Skip to content
2000
Volume 32, Issue 12
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Gut microbiota is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD) through the metabolites, which can induce atherogenesis. One of these metabolites is trimethylamine N-oxide (TMAO). Some studies indicate that statins do not only decrease LDL-cholesterol and thus ASCVD risk, but they also affect gut microbiota. There are only a few studies on humans suggesting that statins might also decrease TMAO, but their results are not unanimous. This meta-analysis aimed to provide an answer as to whether statins do affect decreasing the plasma levels of atherogenic TMAO.

Methods

A systematic literature search in PubMed, Scopus, Embase, and Web of Science was performed from inception to January 1st, 2023. To assess the quality of each study included in the meta-analysis, the Cochrane Quality Assessment tool 1 (ROB 1) was used. Comprehensive Meta-Analysis V3 software was used to perform the meta-analysis. The weighted mean difference was also used. A random effects meta-analysis was used to calculate the overall estimate of effect size. In the leave-one-out approach, one study was excluded from each analysis to evaluate the effect of each study on the overall effect size.

Results

Random-effects meta-analysis of 3 studies including 244 patients demonstrated a significant decrease in plasma TMAO levels after statin treatment (WMD: -1.839, 95% CI: -2.391, -1.287, <0.001; I2:0). The reduction in TMAO was robust in the leave-one-out sensitivity analysis.

Conclusion

Statins might reduce TMAO levels, but there is a need for further evidence from long-term studies taking into account different types and doses of statins.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673245069231010065055
2023-10-19
2025-09-30
Loading full text...

Full text loading...

