Skip to content
2000
Volume 32, Issue 8
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Polycystic ovary syndrome (PCOS) is one of the most frequent endocrinopathology affecting women in their reproductive ages. However, PCOS is also related to metabolic abnormalities such as metabolic syndrome (MS), insulin resistance (IR), and type 2 diabetes, among others. Consequently, an inflammatory and pro-oxidative status is also present in these patients, aggravating the syndrome's symptoms. This work aims to discuss some late treatments that focus on oxidative stress (OS) as a central feature related to primary PCOS abnormalities. Therefore, this review focuses on the evidence of anti-oxidant diets, natural compounds, mineralocorticoids, and combined therapies for PCOS management. Oxidative stress (OS) is important in PCOS pathogenesis. In this regard, increased levels of oxidative oxygen species and decreased levels of anti-oxidant agents’ impact PCOS's reproductive and metabolic features. In the last years, non-pharmacological therapies have been considered a first line of treatment. For these reasons, several natural compounds such as Kelult honey (KH), , Linn, and , vitamin C, vitamin E, selenium, zinc, beta-carotene, magnesium, curcumin, mineralocorticoids and melatonin alone or in combination are powerful anti-oxidant agents being used for PCOS management. Data presented here suggest that natural therapies are essential in managing both reproductive and metabolic features in PCOS patients. Due to the results obtained, these incipient therapies deserve further investigation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673270372231130071320
2024-02-16
2025-10-02
Loading full text...

Full text loading...

References

  1. FranksS. Polycystic ovary syndrome.N. Engl. J. Med.19953331385386110.1056/NEJM1995092833313077651477
    [Google Scholar]
  2. AbbottD.H. DumesicD.A. FranksS. Developmental origin of polycystic ovary syndrome - a hypothesis.J. Endocrinol.200217411510.1677/joe.0.174000112098657
    [Google Scholar]
  3. Sanchez-GarridoM.A. Tena-SempereM. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies.Mol. Metab.2020353510093710094210.1016/j.molmet.2020.01.00132244180
    [Google Scholar]
  4. MoradiN.F. HadjzadehM.A. GholamnezhadZ. SohrabiF. SamadiN.Z. The protective effects of trans-anethole against polycystic ovary syndrome induced histopathological and metabolic changes in rat.Int. J. Fertil. Steril.202216319219936029056
    [Google Scholar]
  5. MottaA.B. Dehydroepiandrosterone to induce murine models for the study of polycystic ovary syndrome.J. Steroid Biochem. Mol. Biol.20101193-510511110.1016/j.jsbmb.2010.02.01520188831
    [Google Scholar]
  6. Beatriz MottaA. The role of obesity in the development of polycystic ovary syndrome.Curr. Pharm. Des.201218172482249110.2174/1381612811209248222376149
    [Google Scholar]
  7. MottaA. Mechanisms involved in metformin action in the treatment of polycystic ovary syndrome.Curr. Pharm. Des.200915263074307710.2174/13816120978905810119754381
    [Google Scholar]
  8. AbruzzeseG.A. HeberM.F. Campo Verde ArboccoF. FerreiraS.R. MottaA.B. Fetal programming by androgen excess in rats affects ovarian fuel sensors and steroidogenesis.J. Dev. Orig. Health Dis.201910664565810.1017/S204017441900012631122307
    [Google Scholar]
  9. AbruzzeseG.A. HeberM.F. FerreiraS.R. FerrerM.J. MottaA.B. Prenatal androgen exposure affects ovarian lipid metabolism and steroid biosynthesis in rats.J. Endocrinol.2020247323925010.1530/JOE‑20‑030433112815
    [Google Scholar]
  10. VelezL.M. AbruzzeseG.A. HeberM.F. FerreiraS.R. MottaA.B. Treatment with the synthetic PPARG ligand pioglitazone ameliorates early ovarian alterations induced by dehydroepiandrosterone in prepubertal rats.Pharmacol. Rep.20197119610410.1016/j.pharep.2018.09.00930508725
