/JIR.S36012935479829
    [Google Scholar]
  35. LiN. WangW. ZhouH. WuQ. DuanM. LiuC. WuH. DengW. ShenD. TangQ. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury.Free Radic. Biol. Med.202016030331810.1016/j.freeradbiomed.2020.08.00932846217
    [Google Scholar]
  36. ChengX.M. HuY.Y. YangT. WuN. WangX.N. Reactive oxygen species and oxidative stress in vascular-related diseases.Oxid. Med. Cell. Longev.2022202211110.1155/2022/790609135419169
    [Google Scholar]
  37. XueQ. YanD. ChenX. LiX. KangR. KlionskyD.J. KroemerG. ChenX. TangD. LiuJ. Copper-dependent autophagic degradation of GPX4 drives ferroptosis.Autophagy20231971982199610.1080/15548627.2023.216532336622894
    [Google Scholar]
  38. ChenX. LiJ. KangR. KlionskyD.J. TangD. Ferroptosis: Machinery and regulation.Autophagy20211792054208110.1080/15548627.2020.181091832804006
    [Google Scholar]
  39. GuoZ. LinJ. SunK. GuoJ. YaoX. WangG. HouL. XuJ. GuoJ. GuoF. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway.Front. Pharmacol.20221379137610.3389/fphar.2022.79137635359876
    [Google Scholar]
  40. CostaI. BarbosaD.J. BenfeitoS. SilvaV. ChavarriaD. BorgesF. RemiãoF. SilvaR. Molecular mechanisms of ferroptosis and their involvement in brain diseases.Pharmacol. Ther.202324410837310.1016/j.pharmthera.2023.10837336894028
    [Google Scholar]
  41. HandyD.E. LoscalzoJ. The role of glutathione peroxidase-1 in health and disease.Free Radic. Biol. Med.202218814616110.1016/j.freeradbiomed.2022.06.00435691509
    [Google Scholar]
  42. SawP.E. SongE.W. siRNA therapeutics: A clinical reality.Sci. China Life Sci.202063448550010.1007/s11427‑018‑9438‑y31054052
    [Google Scholar]
  43. SongX. LiuJ. KuangF. ChenX. ZehH.J.III KangR. KroemerG. XieY. TangD. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis.Cell Rep.202134810876710.1016/j.celrep.2021.10876733626342
    [Google Scholar]
  44. JiaB. LiJ. SongY. LuoC. ACSL4-mediated ferroptosis and its potential role in central nervous system diseases and injuries.Int. J. Mol. Sci.202324121002110.3390/ijms24121002137373168
    [Google Scholar]
  45. WangH. GuoM. WeiH. ChenY. Targeting p53 pathways: Mechanisms, structures, and advances in therapy.Signal Transduct. Target. Ther.2023819210.1038/s41392‑023‑01347‑136859359
    [Google Scholar]
  46. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  47. TaN. QuC. WuH. ZhangD. SunT. LiY. WangJ. WangX. TangT. ChenQ. LiuL. Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy.Proc. Natl. Acad. Sci.202211936e211739611910.1073/pnas.211739611936037337
    [Google Scholar]
  48. EspadinhaM. LopesE.A. MarquesV. AmaralJ.D. dos SantosD.J.V.A. MoriM. DanieleS. PiccarducciR. ZappelliE. MartiniC. RodriguesC.M.P. SantosM.M.M. Discovery of MDM2-p53 and MDM4-p53 protein-protein interactions small molecule dual inhibitors.Eur. J. Med. Chem.202224111463710.1016/j.ejmech.2022.11463735961068
    [Google Scholar]
  49. DaksA. PetukhovA. FedorovaO. ShuvalovO. KizenkoA. TananykinaE. VasilevaE. SemenovO. BottrillA. BarlevN. The RNA-binding protein HuR is a novel target of Pirh2 E3 ubiquitin ligase.Cell Death Dis.202112658110.1038/s41419‑021‑03871‑w34091597
    [Google Scholar]
  50. Sanchez-BarceloE.J. MediavillaM.D. VriendJ. ReiterR.J. Constitutive photomorphogenesis protein 1 ( COP 1) and COP 9 signalosome, evolutionarily conserved photomorphogenic proteins as possible targets of melatonin.J. Pineal Res.2016611415110.1111/jpi.1234027121162
    [Google Scholar]