References

  1. LiuH. ZhuangJ. TangP. LiJ. XiongX. DengH. The role of the gut microbiota in coronary heart disease.Curr. Atheroscler. Rep.202022127710.1007/s11883‑020‑00892‑233063240
    [Google Scholar]
  2. ManolisA.A. ManolisT.A. MelitaH. ManolisA.S. Gut microbiota and cardiovascular disease: Symbiosis versus dysbiosis.Curr. Med. Chem.202229234050407710.2174/092986732866621121311294934961453
    [Google Scholar]
  3. ZwartjesM.S.Z. GerdesV.E.A. NieuwdorpM. The role of gut microbiota and its produced metabolites in obesity, dyslipidemia, adipocyte dysfunction, and its interventions.Metabolites202111853110.3390/metabo1108053134436472
    [Google Scholar]
  4. Al SamarraieA. PichetteM. RousseauG. Role of the gut microbiome in the development of atherosclerotic cardiovascular disease.Int. J. Mol. Sci.2023246542010.3390/ijms2406542036982492
    [Google Scholar]
  5. VourakisM. MayerG. RousseauG. The role of gut microbiota on cholesterol metabolism in atherosclerosis.Int. J. Mol. Sci.20212215807410.3390/ijms2215807434360839
    [Google Scholar]
  6. PieczynskaM.D. YangY. PetrykowskiS. HorbanczukO.K. AtanasovA.G. HorbanczukJ.O. Gut microbiota and its metabolites in atherosclerosis development.Molecules202025359410.3390/molecules2503059432013236
    [Google Scholar]
  7. LeiL. ZhaoN. ZhangL. ChenJ. LiuX. PiaoS. Gut microbiota is a potential goalkeeper of dyslipidemia.Front. Endocrinol.20221395082610.3389/fendo.2022.95082636176475
    [Google Scholar]
  8. WarrierM. ShihD.M. BurrowsA.C. FergusonD. GromovskyA.D. BrownA.L. MarshallS. McDanielA. SchugarR.C. WangZ. SacksJ. RongX. VallimT.A. ChouJ. IvanovaP.T. MyersD.S. BrownH.A. LeeR.G. CrookeR.M. GrahamM.J. LiuX. PariniP. TontonozP. LusisA.J. HazenS.L. TemelR.E. BrownJ.M. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance.Cell Rep.201510332633810.1016/j.celrep.2014.12.03625600868
    [Google Scholar]
  9. MohammadiA. VahabzadehZ. JamalzadehS. KhaliliT. Trimethylamine-N-oxide, as a risk factor for atherosclerosis, induces stress in J774A.1 murine macrophages.Adv. Med. Sci.2018631576310.1016/j.advms.2017.06.00628822264
    [Google Scholar]
  10. SeldinM.M. MengY. QiH. ZhuW. WangZ. HazenS.L. LusisA.J. ShihD.M. Trimethylamine N-Oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear Factor-κB.J. Am. Heart Assoc.201652e00276710.1161/JAHA.115.00276726903003
    [Google Scholar]
  11. ZeiselS.H. WarrierM. Trimethylamine N-oxide, the microbiome, and heart and kidney disease.Annu. Rev. Nutr.201737115718110.1146/annurev‑nutr‑071816‑06473228715991
    [Google Scholar]
  12. JaneiroM. RamírezM. MilagroF. MartínezJ. SolasM. Implication of trimethylamine N-oxide (TMAO) in disease: Potential biomarker or new therapeutic target.Nutrients20181010139810.3390/nu1010139830275434
    [Google Scholar]
  13. TangW.H.W. WangZ. LevisonB.S. KoethR.A. BrittE.B. FuX. WuY. HazenS.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.N. Engl. J. Med.2013368171575158410.1056/NEJMoa110940023614584
    [Google Scholar]
  14. LeeY. NemetI. WangZ. LaiH.T.M. de Oliveira OttoM.C. LemaitreR.N. FrettsA.M. SotoodehniaN. BudoffM. DiDonatoJ.A. McKnightB. TangW.H.W. PsatyB.M. SiscovickD.S. HazenS.L. MozaffarianD. Longitudinal plasma measures of trimethylamine N-oxide and risk of atherosclerotic cardiovascular disease events in community-based older adults.J. Am. Heart Assoc.20211017e02064610.1161/JAHA.120.02064634398665
    [Google Scholar]
  15. RingelC. DittrichJ. GaudlA. SchellongP. BeuchelC.F. BaberR. BeutnerF. TerenA. EngelC. WirknerK. ThieleH. BüttnerP. LöfflerM. ScholzM. ThieryJ. CeglarekU. Association of plasma trimethylamine N-oxide levels with atherosclerotic cardiovascular disease and factors of the metabolic syndrome.Atherosclerosis2021335626710.1016/j.atherosclerosis.2021.09.02634583200
    [Google Scholar]
  16. DongZ. LiangZ. WangX. LiuW. ZhaoL. WangS. HaiX. YuK. The correlation between plasma trimethylamine N-oxide level and heart failure classification in northern Chinese patients.Ann. Palliat. Med.2020952862287110.21037/apm‑20‑29632921087