    [Google Scholar]
  11. ZuoT. ZhuM. XuW. Roles of oxidative stress in polycystic ovary syndrome and cancers.Oxid. Med. Cell. Longev.2016201611410.1155/2016/858931826770659
    [Google Scholar]
  12. GonzálezF. ConsidineR.V. AbdelhadiO.A. ActonA.J. Oxidative stress in response to saturated fat ingestion is linked to insulin resistance and hyperandrogenism in polycystic ovary syndrome.J. Clin. Endocrinol. Metab.2019104115360537110.1210/jc.2019‑0098731298704
    [Google Scholar]
  13. PignyP. JonardS. RobertY. DewaillyD. Serum anti-Mullerian hormone as a surrogate for antral follicle count for definition of the polycystic ovary syndrome.J. Clin. Endocrinol. Metab.200691394194510.1210/jc.2005‑207616368745
    [Google Scholar]
  14. PellattL. HannaL. BrincatM. GaleaR. BrainH. WhiteheadS. MasonH. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries.J. Clin. Endocrinol. Metab.200792124024510.1210/jc.2006‑158217062765
    [Google Scholar]
  15. Diamanti-KandarakisE. PiperiC. KalofoutisA. CreatsasG. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome.Clin. Endocrinol.2005621374310.1111/j.1365‑2265.2004.02170.x15638868
    [Google Scholar]
  16. AgarwalA. GuptaS. SharmaR.K. Role of oxidative stress in female reproduction.Reprod. Biol. Endocrinol.200531283510.1186/1477‑7827‑3‑2816018814
    [Google Scholar]
  17. Diamanti-KandarakisE. PioukaA. LivadasS. PiperiC. KatsikisI. PapavassiliouA.G. PanidisD. Anti-mullerian hormone is associated with advanced glycosylated end products in lean women with polycystic ovary syndrome.Eur. J. Endocrinol.2009160584785310.1530/EJE‑08‑051019208775
    [Google Scholar]
  18. AmalfiS. VelezL.M. HeberM.F. VighiS. FerreiraS.R. OrozcoA.V. PignataroO. MottaA.B. Prenatal hyperandrogenization induces metabolic and endocrine alterations which depend on the levels of testosterone exposure.PLoS One201275e37658e3766510.1371/journal.pone.003765822655062
    [Google Scholar]
  19. VelezL.M. SeldinM. MottaA.B. Inflammation and reproductive function in women with polycystic ovary syndrome.Biol. Reprod.202110461205121710.1093/biolre/ioab05033739372
    [Google Scholar]
  20. AquinoC.I. NoriS.L. Complementary therapy in polycystic ovary syndrome.Transl. Med. UniSa20149566524809037
    [Google Scholar]
  21. ShahrokhiS.A. NaeiniA.A. The association between dietary antioxidants, oxidative stress markers, abdominal obesity and poly-cystic ovary syndrome: A case control study.J. Obstet. Gynaecol.2020401778210.1080/01443615.2019.160321531304805
    [Google Scholar]
  22. NoormohammadiM. EslamianG. MalekS. ShoaibinobarianN. MirmohammadaliS.N. The association between fertility diet score and polycystic ovary syndrome: A Case-Control study.Health Care Women Int.2022431-3708410.1080/07399332.2021.188629833797335
    [Google Scholar]
  23. EslamianG. HekmatdoostA. Nutrient patterns and risk of polycystic ovary syndrome.J. Reprod. Infertil.201920316116831423419
    [Google Scholar]
  24. CombellesC.M.H. GuptaS. AgarwalA. Could oxidative stress influence the in-vitro maturation of oocytes?Reprod. Biomed. Online200918686488010.1016/S1472‑6483(10)60038‑719490793
    [Google Scholar]
  25. LegroR.S. ArslanianS.A. EhrmannD.A. HoegerK.M. MuradM.H. PasqualiR. WeltC.K. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society clinical practice guideline.J. Clin. Endocrinol. Metab.201398124565459210.1210/jc.2013‑235024151290
    [Google Scholar]
  26. PuchauB. Dietary total anti-oxidant capacity: A novel indicator of diet quality in healthy young adults.J. Am. Coll. Nutr.200928664865610.1080/07315724.2009.1071979720516264
    [Google Scholar]