  51. HuJ. CaoJ. TopatanaW. JuengpanichS. LiS. ZhangB. ShenJ. CaiL. CaiX. ChenM. Targeting mutant p53 for cancer therapy: Direct and indirect strategies.J. Hematol. Oncol.202114115710.1186/s13045‑021‑01169‑034583722
    [Google Scholar]
  52. JiangH. JiP. ShangX. ZhouY. Connection between osteoarthritis and nitric oxide: From pathophysiology to therapeutic target.Molecules2023284168310.3390/molecules2804168336838671
    [Google Scholar]
  53. YangY. MaY. LiQ. LingY. ZhouY. ChuK. XueL. TaoS. STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway.Cell Death Dis.202213653010.1038/s41419‑022‑04971‑x35668064
    [Google Scholar]
  54. SammadA. LuoH. HuL. ZhuH. WangY. Transcriptome reveals granulosa cells coping through redox, inflammatory and metabolic mechanisms under acute heat stress.Cells2022119144310.3390/cells1109144335563749
    [Google Scholar]
  55. WuL. XuG. LiN. ZhuL. ShaoG. Curcumin analog, HO-3867, induces both apoptosis and ferroptosis via multiple mechanisms in NSCLC cells with wild-type p53.Evid. Based Complement. Alternat. Med.2023202311310.1155/2023/837858136814470
    [Google Scholar]
  56. Weizer-SternO. AdamskyK. MargalitO. Ashur-FabianO. GivolD. AmariglioN. RechaviG. Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53.Br. J. Haematol.2007138225326210.1111/j.1365‑2141.2007.06638.x17593032
    [Google Scholar]
  57. BhutiaY.D. OguraJ. GrippoP.J. TorresC. SatoT. WachtelM. RamachandranS. BabuE. SivaprakasamS. RajasekaranD. SchniersB. OnN. SmootL. ThangarajuM. Gnana-PrakasamJ.P. GanapathyV. Chronic exposure to excess iron promotes EMT and cancer via p53 loss in pancreatic cancer.Asian J. Pharm. Sci202015223725110.1016/j.ajps.2020.02.00332373202
    [Google Scholar]
  58. NguyenK.T. MunS.H. YangJ. LeeJ. SeokO.H. KimE. KimD. AnS.Y. SeoD.Y. SuhJ.Y. LeeY. HwangC.S. The MARCHF6 E3 ubiquitin ligase acts as an NADPH sensor for the regulation of ferroptosis.Nat. Cell Biol.20222481239125110.1038/s41556‑022‑00973‑135941365
    [Google Scholar]
  59. LenskiM. KazakovA. MarxN. BöhmM. LaufsU. Effects of DPP-4 inhibition on cardiac metabolism and function in mice.J. Mol. Cell. Cardiol.201151690691810.1016/j.yjmcc.2011.08.00121871459
    [Google Scholar]
  60. HennigsJ.K. CaoA. LiC.G. ShiM. MienertJ. MiyagawaK. KörbelinJ. MarcianoD.P. ChenP.I. RoughleyM. ElliottM.V. HarperR.L. BillM.A. ChappellJ. MoonenJ.R. DieboldI. WangL. SnyderM.P. RabinovitchM. PPARγ-p53-mediated vasculoregenerative program to reverse pulmonary hypertension.Circ. Res.2021128340141810.1161/CIRCRESAHA.119.31633933322916
    [Google Scholar]
  61. RhoJ.K. ChoiY.J. RyooB.Y. NaI.I.I. YangS.H. KimC.H. LeeJ.C. p53 enhances gefitinib-induced growth inhibition and apoptosis by regulation of Fas in non-small cell lung cancer.Cancer Res.20076731163116910.1158/0008‑5472.CAN‑06‑203717283151
    [Google Scholar]
  62. SuzukiS. TanakaT. PoyurovskyM.V. NaganoH. MayamaT. OhkuboS. LokshinM. HosokawaH. NakayamaT. SuzukiY. SuganoS. SatoE. NagaoT. YokoteK. TatsunoI. PrivesC. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species.Proc. Natl. Acad. Sci.2010107167461746610.1073/pnas.100245910720351271
    [Google Scholar]
  63. AgarwalS. ChakravarthiB.V.S.K. BehringM. KimH.G. ChandrashekarD.S. GuptaN. BajpaiP. ElkholyA. BalasubramanyaS.A.H. HardyC. DiffalhaS.A. VaramballyS. ManneU. PAICS, a purine nucleotide metabolic enzyme, is involved in tumor growth and the metastasis of colorectal cancer.Cancers202012477210.3390/cancers1204077232218208
    [Google Scholar]
