Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

Lithium-rich layered materials with high discharge capacity are regarded as one of the most promising cathodes for lithium-ion batteries (LIBs). However, they have been suffering from rapid voltage fading and poor rate performance, which impede their practical application.

Herein, LiMnNiO with layered structure was successfully prepared by the ultrasonic dispersion-assisted chemical reduction. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and electrochemical measurements were used to characterize its microstructure and electrochemical properties.

The secondary particles of an as-prepared micro/nanostructured sample consist of irregular and sheet-like rectangular blocks. Electrochemical results show that the initial charge and discharge capacity within 2.0~4.8 V is 337.5 mA h g-1 and 236.9 mA h g-1 at 0.2C (1C = 200 mA g-1). The subsequent discharge capacity is stabilized at about 210 mA h g-1 for more than 100 cycles. When the current density is increased to 2C, the cycling columbic efficiency is maintained at 99.3% after 100 cycles.

Thus, the LiMnNiO cathode material prepared by ultrasonic dispersion-assisted chemical reduction has a promising application in LIBs with high energy density and long cycle life.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184501666200331125614
2020-03-31
2025-10-03
Loading full text...

Full text loading...

References

  1. ChenJ. Recent progress in advanced materials for lithium ion batteries.Materials (Basel)20136115618310.3390/ma601015628809300
    [Google Scholar]
  2. KimC. PhillipsP.J. XuL.P. DongA.G. BuonsantiR. KlieR.F. CabanaJ. Stabilization of battery electrode/electrolyte interfaces employing nanocrystals with passivating epitaxial shells.Chem. Mater.201427139439910.1021/cm503615w
    [Google Scholar]
  3. EricksonE. SchipperF. PenkiT.R. ShinJ.Y. ErkC. ChesneauF.F. MarkovskyB. AurbachD. Review-recent advances and remaining challenges for lithium ion battery cathodes ii. lithium-rich, xLi2MnO3•(1-x)LiNiaCobMncO2.J. Electrochem. Soc.20171641A6341A634810.1149/2.0461701jes
    [Google Scholar]
  4. RapulenyaneN. FergE. LuoH. High-performance Li1.2Mn0.6Ni0.2O2 cathode materials prepared through a facile one-pot co-precipitation process for lithium ion batteries.J. Alloys Compd.201876227228110.1016/j.jallcom.2018.05.207
    [Google Scholar]
  5. WangJ. HeX. PaillardE. LaszczynskiN. LiJ. PasseriniS. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries.Adv. Energy Mater.6211600906, 201610.1002/aenm.201600906
    [Google Scholar]
  6. WenL. HuX. LuoH. LiF. ChengH. Open-pore LiFePO4/C microspheres with high volumetric energy density for lithium ion batteries.Particuology201522242910.1016/j.partic.2014.11.002
    [Google Scholar]
  7. HuangZ. LiX.H. LiangY.H. HeZ.J. ChenH. WangZ.X. GuoH.J. Structural and electrochemical characterization of Mg-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion batteries.Solid State Ion.2015282889410.1016/j.ssi.2015.10.005
    [Google Scholar]
  8. WuB. YangX.K. ZhangY. YuR.Z. GaoP. ShuH.B. LiuL. WangX.Y. A novel facile synthesis of hollow multi-component Li1.4Mn0.6Co0.2Ni0.2O2+δ spheres via controlling the porosity of precursor.J. Alloys Compd.201874480982010.1016/j.jallcom.2018.02.084
    [Google Scholar]
  9. ZhaoJ. WangZ. GuoH. LiX. HeZ. LiT. Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material.Ceram. Int.2015419113961140110.1016/j.ceramint.2015.05.102
    [Google Scholar]