  27. ÇalapkorurS. BesagilP.S. ŞahinH. Determination of the relationship between total antioxidant capacity and dietary antioxidant intake in obese patients.Niger. J. Clin. Pract.202023448148810.4103/njcp.njcp_212_1932246654
    [Google Scholar]
  28. KimK. VanceT. ChunO. Greater total antioxidant capacity from diet and supplements is associated with a less atherogenic blood profile in U.S. adults.Nutrients201681151910.3390/nu801001526742057
    [Google Scholar]
  29. ZhongG-C. PuY. Total anti-oxidant capacity and pancreatic cancer incidence and mortality in the prostate, lung, colorectal, and ovarian cancer screening trial.Cancer Epidemiol. Biomarkers Prev.20202951019102810.1158/1055‑9965.EPI‑19‑151132051196
    [Google Scholar]
  30. ShoaibinobarianN. EslamianG. NoormohammadiM. Dietary total anti-oxidant capacity and risk of polycystic ovary syndrome: A case-control study.Int. J. Fertil. Steril.202216320020536029057
    [Google Scholar]
  31. HeshmatiJ. GolabF. MorvaridzadehM. PotterE. Akbari-FakhrabadiM. FarsiF. TanbakooeiS. ShidfarF. The effects of curcumin supplementation on oxidative stress, Sirtuin-1 and peroxisome proliferator activated receptor γ coactivator 1α gene expression in polycystic ovarian syndrome (PCOS) patients: A randomized placebo-controlled clinical trial.Diabetes Metab. Syndr.2020142778210.1016/j.dsx.2020.01.00231991296
    [Google Scholar]
  32. GoldbergT. CaiW. PeppaM. DardaineV. BaligaB.S. UribarriJ. VlassaraH. Advanced glycoxidation end products in commonly consumed foods.J. Am. Diet. Assoc.200410481287129110.1016/j.jada.2004.05.21415281050
    [Google Scholar]
  33. Diamanti-KandarakisE. PiperiC. KorkolopoulouP. KandarakiE. LevidouG. PapaloisA. PatsourisE. PapavassiliouA.G. Accumulation of dietary glycotoxins in the reproductive system of normal female rats.J. Mol. Med.200785121413142010.1007/s00109‑007‑0246‑617694292
    [Google Scholar]
  34. PaliouraE. PalimeriS. PiperiC. SakellariouS. KandarakiE. SergentanisT. LevidouG. AgrogiannisG. PapaloisA. KorkolopoulouP. Diamanti-KandarakisE. PapavassiliouA.G. Impact of androgen and dietary advanced glycation end products on female rat liver.Cell. Physiol. Biochem.20153731134114610.1159/00043040026414164
    [Google Scholar]
  35. ZhangS. WangR. ChuJ. SunC. LinS. Vegetable extracts: Effective inhibitors of heterocyclic aromatic amines and advanced glycation end products in roasted Mackerel.Food Chem.20234124121355591356710.1016/j.foodchem.2023.13555936708673
    [Google Scholar]
  36. WuX. ZhangZ. HeZ. WangZ. QinF. ZengM. ChenJ. Effect of freeze-thaw cycles on the oxidation of protein and fat and its relationship with the formation of heterocyclic aromatic amines and advanced glycation end products in raw meat.Molecules2021265126410.3390/molecules2605126433652771
    [Google Scholar]
  37. WenP. ZhangL. KangY. XiaC. JiangJ. XuH. CuiG. WangJ. Effect of baking temperature and time on advanced glycation end products and polycyclic aromatic hydrocarbons in beef.J. Food Prot.202285121726173610.4315/JFP‑22‑13936040219
    [Google Scholar]
  38. MitraB. KristensenL. LametschR. Ruiz-CarrascalJ. Cooking affects pork proteins in vitro rate of digestion due to different structural and chemical modifications.Meat Sci.202219210892410.1016/j.meatsci.2022.10892435878433
    [Google Scholar]
  39. KamalD.A.M. IbrahimS.F. UgusmanA. MokhtarM.H. Kelulut honey ameliorates oestrus cycle, hormonal profiles, and oxidative stress in letrozole-induced polycystic ovary syndrome rats.Antioxidants20221110187910.3390/antiox1110187936290602
    [Google Scholar]
  40. BudinS.B. JubaidiF.F. AzamS.N. YusofN.L.M. TaibI.S. MohamedJ. Kelulut honey supplementation prevents sperm and testicular oxidative damage in streptozotocin-induced diabetic rats.J. Teknol.2017798995