  64. GuiS. XieX. O’NeillW.Q. Chatfield-ReedK. YuJ.G. TeknosT.N. PanQ. p53 functional states are associated with distinct aldehyde dehydrogenase transcriptomic signatures.Sci. Rep.2020101109710.1038/s41598‑020‑57758‑531974410
    [Google Scholar]
  65. JiangP. DuW. WangX. MancusoA. GaoX. WuM. YangX. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase.Nat. Cell Biol.201113331031610.1038/ncb217221336310
    [Google Scholar]
  66. BensaadK. TsurutaA. SelakM.A. VidalM.N.C. NakanoK. BartronsR. GottliebE. VousdenK.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis.Cell2006126110712010.1016/j.cell.2006.05.03616839880
    [Google Scholar]
  67. JiangP. DuW. MancusoA. WellenK.E. YangX. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.Nature2013493743468969310.1038/nature1177623334421
    [Google Scholar]
  68. WangL. LiuY. DuT. YangH. LeiL. GuoM. DingH.F. ZhangJ. WangH. ChenX. YanC. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–.Cell Death Differ.202027266267510.1038/s41418‑019‑0380‑z31273299
    [Google Scholar]
  69. EsworthyR.S. DoroshowJ.H. ChuF.F. The beginning of GPX2 and 30 years later.Free Radic. Biol. Med.202218841943310.1016/j.freeradbiomed.2022.06.23235803440
    [Google Scholar]
  70. ZavileyskiyL. BunikV. Regulation of p53 function by formation of non-nuclear heterologous protein complexes.Biomolecules202212232710.3390/biom1202032735204825
    [Google Scholar]
  71. HyunD.H. Insights into the new cancer therapy through redox homeostasis and metabolic shifts.Cancers2020127182210.3390/cancers1207182232645959
    [Google Scholar]
  72. KotsinasA. AggarwalV. TanE.J. LevyB. GorgoulisV.G. PIG3: A novel link between oxidative stress and DNA damage response in cancer.Cancer Lett.20123271-29710210.1016/j.canlet.2011.12.00922178897
    [Google Scholar]
  73. JinM. ParkS.J. KimS.W. KimH.R. HyunJ.W. LeeJ.H. PIG3 regulates p53 stability by suppressing its MDM2-mediated ubiquitination.Biomol. Ther.201725439640310.4062/biomolther.2017.08628605833
    [Google Scholar]
  74. ChenH. LinX. YiX. LiuX. YuR. FanW. LingY. LiuY. XieW. SIRT1-mediated p53 deacetylation inhibits ferroptosis and alleviates heat stress-induced lung epithelial cells injury.Int. J. Hyperthermia202239197798610.1080/02656736.2022.209447635853732
    [Google Scholar]
  75. BeheraA.K. BhattacharyaA. VasudevanM. KunduT.K. p53 mediated regulation of coactivator associated arginine methyltransferase 1 (CARM1) expression is critical for suppression of adipogenesis.FEBS J.201828591730174410.1111/febs.1444029575726
    [Google Scholar]
  76. WuY. ZhaoY. YangH. WangY. ChenY. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose.Biosci. Rep.2021412BSR2020292410.1042/BSR2020292433565572
    [Google Scholar]
  77. LiuP. FengY. LiH. ChenX. WangG. XuS. LiY. ZhaoL. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis.Cell. Mol. Biol. Lett.20202511010.1186/s11658‑020‑00205‑032161620
    [Google Scholar]
  78. Campo-SabarizJ. Moral-AnterD. BrufauM.T. BriensM. PinlocheE. FerrerR. Martín-VenegasR. 2-Hydroxy-(4-methylseleno)butanoic acid is used by intestinal caco-2 cells as a source of selenium and protects against oxidative stress.J. Nutr.2019149122191219810.1093/jn/nxz19031504719
    [Google Scholar]
  79. LiuN. MaX. LuoX. ZhangY. HeY. DaiZ. YangY. WuG. WuZ. l-Glutamine attenuates apoptosis in porcine enterocytes by regulating glutathione-related redox homeostasis.J. Nutr.2018148452653410.1093/jn/nxx06229659951
    [Google Scholar]
  80. Pouso-VázquezE. BaiX. BatalléG. RochG. PolO. Effects of heme oxygenase 1 in the molecular changes and neuropathy associated with type 2 diabetes in mice.Biochem. Pharmacol.202219911498710.1016/j.bcp.2022.11498735276215
