Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

It is very important to precisely comprehend nanosheet’s mechanical properties for their future application, and the continuum-based methods play a vital role in this research domain. But, most of continuum models doesn’t provide a systematical theory, and just display certain property of nanostructures. The Cauchy-Born rule provides an alternative multiscale method, the resulted model is not only less accurate, and but also doesn’t describe the bending effect.

A nanosheet is viewed as a higher-order gradient continuum planar sheet, and the strain energy density is thus a function of both the first- and second-order deformation gradient. The higher-order Cauchy-Born rule is used to approximate the bond vectors in the representative cell, the multiscale model is established by minimizing the cell energy, and the structural and mechanical properties are thus obtained.

The obtained bond lengths are respectively 0.14507 nm, 0.14489 nm, 0.1816 nm for the graphene, boron nitride and silicon carbide hexagonal nanosheets. The elastic constants, including Young’s modulus, shear modulus, Poisson’s ratio and bending rigidity, are calculated by analyzing the physical meaning of the first- and second-order strain gradients. The developed model can also be used to study the nonlinear behavior of nanosheets under some simple loading situations, such as the uniform tension, torsion and bending. The stress-strain relationship of nanosheets is presented for the uniform tension/compression, and the three types of nannosheets exhibit better compressive resistance far greater than tensile resistance.

A reasonable multiscale model is established for the nanosheets by using the higher-order Cauchy-Born rule that provides a good interlinking between the microscale and continuum descriptions. It is proved that all three types of nannosheets shows the isotropic mechanical property. The current model can be used to establish a global nonlinear numerical modeling method in which the bending rigidity is the basic elastic constants same as the elastic modulus and Poisson’s ratio.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184501999200902143807
2020-09-02
2025-10-03
Loading full text...

Full text loading...