    [Google Scholar]
  41. RamliE.S. KamaruzzamanM.A. ThanuA. YusofM.R. SoelaimanI.N. Kelulut honey ameliorates glucocorticoid induced osteoporosis via its antioxidant activity in rats.Asian Pac. J. Trop. Biomed.201991249310.4103/2221‑1691.271722
    [Google Scholar]
  42. RannehY. AkimA.M. HamidH.A. KhazaaiH. FadelA. MahmoudA.M. Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK.Nutr. Metab.20191611510.1186/s12986‑019‑0341‑z30858869
    [Google Scholar]
  43. FletcherM.T. HungerfordN.L. WebberD. Carpinelli de JesusM. ZhangJ. StoneI.S.J. BlanchfieldJ.T. ZawawiN. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits.Sci. Rep.20201011212810.1038/s41598‑020‑68940‑032699353
    [Google Scholar]
  44. Shams ArdekaniM.R. HadjiakhoondiA. JamshidiA.J. AbdiK. The study of volatile oil of Foeniculum vulgare Miller. In their tissue culture and comparison with the whole plant.Faslnamah-i Giyahan-i Daruyi20054157380
    [Google Scholar]
  45. AkbarzadehM. HeidaryM. YazdanpanahiZ. DabbaghmaneshM.H. ParsanezhadM.E. EmamghoreishiM. Effect of chamomile capsule on lipid- and hormonal-related parameters among women of reproductive age with polycystic ovary syndrome.J. Res. Med. Sci.2018231333910.4103/jrms.JRMS_90_1729887901
    [Google Scholar]
  46. FoudahA.I. ShakeelF. AlqarniM.H. YusufogluH.S. SalkiniM.A. AlamP. Determination of trans-anethole in essential oil, methanolic extract and commercial formulations of foeniculum vulgare mill using a green RP-HPTLC-densitometry method.Separations2020745110.3390/separations7040051
    [Google Scholar]
  47. MarinovV. Valcheva-KuzmanovaS. Review on the pharmacological activities of anethole.Scr. Sci. Pharm2015221410.14748/ssp.v2i2.1141
    [Google Scholar]
  48. ButnariuM. CoradiniC.Z. Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry.Chem. Cent. J.201261354110.1186/1752‑153X‑6‑3522540963
    [Google Scholar]
  49. ShedoevaA. LeavesleyD. UptonZ. FanC. Wound healing and the use of medicinal plants.Evid. Based Complement. Alternat. Med.2019201913010.1155/2019/268410831662773
    [Google Scholar]
  50. MohammadiM. Oxidative stress and polycystic ovary syndrome: A brief review.Int. J. Prev. Med.20191018610.4103/ijpvm.IJPVM_576_1731198521
    [Google Scholar]
  51. PreethiK.C. KuttanG. KuttanR. Antioxidant potential of an extract of Calendula officinalis. Flowers in vitro and in vivo. Pharm. Biol.200644969169710.1080/13880200601009149
    [Google Scholar]
  52. LiuZ.Q. LuoX.Y. LiuG.Z. ChenY.P. WangZ.C. SunY.X. In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes.J. Agric. Food Chem.20035192555255810.1021/jf026228i12696936
    [Google Scholar]
  53. de Araújo LopesA. da FonsecaF.N. RochaT.M. de FreitasL.B. AraújoE.V.O. WongD.V.T. Lima JúniorR.C.P. LealL.K.A.M. Eugenol as a promising molecule for the treatment of dermatitis: Antioxidant and anti-inflammatory activities and its nanoformulation.Oxid. Med. Cell. Longev.2018201811310.1155/2018/819484930647816
    [Google Scholar]
  54. KokabiyanZ. YaghmaeiP. JameieS.B. HajebrahimiZ. Therapeutic effects of eugenol in polycystic ovarian rats induced by estradiol valerate: A histopathological and a biochemical study.>Int. J. Fertil. Steril.202216318419118650913
    [Google Scholar]
  55. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843518650913
    [Google Scholar]
  56. FeracoA. MarzollaV. ScuteriA. ArmaniA. CaprioM. Mineralocorticoid receptors in metabolic syndrome: From physiology to disease.Trends Endocrinol. Metab.202031320521710.1016/j.tem.2019.11.00631843490
    [Google Scholar]
  57. BañulsC. Rovira-LlopisS. Martinez de MarañonA. VesesS. JoverA. GomezM. RochaM. Hernandez-MijaresA. VictorV.M. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte–endothelium interactions in PCOS.Metabolism20177115316210.1016/j.metabol.2017.02.01228521868