    [Google Scholar]
  81. GaoQ. ZhangG. ZhengY. YangY. ChenC. XiaJ. LiangL. LeiC. HuY. CaiX. ZhangW. TangH. ChenY. HuangA. WangK. TangN. SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC.Cell Death Differ.20202731086110410.1038/s41418‑019‑0399‑131367013
    [Google Scholar]
  82. HaoL. MiJ. SongL. GuoY. LiY. YinY. ZhangC. SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes.Neuroscience202146321622610.1016/j.neuroscience.2021.03.00933727075
    [Google Scholar]
  83. KongD. KotraiahV. Modulation of aldehyde dehydrogenase activity affects (±)-4-hydroxy-2E-nonenal (HNE) toxicity and HNE-protein adduct levels in PC12 cells.J. Mol. Neurosci.201247359560310.1007/s12031‑011‑9688‑y22170038
    [Google Scholar]
  84. ChangS. WuJ. JinJ. ShiH. GaoR. LiX. JiaD. SunX. OuT. YangJ. SunA. GeJ. Aldehyde dehydrogenase 2 (ALDH2) elicits protection against pulmonary hypertension via inhibition of ERK1/2-mediated autophagy.Oxid. Med. Cell. Longev.2022202211510.1155/2022/255547635770049
    [Google Scholar]
  85. MorebJ.S. GabrA. VartikarG.R. GowdaS. ZucaliJ.R. MohuczyD. Retinoic acid down-regulates aldehyde dehydrogenase and increases cytotoxicity of 4-hydroperoxycyclophosphamide and acetaldehyde.J. Pharmacol. Exp. Ther.2005312133934510.1124/jpet.104.07249615470086
    [Google Scholar]
  86. SchmittA. XuW. BucherP. GrimmM. KonantzM. HornH. ZapukhlyakM. BerningP. BrändleM. JarbouiM.A. SchönfeldC. BoldtK. RosenwaldA. OttG. GrauM. KlenerP. VockovaP. LengerkeC. LenzG. Schulze-OsthoffK. HailfingerS. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL.Blood20211381087188410.1182/blood.202000940433876201
    [Google Scholar]
  87. AngelovaP.R. EsterasN. AbramovA.Y. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention.Med. Res. Rev.202141277078410.1002/med.2171232656815
    [Google Scholar]
  88. LiY. XiongZ. YanW. GaoE. ChengH. WuG. LiuY. ZhangL. LiC. WangS. FanM. ZhaoH. ZhangF. TaoL. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation.Theranostics202010125623564010.7150/thno.4483632373236
    [Google Scholar]
  89. WangY. ZhaoY. YeT. YangL. ShenY. LiH. Ferroptosis signaling and regulators in atherosclerosis.Front. Cell Dev. Biol.2021980945710.3389/fcell.2021.80945734977044
    [Google Scholar]
  90. WangH. HeF. LiangB. JingY. ZhangP. LiuW. ZhaoH. p53-dependent lincRNA-p21 protects against proliferation and anti-apoptosis of vascular smooth muscle cells in atherosclerosis by upregulating SIRT7 via MicroRNA-17-5p.J. Cardiovasc. Transl. Res.202114342644010.1007/s12265‑020‑10074‑933169349
    [Google Scholar]
  91. LuoE.F. LiH.X. QinY.H. QiaoY. YanG.L. YaoY.Y. LiL.Q. HouJ.T. TangC.C. WangD. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction.World J. Diabetes202112212413710.4239/wjd.v12.i2.12433594332
    [Google Scholar]
  92. EngQ.Y. ThanikachalamP.V. RamamurthyS. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases.J. Ethnopharmacol.201821029631010.1016/j.jep.2017.08.03528864169
    [Google Scholar]
  93. CuiC. YangF. LiQ. Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases.Front. Mol. Biosci.2022990156510.3389/fmolb.2022.90156535647032
    [Google Scholar]
  94. BaiT. LiM. LiuY. QiaoZ. WangZ. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell.Free Radic. Biol. Med.20201609210210.1016/j.freeradbiomed.2020.07.02632768568
    [Google Scholar]
  95. ZhangX. QiZ. YinH. YangG. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy.Theranostics2019941096111410.7150/thno.2967330867818
    [Google Scholar]