References

  1. NovoselovK.S. GeimA.K. MorozovS.V. JiangD. ZhangY. DubonosS.V. GrigorievaI.V. FirsovA.A. Electric field effect in atomically thin carbon films.Sci.2004306569666666910.1126/science.110289615499015
    [Google Scholar]
  2. PacileD. MeyerJ.C. GiritC.O. ZettlA. The two dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes.Appl. Phys. Lett922008.13310710.1063/1.2903702
    [Google Scholar]
  3. ShiY. HamsenC. JiaX. KimK.K. ReinaA. HofmannM. HsuA.L. ZhangK. LiH. JuangZ.Y. DresselhausM.S. LiL.J. KongJ. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition.Nano Lett.201010104134413910.1021/nl102370720812716
    [Google Scholar]
  4. SongL. CiL. LuH. SorokinP.B. JinC. NiJ. KvashninA.G. KvashninD.G. LouJ. YakobsonB.I. AjayanP.M. Large scale growth and characterization of atomic hexagonal boron nitride layers.Nano Lett.20101083209321510.1021/nl102213920698639
    [Google Scholar]
  5. LinS.S. Light-emitting two-dimensional ultrathin silicon carbide.J. Phys. Chem. C20121163951395510.1021/jp210536m
    [Google Scholar]
  6. LalmiB. OughaddouH. EnriquezH. KaraA. VizziniS. EaletB. AufrayB. "Epitaxial growth of a silicene sheet"Appl. Phys. Lett./97222010.22310910.1063/1.3524215
    [Google Scholar]
  7. RogersJ.A. LagallyM.G. NuzzoR.G. Synthesis, assembly and applications of semiconductor nanomembranes.Nature20114777362455310.1038/nature1038121886156
    [Google Scholar]
  8. YarmohammadiM. Electronic heat capacity and magnetic susceptibility of ferromagnetic silicene sheet under strain.Solid State Commun.2017250849110.1016/j.ssc.2016.11.019
    [Google Scholar]
  9. CadelanoE. PallaP.L. GiordanoS. ColomboL. Elastic properties of hydrogenated graphene.Phys. Rev. B Condens. Matter Mater. Phys822010.23541410.1103/PhysRevB.82.235414
    [Google Scholar]
  10. BraghinF.L. HasselmannN. Thermal fluctuations of free standing graphene.Phys. Rev. B Condens. Matter Mater. Phys.20108232181218810.1103/PhysRevB.82.035407
    [Google Scholar]
  11. LeeC. WeiX. KysarJ.W. HoneJ. Measurement of the elastic properties and intrinsic strength of monolayer graphene.Sci.2008321588738538810.1126/science.115799618635798
    [Google Scholar]
  12. BaumeierB. KrugerP. PollmannJ. Structural, elastic and electronic properties of SiC, BN and BeO nanotubes.Phys. Rev. B Condens. Matter Mater. Phys762007.08540710.1103/PhysRevB.76.085407
    [Google Scholar]
  13. KudinK.N. ScuseriaG.E. YakobsonB.I. C2F, BN, and C nanoshell elasticity from ab initio computations.Phys. Rev. B Condens. Matter Mater. Phys642001.23540610.1103/PhysRevB.64.235406
    [Google Scholar]
  14. ZhengF.F. DongH.L. JiY.J. LiY.Y. Adsorption of hydrazine on XC3 (X = B, Al, N, Si, and Ge) nanosheets: a computational study.Int. J. Hydrogen Energy201944126055606410.1016/j.ijhydene.2019.01.069
    [Google Scholar]
  15. PetrushenkoI.K. PetrushenkoK.B. Stone-Wales defects in graphene-like boron nitride-carbonheterostructures: formation energies, structural properties, andreactivity.Comput. Mater. Sci.201712824324810.1016/j.commatsci.2016.11.039
    [Google Scholar]
  16. MousaviH. KhodadadiJ. KurdestanyJ.M. YarmohammadiZ. Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers.Phys. Lett. A20163803823382710.1016/j.physleta.2016.09.043
    [Google Scholar]
  17. WangQ. Simulations of the bending rigidity of graphene.Phys. Lett. A20103741180118310.1016/j.physleta.2009.12.063
    [Google Scholar]
  18. BandyopadhyayA. YadavP. SarkarK. BhattacharyyaS. The destructive spontaneous ingression of tunable silica nanosheets through cancer cell membranes.Chem. Sci. (Camb.)201910246184619210.1039/C9SC00076C31360425
    [Google Scholar]
  19. ChangT. GaoH. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanicsmodel.J. Mech. Phys. Solids2003511059107410.1016/S0022‑5096(03)00006‑1
    [Google Scholar]
  20. ChengY. ShiG. The prediction of mechanical properties of graphene by molecular mechanics and struc-tural mechanics method.Adv. Mat. Res.2012583403407
    [Google Scholar]
  21. BerinskiiI.E. BorodichF.M. Elastic in-plane properties of 2D linearized models of graphene.Mech. Mater.201362606810.1016/j.mechmat.2013.03.004
    [Google Scholar]
  22. OdegardG.M. GatesT.S. NicholsonL.M. WiseK.E. Equivalent-continuum modeling of nano-structured materials.Compos. Sci. Technol.2002621869188010.1016/S0266‑3538(02)00113‑6
    [Google Scholar]
  23. ScarpaF. AdhikariS. Srikantha PhaniA. Effective elastic mechanical properties of single layer graphene sheetsNanotechnology2062009.06570910.1088/0957‑4484/20/6/06570919417403
    [Google Scholar]
  24. ShokriehM.M. RafieeR. Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach.Mater. Des.20103179079510.1016/j.matdes.2009.07.058
    [Google Scholar]
  25. BoldrinL. ScarpaF. ChowdhuryR. AdhikariS. Effective mechanical properties of hexagonal boron nitride nanosheetsNanotechnology22502011.50570210.1088/0957‑4484/22/50/50570222108443
    [Google Scholar]
  26. LiuX. MetcalfT.H. RobinsonJ.T. HoustonB.H. ScarpaF. Shear modulus of monolayer graphene prepared by chemical vapor deposition.Nano Lett.20121221013101710.1021/nl204196v22214257
    [Google Scholar]
  27. HuangY. WuJ. HwangK.C. Thickness of graphene and single-wall carbon nanotubes.Phys. Rev. B Condens. Matter Mater. Phys742006.24541310.1103/PhysRevB.74.245413
    [Google Scholar]