    [Google Scholar]
  58. RudnickaE. DuszewskaA.M. Oxidative stress in polycystic ovary syndrome (PCOS).Reproduction2022164614515410.1530/REP‑22‑015236279177
    [Google Scholar]
  59. UçkanK. DemirH. TuranK. SarıkayaE. DemirC. Role of oxidative stress in obese and nonobese PCOS patients.Int. J. Clin. Pract.202220221910.1155/2022/457983135685525
    [Google Scholar]
  60. VictorV.M. Rovira-LlopisS. BañulsC. Diaz-MoralesN. Martinez de MarañonA. Rios-NavarroC. AlvarezA. GomezM. RochaM. Hernández-MijaresA. Insulin resistance in PCOS patients enhances oxidative stress and leukocyte adhesion: Role of myeloperoxidase.PLoS One2016113e015196010.1371/journal.pone.015196027007571
    [Google Scholar]
  61. DanjumaM.I. MukherjeeI. MakaronidisJ. OsulaS. Converging indications of aldosterone antagonists (spironolactone and eplerenone): A narrative review of safety profiles.Curr. Hypertens. Rep.201416241410.1007/s11906‑013‑0414‑824407447
    [Google Scholar]
  62. ThuzarM. StowasserM. The mineralocorticoid receptor - an emerging player in metabolic syndrome?J. Hum. Hypertens.202135211712310.1038/s41371‑020‑00467‑333526798
    [Google Scholar]
  63. AreloegbeS.E. PeterM.U. OyelekeM.B. OlaniyiK.S. Low-dose spironolactone ameliorates adipose tissue inflammation and apoptosis in letrozole-induced PCOS rat model.BMC Endocr. Disord.202222122410.1186/s12902‑022‑01143‑y36071485
    [Google Scholar]
  64. PeterM.U. AreloegbeS.E. AkintayoC.O. OniyideA.A. AturamuA. OlaniyiK.S. Low-dose spironolactone abates cardio-renal disorder by reduction of BAX/inflammasome expression in experimentally induced polycystic ovarian syndrome rat model.Can. J. Physiol. Pharmacol.2022100989090210.1139/cjpp‑2022‑017635771488
    [Google Scholar]
  65. AsghariM.H. MoloudizargariM. BahadarH. AbdollahiM. A review of the protective effect of melatonin in pesticide-induced toxicity.Expert Opin. Drug Metab. Toxicol.201713554555410.1080/17425255.2016.121471227434705
    [Google Scholar]
  66. AsghariM.H. MoloudizargariM. GhobadiE. FallahM. AbdollahiM. Melatonin as a multifunctional anti- cancer molecule: Implications in gastric cancer.Life Sci.2017185384510.1016/j.lfs.2017.07.02028739305
    [Google Scholar]
  67. AsghariM.H. MoloudizargariM. BaeeriM. BaghaeiA. RahimifardM. SolgiR. JafariA. AminjanH.H. HassaniS. MoghadamniaA.A. OstadS.N. AbdollahiM. On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity.Arch. Toxicol.20179193109312010.1007/s00204‑017‑1998‑628551710
    [Google Scholar]
  68. ReiterR.J. TanD.X. TamuraH. CruzM.H.C. Fuentes-BrotoL. Clinical relevance of melatonin in ovarian and placental physiology: A review.Gynecol. Endocrinol.2014302838910.3109/09513590.2013.84923824319996
    [Google Scholar]
  69. TanD.X. ManchesterL.C. SainzR.M. MayoJ.C. LeonJ. HardelandR. PoeggelerB. ReiterR.J. Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatonin.J. Pineal Res.200539218519410.1111/j.1600‑079X.2005.00234.x16098097
    [Google Scholar]
  70. ReiterR.J. TanD.X. MaldonadoM.D. Melatonin as an antioxidant: Physiology versus pharmacology.J. Pineal Res.200539221521610.1111/j.1600‑079X.2005.00261.x16098101
    [Google Scholar]
  71. TanD.X. ManchesterL.C. HardelandR. Lopez-BurilloS. MayoJ.C. SainzR.M. ReiterR.J. Melatonin: A hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin.J. Pineal Res.2003341757810.1034/j.1600‑079X.2003.02111.x12485375
    [Google Scholar]
  72. KarunanithiD. RadhakrishnaA. SivaramanK.P. BijuV.M.N. Quantitative determination of melatonin in milk by LC-MS/MS.J. Food Sci. Technol.201451480581210.1007/s13197‑013‑1221‑624741180
    [Google Scholar]