  96. ZhouY. FanX. JiaoT. LiW. ChenP. JiangY. SunJ. ChenY. ChenP. GuanL. WenY. HuangM. BiH. SIRT6 as a key event linking P53 and NRF2 counteracts APAP-induced hepatotoxicity through inhibiting oxidative stress and promoting hepatocyte proliferation.Acta Pharm. Sin. B2021111899910.1016/j.apsb.2020.06.01633532182
    [Google Scholar]
  97. MukherjeeR. TetriL.H. LiS.J. FajardoG. OstbergN.P. TsegayK.B. GeraK. CornellT.T. BernsteinD. Mochly-RosenD. HaileselassieB. Drp1/p53 interaction mediates p53 mitochondrial localization and dysfunction in septic cardiomyopathy.J. Mol. Cell. Cardiol.2023177283710.1016/j.yjmcc.2023.01.00836841153
    [Google Scholar]
  98. ShaoX. YangX. ShenJ. ChenS. JiangX. WangQ. DiQ. TNF-α–induced p53 activation induces apoptosis in neurological injury.J. Cell. Mol. Med.202024126796680310.1111/jcmm.1533332344470
    [Google Scholar]
  99. ChenZ. CaoZ. GuiF. ZhangM. WuX. PengH. YuB. LiW. AiF. ZhangJ. TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice.Cells20221119299210.3390/cells1119299236230956
    [Google Scholar]
  100. FuY. WangY. LiuY. TangC. CaiJ. ChenG. DongZ. p53/sirtuin 1/NF-κB signaling axis in chronic inflammation and maladaptive kidney repair after cisplatin nephrotoxicity.Front. Immunol.20221392573810.3389/fimmu.2022.92573835874713
    [Google Scholar]
  101. SureshV. DashP. SuklabaidyaS. MurmuK.C. SasmalP.K. JogdandG.M. ParidaD. SethiM. DasB. MohapatraD. SahaS. PrasadP. SatoskarA. SenapatiS. MIF confers survival advantage to pancreatic CAFs by suppressing interferon pathway-induced p53-dependent apoptosis.FASEB J.2022368e2244910.1096/fj.202101953R35839070
    [Google Scholar]
  102. YuanJ. ZhuQ. ZhangX. WenZ. ZhangG. LiN. PeiY. WangY. PeiS. XuJ. JiaP. PengC. LuW. QinJ. CaoQ. XiaoY. Ezh2 competes with p53 to license lncRNA Neat1 transcription for inflammasome activation.Cell Death Differ.202229102009202310.1038/s41418‑022‑00992‑335568718
    [Google Scholar]
  103. YaoC. WangY. GongD. FengT. ZhangY. WangC. WangM. ZhuJ. Anti-TLR4 IgG2 prevents acetaminophen-induced acute liver injury through the toll-like receptor 4/MAPKs signaling pathway in mice.Curr. Mol. Med.202323545346910.2174/156652402266622051614172835578873
    [Google Scholar]
  104. Duarte LauF. GiuglianoR.P. Lipoprotein(a) and its significance in cardiovascular disease.JAMA Cardiol.20227776076910.1001/jamacardio.2022.098735583875
    [Google Scholar]
  105. RidkerP.M. BhattD.L. PradhanA.D. GlynnR.J. MacFadyenJ.G. NissenS.E. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials.Lancet2023401103841293130110.1016/S0140‑6736(23)00215‑536893777
    [Google Scholar]
  106. ZhangG. QinQ. ZhangC. SunX. KazamaK. YiB. ChengF. GuoZ.F. SunJ. NDRG1 signaling is essential for endothelial inflammation and vascular remodeling.Circ. Res.2023132330631910.1161/CIRCRESAHA.122.32183736562299
    [Google Scholar]
  107. ZhangH. XiaN. TangT. NieS. ZhaL. ZhangM. LvB. LuY. JiaoJ. LiJ. ChengX. Cholesterol suppresses human iTreg differentiation and nTreg function through mitochondria-related mechanisms.J. Transl. Med.202321122410.1186/s12967‑023‑03896‑z36973679
    [Google Scholar]
  108. GuileyK.Z. ShokatK.M. A small molecule reacts with the p53 somatic mutant Y220C to rescue wild-type thermal stability.Cancer Discov.2023131566910.1158/2159‑8290.CD‑22‑038136197521
    [Google Scholar]
  109. AzeminW.A. AliasN. AliA.M. ShamsirM.S. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks.J. Biomol. Struct. Dyn.20234141141116710.1080/07391102.2021.201734934935583
    [Google Scholar]