  10. WangD. BelharouakI. OrtegaL.H. ZhangX.F. XuR. ZhouD.H. ZhouG.W. AmineK. Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation.J. Power Sources201527445145710.1016/j.jpowsour.2014.10.016
    [Google Scholar]
  11. HuangX. ZhangQ.S. ChangH.T. GanJ.L. YueH.J. YangY. Hydrothermal Synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances.J. Electrochem. Soc.20091563A162A16810.1149/1.3054397
    [Google Scholar]
  12. ZouY. YinY. GaoY.B. XiangC.L. ChuH.L. QiuS.J. YanE.H. XuF. SunL.X. Chitosan-mediated Co-Ce-B nanoparticles for catalyzing the hydrolysis of sodium borohydride.Int. J. Hydrogen Energy201843104912492110.1016/j.ijhydene.2018.01.125
    [Google Scholar]
  13. QiuS.J. HuangJ.L. ShenF.H. PangR. ChuH.L. ZouY.J. XiangC.L. XuF. DuY. WangJ.C. SunL.X. ZhouH.Y. Ternary Co-Ni-B amorphous alloy with a superior electrochemical performance in a wide temperature range.Int. J. Hydrogen Energy20164163955396010.1016/j.ijhydene.2016.01.020
    [Google Scholar]
  14. ChenB. ZhaoB.C. ZhouJ.F. SongJ.Y. FangZ.T. DaiJ.M. ZhuX.B. SunY.P. Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode materials through facile layered/spinel phase tuning.J. Solid State Electrochem.20182282587259610.1007/s10008‑018‑3953‑8
    [Google Scholar]
  15. ZhuoZ. GuoX.D. ZhongY.J. HuaW.B. ShenC.H. ChouS.L. YangX.S. Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt: toward superior electrochemical performances.Electrochim. Acta201618833634310.1016/j.electacta.2015.12.021
    [Google Scholar]
  16. SunS. YinY. WanN. WuQ. ZhangX. PanD. BaiY. LuX. AlF3 surface-coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries.ChemSusChem20158152544255010.1002/cssc.20150014326105748
    [Google Scholar]
  17. ZhangQ. MeiJ.T. XieX.L. WangX.M. ZhangJ.Y. Solution combustion synthesis and enhanced electrochemical performance Li1.2Ni0.2Mn0.6O2 nanoparticles by controlling NO3-/CH3COO- ratio of the precursors.Mater. Res. Bull.20157039740210.1016/j.materresbull.2015.05.005
    [Google Scholar]
  18. LiY. LiX.H. WangZ.X. GuoH.J. WangJ.X. Spray pyrolysis synthesis of nickel-rich layered cathodes LiNi1−2xCoxMnxO2 (x = 0.075, 0.05, 0.025) for lithium-ion batteries.J. Energy Chem.201827244745010.1016/j.jechem.2017.11.025
    [Google Scholar]
  19. WangE. ShaoC.F. QiuS.J. ChuH.L. ZouY.J. XiangC.L. XuF. SunL.X. Organic carbon gel assisted-synthesis of Li1.2Mn0.6Ni0.2O2 for a high-performance cathode material for Li-ion batteries.RSC Advances2017731561156610.1039/C6RA26077B
    [Google Scholar]
  20. ZhouL. TianM.J. DengY.L. ZhengQ.J. XuC.G. LinD.M. La2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with enhanced specific capacity and cycling stability for lithium-ion batteries.Ceram. Int.20164214156231563310.1016/j.ceramint.2016.07.016
    [Google Scholar]
  21. YingP. QiuX.Y. ZhangQ.Q. ZhuangQ.C. Synthesis and electrochemical properties of Li-rich cathode material Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/4, 1/3) for Li-ion battery.Ionics201421365766510.1007/s11581‑014‑1207‑z
    [Google Scholar]
  22. LinJ. MuD.B. JinY. WuB.R. MaY.F. WuF. Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery.J. Power Sources2013230768010.1016/j.jpowsour.2012.12.042
    [Google Scholar]
  23. PanW. PengW.J. YanG.C. GuoH.J. WangZ.X. LiX.H. GuiW.H. WangJ.X. ChenN. Suppressing the voltage decay and enhancing the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 by multifunctional Nb2O5 coating.Energy Technol. (Weinheim)20186112139214510.1002/ente.201800253
    [Google Scholar]