  73. ReiterR.J. TamuraH. TanD.X. XuX.Y. Melatonin and the circadian system: Contributions to successful female reproduction.Fertil. Steril.2014102232132810.1016/j.fertnstert.2014.06.01424996495
    [Google Scholar]
  74. TamuraH. NakamuraY. KorkmazA. ManchesterL.C. TanD.X. SuginoN. ReiterR.J. Melatonin and the ovary: Physiological and pathophysiological implications.Fertil. Steril.200992132834310.1016/j.fertnstert.2008.05.01618804205
    [Google Scholar]
  75. PacchiarottiA. CarlomagnoG. AntoniniG. PacchiarottiA. Effect of myo-inositol and melatonin versus myo-inositol, in a randomized controlled trial, for improving in vitro fertilization of patients with polycystic ovarian syndrome.Gynecol. Endocrinol.2016321697310.3109/09513590.2015.110144426507336
    [Google Scholar]
  76. JamilianM. ForoozanfardF. MirhosseiniN. KavossianE. Effects of melatonin supplementation on hormonal, inflammatory, genetic, and oxidative stress parameters in women with polycystic ovary syndrome.Front. Endocrinol.20221410273
    [Google Scholar]
  77. GlasdamS-M. GlasdamS. PetersG.H. The importance of magnesium in the human body: A systematic literature review.Adv. Clin. Chem.201673169193
    [Google Scholar]
  78. Rodríguez-MoránM. Simental MendíaL.E. Zambrano GalvánG. Guerrero-RomeroF. The role of magnesium in type 2 diabetes: A brief based-clinical review.Magnes. Res.201124415616210.1684/mrh.2011.029922198525
    [Google Scholar]
  79. AsemiZ. EsmaillzadehA. DASH diet, insulin resistance, and serum hs-CRP in polycystic ovary syndrome: A randomized controlled clinical trial.Horm. Metab. Res.201547323223810.1055/s‑0034‑137699024956415
    [Google Scholar]
  80. SzczukoM. SkowronekM. Zapałowska-ChwyćM. StarczewskiA. Quantitative assessment of nutrition in patients with polycystic ovary syndrome (PCOS).Rocz. Panstw. Zakl. Hig.201667441942627925712
    [Google Scholar]
  81. HamiltonK.P. ZeligR. ParkerA.R. HaggagA. Insulin resistance and serum magnesium concentrations among women with polycystic ovary syndrome.Curr. Dev. Nutr.2019311nzz10810.1093/cdn/nzz10831696157
    [Google Scholar]
  82. Afshar EbrahimiF. ForoozanfardF. AghadavodE. BahmaniF. AsemiZ. The effects of magnesium and zinc co-supplementation on biomarkers of inflammation and oxidative stress, and gene expression related to inflammation in polycystic ovary syndrome: A randomized controlled clinical trial.Biol. Trace Elem. Res.2018184230030710.1007/s12011‑017‑1198‑529127547
    [Google Scholar]
  83. MaktabiM. JamilianM. AsemiZ. Magnesium-zinc-calcium-vitamin D co-supplementation improves hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial.Biol. Trace Elem. Res.20181821212810.1007/s12011‑017‑1085‑028668998
    [Google Scholar]
  84. MousaviR. AlizadehM. AsghariJ.M. HeidariL. NikbakhtR. BabaahmadiR.H. KarandishM. Effects of melatonin and/or magnesium supplementation on biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial.Biol. Trace Elem. Res.202220031010101910.1007/s12011‑021‑02725‑y34009514
    [Google Scholar]
  85. DouM. MaA.G. WangQ.Z. LiangH. LiY. YiX.M. ZhangS.C. Supplementation with magnesium and vitamin E were more effective than magnesium alone to decrease plasma lipids and blood viscosity in diabetic rats.Nutr. Res.200929751952410.1016/j.nutres.2009.07.00119700040
    [Google Scholar]
  86. AlizadehM. KarandishM. AsghariJ.M. HeidariL. NikbakhtR. BabaahmadiR.H. MousaviR. Metabolic and hormonal effects of melatonin and/or magnesium supplementation in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial.Nutr. Metab.20211815710.1186/s12986‑021‑00586‑934092248
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673270372231130071320
Loading
/content/journals/cmc/10.2174/0109298673270372231130071320
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test