  110. PengD.H. RodriguezB.L. DiaoL. GaudreauP.O. PadhyeA. KonenJ.M. OchiengJ.K. ClassC.A. FradetteJ.J. GibsonL. ChenL. WangJ. ByersL.A. GibbonsD.L. Th17 cells contribute to combination MEK inhibitor and anti-PD-L1 therapy resistance in KRAS/p53 mutant lung cancers.Nat. Commun.2021121260610.1038/s41467‑021‑22875‑w33972557
    [Google Scholar]
  111. PanY. HaoY. HanH. ChenT. DingH. LabbeK.E. ShumE. GuidryK. HuH. ShermanF. GengK. StephensJ. ChafitzA. TangS. HuangH.Y. PengC. AlmonteC. LopesJ.E. LoseyH.C. WinquistR.J. VelchetiV. ZhangH. WongK.K. Nemvaleukin alfa, a novel engineered IL-2 fusion protein, drives antitumor immunity and inhibits tumor growth in small cell lung cancer.J. Immunother. Cancer2022109e00491310.1136/jitc‑2022‑00491336472839
    [Google Scholar]
  112. NajmuddinS.U.F.S. AminZ.M. TanS.W. YeapS.K. KalyanasundramJ. AniM.A.C. VeerakumarasivamA. ChanS.C. ChiaS.L. YusoffK. AlitheenN.B. Cytotoxicity study of the interleukin-12-expressing recombinant Newcastle disease virus strain, rAF-IL12, towards CT26 colon cancer cells in vitro and in vivo. Cancer Cell Int.202020127810.1186/s12935‑020‑01372‑y32612457
    [Google Scholar]
  113. HearrisM.A. OwensD.J. StraussJ.A. ShepherdS.O. SharplesA.P. MortonJ.P. LouisJ.B. Graded reductions in pre-exercise glycogen concentration do not augment exercise-induced nuclear AMPK and PGC-1α protein content in human muscle.Exp. Physiol.2020105111882189410.1113/EP08886632862503
    [Google Scholar]
  114. XuY. LiY. JadhavK. PanX. ZhuY. HuS. ChenS. ChenL. TangY. WangH.H. YangL. WangD.Q.H. YinL. ZhangY. Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism.Nat. Metab.202131597410.1038/s42255‑020‑00331‑133462514
    [Google Scholar]
  115. Escudero-LourdesC. Alvarado-MoralesI. TokarE.J. Stem cells as target for prostate cancer therapy: Opportunities and challenges.Stem Cell Rev. Rep.20221882833285110.1007/s12015‑022‑10437‑635951166
    [Google Scholar]
  116. RomeoM.A. Gilardini MontaniM.S. BenedettiR. ArenaA. D’OraziG. CironeM. p53-R273H sustains ROS, pro-inflammatory cytokine release and mTOR activation while reducing autophagy, mitophagy and UCP2 expression, effects prevented by wtp53.Biomolecules202111334410.3390/biom1103034433668399
    [Google Scholar]
  117. FangZ. MengQ. XuJ. WangW. ZhangB. LiuJ. LiangC. HuaJ. ZhaoY. YuX. ShiS. Signaling pathways in cancer-associated fibroblasts: Recent advances and future perspectives.Cancer Commun.202343134110.1002/cac2.1239236424360
    [Google Scholar]
  118. ZhangT. LiH. ShiJ. LiS. LiM. ZhangL. ZhengL. ZhengD. TangF. ZhangX. ZhangF. YouX. p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis.Arthritis Res. Ther.201618127110.1186/s13075‑016‑1161‑427881147
    [Google Scholar]
  119. SayersE.W. BoltonE.E. BristerJ.R. CaneseK. ChanJ. ComeauD.C. ConnorR. FunkK. KellyC. KimS. MadejT. Marchler-BauerA. LanczyckiC. LathropS. LuZ. Thibaud-NissenF. MurphyT. PhanL. SkripchenkoY. TseT. WangJ. WilliamsR. TrawickB.W. PruittK.D. SherryS.T. Database resources of the national center for biotechnology information.Nucleic Acids Res.202250D1D20D2610.1093/nar/gkab111234850941
    [Google Scholar]
  120. KhanM.R. BukhariI. KhanR. HussainH.M.J. WuM. ThorneR.F. LiJ. LiuG. TP53LNC-DB, the database of lncRNAs in the p53 signalling network.Database20192019bay13610.1093/database/bay13630624647
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673272862231230194711
Loading
/content/journals/cmc/10.2174/0109298673272862231230194711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test