    [Google Scholar]
  17. QiJ. YouT. LiJ. PanT. XiangL. HanY. ZhuL. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies.J. Cell. Mol. Med.201822118519410.1111/jcmm.1330728782886
    [Google Scholar]
  18. HeianzaY. MaW. DiDonatoJ.A. SunQ. RimmE.B. HuF.B. RexrodeK.M. MansonJ.E. QiL. Long-Term changes in gut microbial metabolite trimethylamine N-Oxide and coronary heart disease risk.J. Am. Coll. Cardiol.202075776377210.1016/j.jacc.2019.11.06032081286
    [Google Scholar]
  19. Alvarez-JimenezL. Moreno-CabañasA. Ramirez-JimenezM. Morales-PalomoF. OrtegaJ.F. Mora-RodriguezR. Effectiveness of statins vs. exercise on reducing postprandial hypertriglyceridemia in dyslipidemic population: A systematic review and network meta-analysis.J. Sport Health Sci.202211556757710.1016/j.jshs.2021.07.00634298253
    [Google Scholar]
  20. SahebkarA. SerbanC. MikhailidisD.P. UndasA. LipG.Y.H. MuntnerP. BittnerV. RayK.K. WattsG.F. HovinghG.K. RyszJ. KasteleinJ.J. BanachM. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials.Thromb. Haemost.2015114354655726017749
    [Google Scholar]
  21. VioliF. CalvieriC. FerroD. PignatelliP. Statins as antithrombotic drugs.Circulation2013127225125710.1161/CIRCULATIONAHA.112.14533423319813
    [Google Scholar]
  22. Kandelouei, T.; Abbasifard, M.; Imani, D.; Aslani, S.; Razi, B.; Fasihi, M.; Shafiekhani, S.; Mohammadi, K.; Jamialahmadi, T.; Reiner, Ž.; Sahebkar, A. Effect of statins on serum level of hs-CRP and CRP in patients with cardiovascular diseases: A systematic review and meta-analysis of randomized controlled trials. Mediators Inflammation, 2022, 8732360.10.1155/2022/8732360
  23. KoushkiK. ShahbazS.K. MashayekhiK. SadeghiM. ZayeriZ.D. TabaM.Y. BanachM. Al-RasadiK. JohnstonT.P. SahebkarA. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways.Clin. Rev. Allergy Immunol.202160217519910.1007/s12016‑020‑08791‑932378144
    [Google Scholar]
  24. BahramiA. ParsamaneshN. AtkinS.L. BanachM. SahebkarA. Effect of statins on toll-like receptors: A new insight to pleiotropic effects.Pharmacol. Res.201813523023810.1016/j.phrs.2018.08.01430120976
    [Google Scholar]
  25. FerrettiG. BacchettiT. SahebkarA. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials.Prog. Lipid Res.201560507310.1016/j.plipres.2015.08.00326416579
    [Google Scholar]
  26. ParizadehS.M.R. AzarpazhoohM.R. MoohebatiM. NematyM. Ghayour-MobarhanM. TavallaieS. RahseparA.A. AminiM. SahebkarA. MohammadiM. FernsG.A.A. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial.Lipids201146433334010.1007/s11745‑010‑3517‑x21207250
    [Google Scholar]
  27. Sahebkar, A.; Chew, G.T.; Watts, G.F. Recent advances in pharmacotherapy for hypertriglyceridemia. Progress Lipid Res., 2014, 56, 47–66.10.1016/j.plipres.2014.07.002
  28. SahebkarA. KotaniK. SerbanC. UrsoniuS. MikhailidisD.P. JonesS.R. RayK.K. BlahaM.J. RyszJ. TothP.P. MuntnerP. LipG.Y.H. BanachM. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials.Atherosclerosis2015241243344210.1016/j.atherosclerosis.2015.05.02226074317
    [Google Scholar]
  29. BahramiA. BoS. JamialahmadiT. SahebkarA. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms.Ageing Res. Rev.20205810102410.1016/j.arr.2020.10102432006687
    [Google Scholar]
  30. Vahedian-Azimi A.; Mohammadi S.M.; Banach M.; Beni F.H.; Guest P.C.; Al-Rasadi K.; Jamialahmadi T.; Sahebkar A.; Improved COVID-19 Outcomes following statint therapy: An updated systematic review and meta-analysis. Biomed. Res. Int., 2021, 1901772.10.1155/2021/190177234568488PMC8463212
  31. BediO. DhawanV. SharmaP.L. KumarP. Pleiotropic effects of statins: New therapeutic targets in drug design.Naunyn Schmiedebergs Arch. Pharmacol.2016389769571210.1007/s00210‑016‑1252‑427146293
    [Google Scholar]
  32. SerbanC. SahebkarA. UrsoniuS. MikhailidisD.P. RizzoM. LipG.Y.H. Kees HovinghG. KasteleinJ.J.P. KalinowskiL. RyszJ. BanachM. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations.Sci. Rep.201551990210.1038/srep0990225970700