  24. YuT. LiJ.L. XuG.F. LiJ.G. DingF.X. KangF.Y. Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material.Solid State Ion.2017301647110.1016/j.ssi.2017.01.008
    [Google Scholar]
  25. ShiS. WangT. CaoM. WangJ. ZhaoM. YangG. Rapid self-assembly spherical Li1.2Mn0.56Ni0.16Co0.08O2 with improved performances by microwave hydrothermal method as cathode for lithium-ion batteries.ACS Appl. Mater. Interfaces2016818114761148710.1021/acsami.6b0168327098184
    [Google Scholar]
  26. ShiS. TuJ.P. TangY.Y. YuY.X. ZhangY.Q. WangX.L. GuC.D. Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability.J. Power Sources2013228142310.1016/j.jpowsour.2012.11.091
    [Google Scholar]
  27. BruceP.G. ScrosatiB. TarasconJ.M. Nanomaterials for rechargeable lithium batteries.Angew. Chem. Int. Ed. Engl.200847162930294610.1002/anie.20070250518338357
    [Google Scholar]
  28. LiY. BaiY. BiX. QianJ. MaL. TianJ. WuC. WuF. LuJ. AmineK. An effectively activated hierarchical nano-/microspherical Li1.2Ni0.2Mn0.6O2 cathode for long-life and high-rate lithium-ion batteries.ChemSusChem20169772873510.1002/cssc.20150154826940745
    [Google Scholar]
  29. MaD. ZhangP.X. LiY.L. AbdelkaderA.M. SinghD.P. RenX.Z. DengL.B. 3D networks of carbon-coated magnesium-doped olivine nanofiber as binder-free cathodes for high-performance Li-ion battery.Adv. Mater. Interfaces3171600241, 201610.1002/admi.201600241
    [Google Scholar]
  30. RedelK. KulkaA. PlewaA. MolendaJ. High-performance Li-rich layered transition metal oxide cathode materials for Li-ion batteries.J. Electrochem. Soc.20193166A5333A534210.1149/2.0511903jes
    [Google Scholar]
  31. DuC. ZhangF. MaC.X. WuJ.W. TangZ.Y. ZhangX.H. QuD.Y. Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery.Ionics201522220921810.1007/s11581‑015‑1541‑9
    [Google Scholar]
  32. ZhangX. MengX.B. ElamJ.W. BelharouakI. Electrochemical characterization of voltage fade of Li1.2Ni0.2Mn0.6O2 cathode.Solid State Ion.201426823123510.1016/j.ssi.2013.09.052
    [Google Scholar]
  33. XuH. WangQ.Y. ChenC.H. Synthesis of Li[Li0.2Ni0.2Mn0.6]O2 by radiated polymer gel method and impact of deficient Li on its structure and electrochemical properties.J. Solid State Electrochem.20081291173117810.1007/s10008‑008‑0546‑y
    [Google Scholar]
  34. JohnsonC. KimJ.S. LefiefC. LiN. VaugheyJ.T. ThackerayM.M. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3•(1-x)LiMn0.5Ni0.5O2 electrodes.Electrochem. Commun.20046101085109110.1016/j.elecom.2004.08.002
    [Google Scholar]
  35. CaoC.W. LiuJ.X. KwanL.L. WangM. LiuY. MaR.G. YangS.L. LuZ.G. ChungC.Y. Facile synthesis of porous Li-rich layered Li[Li0.2Mn0.534Ni0.133Co0.133]O2 as high-performance cathode materials for Li-ion batteries.RSC Advances2015539305073051310.1039/C5RA03445K
    [Google Scholar]
  36. QiuS.L. FangT.T. ZhuY. HuaJ.Q. ChuH.L. ZouY.J. ZengJ.L. XuF. SunL.X. Li1.2Mn0.6Ni0.2O2 with 3D porous rod-like hierarchical micro/nanostructure for high-performance cathode material.J. Alloys Compd.201979086387010.1016/j.jallcom.2019.03.282
    [Google Scholar]
  37. ShiS.J. TuJ.P. ZhangY.D. ZhangY.J. GuC.D. WangX.L. Morphology and electrochemical performance of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials prepared with different metal sources.Electrochim. Acta201310982883410.1016/j.electacta.2013.08.002
    [Google Scholar]
/content/journals/cmam/10.2174/2666184501666200331125614
Loading
/content/journals/cmam/10.2174/2666184501666200331125614
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test