Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

The hot working characteristic of magnesium alloys have received considerable attention in order to evaluate the constitutive behavior of these alloys under hot working conditions with a view to evaluate constitutive conditions to optimize hot workability and control the microstructure so as to obtain consistent mechanical properties.

The hot deformation response of a new dilute Mg alloy was investigated by means of a series of hot compression tests in the temperature and strain rate range of 375-450°C and 0.001-1 s-1, respectively. The stress-strain behavior, microstructure evolution and processing parameters optimization were studied carefully. Micro-structural characterization studies conducted on a series of deformed samples using optical microscopy revealed that during hot deformation, the main restoration mechanism was dynamic recrystallization (DRX).

In the final microstructure of the material, grain boundaries were thoroughly covered by layers of fine DRXed grains. Moreover, a strong twinning induced necklace structure was the most significant characteristic at high strain rates which was accompanied by smaller grain size in the domain material. Based on the measured stress-strain data, constitutive model was conducted on two regimes of low and high temperatures. Moreover, the processing map of the studied material was obtained and interpreted using dynamic material model (DMM).

The processing map was built and divided into a feasible domain at high temperatures in the whole range of strain rates and two separated instable domains in the temperature range of 375 to 435°C at high and low strain rates of 1 and 0.001 s-1.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184501999200513114706
2020-05-13
2025-10-04
Loading full text...

Full text loading...