    [Google Scholar]
  33. SohrevardiS. NasabF. MirjaliliM. BagherniyaM. TaftiA. JarrahzadehM. AzarpazhoohM. SaeidmaneshM. BanachM. JamialahmadiT. SahebkarA. Effect of atorvastatin on delirium status of patients in the intensive care unit: A randomized controlled trial.Arch. Med. Sci.20191751423142810.5114/aoms.2019.8933034522273
    [Google Scholar]
  34. ChruścielP. SahebkarA. Rembek-WieliczkoM. SerbanM.C. UrsoniuS. MikhailidisD.P. JonesS.R. MosteoruS. BlahaM.J. MartinS.S. RyszJ. TothP.P. LipG.Y.H. PencinaM.J. RayK.K. BanachM. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms.Atherosclerosis201625319420810.1016/j.atherosclerosis.2016.07.89727498397
    [Google Scholar]
  35. Bytyçi, I.; Penson, P.E.; Mikhailidis, D.P.; Wong, N.D.; Hernandez, A.V.; Sahebkar, A.; Thompson, P.D.; Mazidi, M.; Rysz, J.; Pella, D.; Reiner, Ž.; Toth, P.P.; Banach, M. Prevalence of statin intolerance: a meta-analysis. Eur. Heart J., 2022, 43(34), 3213–3223.10.1093/eurheartj/ehac015
  36. OesterleA. LaufsU. LiaoJ.K. Pleiotropic effects of statins on the cardiovascular system.Circ. Res.2017120122924310.1161/CIRCRESAHA.116.30853728057795
    [Google Scholar]
  37. HigginsJ. ThomasJ. ChandlerJ. CumpstonM. LiT. PageM.J. Cochrane handbook for systematic reviews of interventions.2nd EditionChichester (UK)John Wiley & Sons2011
    [Google Scholar]
  38. BorensteinM. HedgesL. HigginsJ. RothsteinH. Comprehensive meta-analysis version 3EnglewoodBiostat2013
    [Google Scholar]
  39. LiD.Y. LiX.S. ChaikijurajaiT. LiL. WangZ. HazenS.L. TangW.H.W. Relation of statin use to gut microbial trimethylamine n-oxide and cardiovascular risk.Am. J. Cardiol.2022178263410.1016/j.amjcard.2022.05.01035787338
    [Google Scholar]
  40. XiongX. ZhouJ. FuQ. XuX. WeiS. YangS. ChenB. The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy.Lipids Health Dis.20222116010.1186/s12944‑022‑01673‑335864500
    [Google Scholar]
  41. KummenM. SolbergO.G. Storm-LarsenC. HolmK. RagnarssonA. TrøseidM. VestadB. SkårdalR. YndestadA. UelandT. SvardalA. BergeR.K. SeljeflotI. GullestadL. KarlsenT.H. AabergeL. AukrustP. HovJ.R. Rosuvastatin alters the genetic composition of the human gut microbiome.Sci. Rep.2020101539710.1038/s41598‑020‑62261‑y32214138
    [Google Scholar]
  42. DiasA.M. CordeiroG. EstevinhoM.M. VeigaR. FigueiraL. Reina-CoutoM. MagroF. Gut bacterial microbiome composition and statin intake: A systematic review.Pharmacol. Res. Perspect.202083e0060110.1002/prp2.60132476298
    [Google Scholar]
  43. KoH.H.T. LareuR.R. DixB.R. HughesJ.D. Statins: Antimicrobial resistance breakers or makers?PeerJ20175e395210.7717/peerj.395229085751
    [Google Scholar]
  44. SunC. WangZ. HuL. ZhangX. ChenJ. YuZ. LiuL. WuM. Targets of statins intervention in LDL-C metabolism: Gut microbiota.Front. Cardiovasc. Med.2022997260310.3389/fcvm.2022.97260336158845
    [Google Scholar]
  45. YangS. LiX. YangF. ZhaoR. PanX. LiangJ. TianL. LiX. LiuL. XingY. WuM. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target.Front. Pharmacol.201910136010.3389/fphar.2019.0136031803054
    [Google Scholar]
  46. MuellerD.M. AllenspachM. OthmanA. SaelyC.H. MuendleinA. VonbankA. DrexelH. von EckardsteinA. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control.Atherosclerosis2015243263864410.1016/j.atherosclerosis.2015.10.09126554714
    [Google Scholar]
  47. NaghipourS. CoxA.J. PeartJ.N. Du ToitE.F. HeadrickJ.P. Trimethylamine N-oxide: Heart of the microbiota–CVD nexus?Nutr. Res. Rev.202134112514610.1017/S095442242000017732718365
    [Google Scholar]
  48. TomlinsonJ.A.P. WheelerD.C. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease.Kidney Int.201792480981510.1016/j.kint.2017.03.05328807612
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673245069231010065055
Loading
/content/journals/cmc/10.2174/0109298673245069231010065055
Loading

Data & Media loading...

Supplements

Supplementary material and PRISMA checklist are available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test