  28. RuC.Q. Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model.Math. Mech. Solids2009148810110.1177/1081286508092604
    [Google Scholar]
  29. ChangT. A molecular based anisotropic shell model for single-walled carbon nanotubes.J. Mech. Phys. Solids2010581422143310.1016/j.jmps.2010.05.004
    [Google Scholar]
  30. ZhangP. HuangY. GaoH. HwangK.C. Fracture nucleation in single-wall l carbon nanotubes under tension: a continuum analysis incorporating interatomic potentials.J. Appl. Mech.200269445445810.1115/1.1469002
    [Google Scholar]
  31. ZhangP. JiangH. HuangY. GeubelleP.H. HwangK.C. An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation.J. Mech. Phys. Solids20045297799810.1016/j.jmps.2003.09.032
    [Google Scholar]
  32. ArroyoM. BelytschkoT. An atomistic-based finite deformation membrane for single layer crystalline films.J. Mech. Phys. Solids2002501941197710.1016/S0022‑5096(02)00002‑9
    [Google Scholar]
  33. ArroyoM. BelytschkoT. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule.Phys. Rev. B Condens. Matter Mater. Phys692004.11541510.1103/PhysRevB.69.115415
    [Google Scholar]
  34. LeamyM.J. ChungP.W. NamburuR. On an exact mapping and a higher order Born rule for use in analyzing graphene carbon nanotubes. ARL TR-3117, Army Research Laboratory, Aberdeen Proving Ground.MD20032100525067
    [Google Scholar]
  35. GuoX. WangJ.B. ZhangH.W. Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy-Born rule.Int. J. Solids Struct.2006431276129010.1016/j.ijsolstr.2005.05.049
    [Google Scholar]
  36. WangJ.B. GuoX. ZhangH.W. WangL. LiaoJ.B. Energy and mechanical properties of single-walled carbon nanotubes predicted using the higher order Cauchy-Born rule.Phys. Rev. B Condens. Matter Mater. Phys732006.11542810.1103/PhysRevB.73.115428
    [Google Scholar]
  37. LiewK.M. SunY.Z. Elastic properties and pressure-induced structural transitions of single-walled carbon nanotubes.Phys. Rev. B Condens. Matter Mater. Phys772008.20543710.1103/PhysRevB.77.205437
    [Google Scholar]
  38. SunY.Z. LiewK.M. Application of the higher-order Cauchy-Born rule in mesh-free continuum and multiscale simulation of carbon nanotubes.Int. J. Numer. Methods Eng.200875101238125810.1002/nme.2299
    [Google Scholar]
  39. SunY.Z. LiewK.M. The buckling of single-walled carbon nanotubes upon bending: higher order gradient continuum and mesh-free method.Comput. Methods Appl. Mech. Eng.20081973001301310.1016/j.cma.2008.02.003
    [Google Scholar]
  40. NguyenD.T. LeM.Q. Mechanical properties of various two-dimensional silicon carbide sheets: an atomistic study.Superlattices Microstruct.20169810211510.1016/j.spmi.2016.08.003
    [Google Scholar]
  41. TersoffJ. Modeling solid-state chemistry: interatomic potentials for multicomponent systems.Phys. Rev. B Condens. Matter19893985566556810.1103/PhysRevB.39.55669948964
    [Google Scholar]
  42. BrennerD.W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films.Phys. Rev. B Condens. Matter199042159458947110.1103/PhysRevB.42.94589995183
    [Google Scholar]
  43. OhE.S. "Elastic properties of boron-nitride nanotubes through the continuum lattice approach"Mater. Lett.20106485986210.1016/j.matlet.2010.01.041
    [Google Scholar]
  44. ErhartP. AlbeK. "Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide"Phys. Rev. B Condens. Matter Mater. Phys.712005.03521110.1103/PhysRevB.71.035211
    [Google Scholar]
  45. MindlinR.D. Second gradient in strain and surface tension in linear elasticity.Int. J. Solids Struct.1965141743810.1016/0020‑7683(65)90006‑5
    [Google Scholar]
  46. FleckN.A. HutchinsonJ.W. Strain gradient plasticity.Adv. Appl. Mech.19973329536110.1016/S0065‑2156(08)70388‑0
    [Google Scholar]
  47. DennisJ.E. SchnabelR.B. Numerical methods for unconstrained optimization and nonlinear equations.Prentice-Hall IncNew Jersey1983
    [Google Scholar]
  48. SunY.Z. TaoJ.X. The mechanical properties of tubular nanostructures.Nanosci. Nanotechnol. Lett.2015764865410.1166/nnl.2015.2006
    [Google Scholar]
  49. SadkiK. KourraM.H. DrissiL.B. Nonlinear and thermoelastic behaviors of group-IV hybrid 2D nanosheets.Superlattices Microstruct1322019.10617210.1016/j.spmi.2019.106172
    [Google Scholar]
  50. ManjuM.S. AjithK.M. ValsakumarM.C. Strain induced anisotropic mechanical and electronic properties of 2D-SiC.Mech. Mater.2018120435210.1016/j.mechmat.2018.02.005
    [Google Scholar]
  51. EshkalakK.E. SadeghzadehS. JalalyM. Mechanical properties of defective hybrid graphene-boron nitride nanosheets: a molecular dynamics study.Comput. Mater. Sci.201814917018110.1016/j.commatsci.2018.03.023
    [Google Scholar]
  52. LeM.Q. Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics.Int. J. Mech. Mater. Des.201511152410.1007/s10999‑014‑9271‑0
    [Google Scholar]
  53. SadkiK. ZananeF.Z. OuahmanM. DrissiL.B. Molecular dynamics study of pristine and defective hexagonal BN, SiC and SiGe monolayers.Mater. Chem. Phys2422020.12247410.1016/j.matchemphys.2019.122474
    [Google Scholar]
  54. TaoJ.X. XuG.M. SunY.Z. Elastic properties of boron-nitride nanotubes through an atomic simulation method.Math. Probl. Eng.2015Article ID 240547, 201510.1155/2015/240547
    [Google Scholar]
/content/journals/cmam/10.2174/2666184501999200902143807
Loading
/content/journals/cmam/10.2174/2666184501999200902143807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test