References

  1. MordikeB. EbertT. Magnesium: properties-applications-potential.Mater. Sci. Eng. A20013021374510.1016/S0921‑5093(00)01351‑4
    [Google Scholar]
  2. LuoA. SachdevA. Applications of magnesium alloys in automotive engineering.Adv. Wrought Magnesium Alloys201239342610.1533/9780857093844.3.393
    [Google Scholar]
  3. HortN. HuangY. FechnerD. StörmerM. BlawertC. WitteF. VogtC. DrückerH. WillumeitR. KainerK.U. FeyerabendF. Magnesium alloys as implant materials-principles of property design for Mg-RE alloys.Acta Biomater.2010651714172510.1016/j.actbio.2009.09.01019788945
    [Google Scholar]
  4. TekumallaS. SeetharamanS. AlmajidA. GuptaM. Mechanical properties of magnesium-rare earth alloy systems: a review.Metals (Basel)20155113910.3390/met5010001
    [Google Scholar]
  5. HuangY. GanW. KainerK.U. HortN. Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys.J. Mag. Alloys2014211710.1016/j.jma.2014.01.005
    [Google Scholar]
  6. ZhuS.M. GibsonM. EastonM. NieJ. The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys.Scr. Mater.201063769870310.1016/j.scriptamat.2010.02.005
    [Google Scholar]
  7. MirzadehH. RoostaeiM. ParsaM.H. MahmudiR. Dynamic recrystallization kinetics in Mg-3Gd-1Zn magnesium alloy during hot deformation.Int. J. Mater. Res.2016107327727910.3139/146.111333
    [Google Scholar]
  8. DingZ.B. ZhaoY.H. LuR.P. YuanM.N. WangZ.J. LiH.J. HuaH. Effect of Zn addition on microstructure and mechanical properties of cast Mg-Gd-Y-Zr alloys.Trans. Nonferrous Met. Soc. China201929472273410.1016/S1003‑6326(19)64982‑4
    [Google Scholar]
  9. XuC. PanJ.P. NakataT. QiaoX.G. ChiY.Q. ZhengM.Y. KamadoS. Hot compression deformation behavior of Mg-9Gd-2.9 Y-1.9 Zn-0.4 Zr-0.2 Ca (wt%) alloy.Mater. Charact.2017124404910.1016/j.matchar.2016.11.036
    [Google Scholar]
  10. RokhlinL. Structure and properties of alloys of the Mg-REM system.Metal Sci. Heat Treat.20064811-1248749010.1007/s11041‑006‑0122‑y
    [Google Scholar]
  11. AbbasiZ. EbrahimiR. CabreraJ.M. Investigation on texture evolution and recrystallization aspects of novel Mg-Zn-Gd-Y-Nd alloys.Met. Mater. Int.202010.1007/s12540‑020‑00729‑2]
    [Google Scholar]
  12. XuC. XuS.W. ZhengM.Y. WuK. WangE.D. KamadoS. WangG.J. LvX.Y. Microstructures and mechanical properties of high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by severe hot rolling.J. Alloys Compd.2012524465210.1016/j.jallcom.2012.02.050
    [Google Scholar]
  13. LiH. WangH. LiZ. LiuC. LiuH. Flow behavior and processing map of as-cast Mg-10Gd-4.8 Y-2Zn-0.6 Zr alloy.Mater. Sci. Eng. A2010528115416010.1016/j.msea.2010.08.090
    [Google Scholar]
  14. QinY-J. PanQ-L. HeY-B. LiW-B. LiuX-Y. FanX. Modeling of flow stress for magnesium alloy during hot deformation.Mater. Sci. Eng. A201052710-112790279710.1016/j.msea.2010.01.035
    [Google Scholar]
  15. PrasadY. RaoK. SasidharS. Hot working guide: a compendium of processing maps.ASM InternationalUSA2015
    [Google Scholar]
  16. KhanA.S. PandeyA. Gnäupel-HeroldT. MishraR.K. Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures.Int. J. Plast.201127568870610.1016/j.ijplas.2010.08.009
    [Google Scholar]
  17. KorlaR. ChokshiA.H. Strain-rate sensitivity and microstructural evolution in a Mg-Al-Zn alloy.Scr. Mater.201063991391610.1016/j.scriptamat.2010.06.047
    [Google Scholar]
  18. MirzadehH. CabreraJ. NajafizadehA. CalvilloP. EBSD study of a hot deformed austenitic stainless steel.Mater. Sci. Eng. A201253823624510.1016/j.msea.2012.01.037
    [Google Scholar]
  19. SitdikovO. KaibyshevR. Dynamic recrystallization in pure magnesium.Mater. Trans.20014291928193710.2320/matertrans.42.1928
    [Google Scholar]
  20. ZenerC. HollomonJ.H. Effect of strain rate upon plastic flow of steel.J. Appl. Phys.1944151223210.1063/1.1707363
    [Google Scholar]
  21. SellarsC. TegartW. Relationship between strength and structure in deformation at elevated temperaturesMem. Sci. Rev. Met.1966639
    [Google Scholar]
  22. FrostH.J. AshbyM.F. Deformation mechanism maps: the plasticity and creep of metals and ceramics.Pergamon pressUK1982
    [Google Scholar]
  23. GaliyevA. KaibyshevR. GottsteinG. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60.Acta Mater.20014971199120710.1016/S1359‑6454(01)00020‑9
    [Google Scholar]
  24. HadadzadehA. WellsM.A. Analysis of the hot deformation of ZK60 magnesium alloyJ. Mag. Alloys20175436938710.1016/j.jma.2017.09.002
    [Google Scholar]
  25. MirzadehH. CabreraJ.M. NajafizadehA. Constitutive relationships for hot deformation of austenite.Acta Mater.201159166441644810.1016/j.actamat.2011.07.008
    [Google Scholar]
  26. PrasadY. Processing maps: a status report.J. Mater. Eng. Perform.200312663864510.1361/105994903322692420
    [Google Scholar]
  27. PrasadY. SeshacharyuluT. Modelling of hot deformation for microstructural control.Int. Mater. Rev.199843624325810.1179/imr.1998.43.6.243
    [Google Scholar]
  28. Prasad PrasadY. GegelH.L. DoraiveluS.M. MalasJ.C. MorganJ.T. LarkK.A. BarkerD.R. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242.Metall. Trans., A, Phys. Metall. Mater. Sci.198415101883189210.1007/BF02664902
    [Google Scholar]
  29. LinY. LiL.T. XiaY.C. JiangY.Q. Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy.J. Alloys Compd.201355043844510.1016/j.jallcom.2012.10.114
    [Google Scholar]
  30. LisselL. Modeling the microstructural evolution during hot working of C-Mn and Nb microalloyed steels using a physically based model.Mater. Sci.2006
    [Google Scholar]
  31. EbrahimiR. NajafizadehA. Optimization of Hot Workability in Ti-IF Steel using the Processing Map.Int. J. Iron Steel Soc. Iran2004117
    [Google Scholar]
  32. ZieglerH. Some extremum principles in irreversible thermodynamics, with application to continuum mechanics.Progress Solid Mechanics1963493193
    [Google Scholar]
  33. PrasadY. Recent advances in the science of mechanical processing.Ind. J. Tech.1990286-8435451
    [Google Scholar]
/content/journals/cmam/10.2174/2666184501999200513114706
Loading
/content/journals/cmam/10.2174/2666184501999200513114706
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test