Skip to content
2000
image of Hypertension and Intracranial Hypertension Association: A NarrativeReview

Abstract

Hypertension and intracranial hypertension are associated with distinct clinical contexts, encompassing both neurological and cardiovascular implications. Hypertension induces significant structural and functional alterations in cerebral arteries, such as vascular wall thickening, increased arterial stiffness, reduced vascular compliance, and endothelial dysfunction, all of which can contribute to elevated intracranial pressure. These vascular changes may impair the integrity of the blood-brain barrier and disrupt cerebral autoregulation, thereby diminishing the brain’s ability to effectively regulate cerebral blood flow in response to physiological demands. The persistence of these dysfunctions over time may increase the risk of neurological outcomes, including stroke, cerebral edema, and cognitive impairment. Intracranial hypertension in turn may remain subclinical in patients with chronic hypertension, particularly when there is a gradual loss of intracranial compliance. This potential link highlights the need for further studies on the topic. Emerging evidence points to advances in noninvasive techniques for intracranial hypertension assessment, which may enable the early identification of altered intracranial dynamics and promote broader clinical application. Although the association between hypertension and intracranial hypertension has not yet been fully elucidated, the literature suggests overlapping mechanisms that may be clinically relevant. Combined assessment of blood pressure and intracranial parameters could represent a complementary strategy for better understanding cerebrovascular risk in selected populations. In this narrative review, we discuss the potential association between hypertension and intracranial hypertension, emphasizing their pathophysiological connections, contributing risk factors, and potential consequences for brain structure and function. Further research is needed to clarify these associations and their implications in clinical practice.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021394152250922224959
2025-10-14
2025-11-16
Loading full text...

Full text loading...

References

  1. Mortality and global health estimates 2025 Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
  2. Lazar R.M. Howard V.J. Kernan W.N. A primary care agenda for brain health: A scientific statement from the American heart association. Stroke 2021 52 6 e295 e308 10.1161/STR.0000000000000367 33719523
    [Google Scholar]
  3. Hawryluk G.W.J. Citerio G. Hutchinson P. Intracranial pressure: Current perspectives on physiology and monitoring. Intensive Care Med. 2022 48 10 1471 1481 10.1007/s00134‑022‑06786‑y 35816237
    [Google Scholar]
  4. Frigieri G. Brasil S. Cardim D. Machine learning approach for noninvasive intracranial pressure estimation using pulsatile cranial expansion waveforms. NPJ Digit. Med. 2025 8 1 57 10.1038/s41746‑025‑01463‑y 39865121
    [Google Scholar]
  5. Vaduganathan M. Mensah G.A. Turco J.V. Fuster V. Roth G.A. The global burden of cardiovascular diseases and risk. J. Am. Coll. Cardiol. 2022 80 25 2361 2371 10.1016/j.jacc.2022.11.005 36368511
    [Google Scholar]
  6. Murray C.J.L. Aravkin A.Y. Zheng P. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020 396 10258 1223 1249 10.1016/S0140‑6736(20)30752‑2 33069327
    [Google Scholar]
  7. McEvoy J.W. McCarthy C.P. Bruno R.M. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 2024 45 38 3912 4018 10.1093/eurheartj/ehae178 39210715
    [Google Scholar]
  8. Zhou B. Carrillo-Larco R.M. Danaei G. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021 398 10304 957 980 10.1016/S0140‑6736(21)01330‑1 34450083
    [Google Scholar]
  9. Sousa A.L.L. Batista S.R. Sousa A.C. Pacheco J.A.S. Vitorino P.V.O. Pagotto V. Hypertension prevalence, treatment and control in older adults in a Brazilian capital city. Arq. Bras. Cardiol. 2019 112 3 271 278 10.5935/abc.20180274 30916203
    [Google Scholar]
  10. Barroso W.K.S. Rodrigues C.I.S. Bortolotto L.A. Brazilian guidelines of hypertension - 2020. Arq. Bras. Cardiol. 2021 116 3 516 658 10.36660/abc.20201238 33909761
    [Google Scholar]
  11. Brasil S. Frigieri G. Taccone F.S. Noninvasive intracranial pressure waveforms for estimation of intracranial hypertension and outcome prediction in acute brain-injured patients. J. Clin. Monit. Comput. 2023 37 3 753 760 10.1007/s10877‑022‑00941‑y 36399214
    [Google Scholar]
  12. Adderley N.J. Subramanian A. Nirantharakumar K. Yiangou A. Gokhale K.M. Mollan S.P. Association between idiopathic intracranial hypertension and risk of cardiovascular diseases in women in the United Kingdom. JAMA Neurology 2019 76 9 1088 1098 10.1001/jamaneurol.2019.1812 31282950
    [Google Scholar]
  13. Canac N. Jalaleddini K. Thorpe S.G. Thibeault C.M. Hamilton R.B. Review: Pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids Barriers CNS 2020 17 1 40 10.1186/s12987‑020‑00201‑8 32576216
    [Google Scholar]
  14. Mascarenhas S. Vilela G.H.F. Carlotti C. The new ICP minimally invasive method shows that the Monro-Kellie doctrine is not valid. Acta Neurochir. Suppl. 2012 114 117 120 10.1007/978‑3‑7091‑0956‑4_21 22327675
    [Google Scholar]
  15. Wilson M.H. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure. J. Cereb. Blood Flow Metab. 2016 36 8 1338 1350 10.1177/0271678X16648711 27174995
    [Google Scholar]
  16. Claassen J.A.H.R. Thijssen D.H.J. Panerai R.B. Faraci F.M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation. Physiological Reviews. 2021 101 4 1487 1559 10.1152/physrev.00022.2020 33769101
    [Google Scholar]
  17. Avolio A. Kim M.O. Adji A. Cerebral haemodynamics: Effects of systemic arterial pulsatile function and hypertension. Curr. Hypertens. Rep. 2018 20 3 20 10.1007/s11906‑018‑0822‑x 29556793
    [Google Scholar]
  18. Iadecola C. Gottesman R.F. Neurovascular and cognitive dysfunction in hypertension. Circ. Res. 2019 124 7 1025 1044 10.1161/CIRCRESAHA.118.313260 30920929
    [Google Scholar]
  19. Machado M.F. Muela H.C.S. Costa-Hong V.A. Evaluation of cerebral autoregulation performance in patients with arterial hypertension on drug treatment. J. Clin. Hypertens. 2020 22 11 2114 2120 10.1111/jch.14052 32966689
    [Google Scholar]
  20. Ocamoto G.N. Russo T.L. Mendes Zambetta R. Frigieri G. Hayashi C.Y. Brasil S. Intracranial compliance concepts and assessment: A scoping review. Front. Neurol. 2021 12 756112 10.3389/fneur.2021.756112 34759884
    [Google Scholar]
  21. Harary M. Intracranial pressure monitoring-review and avenues for development. 2018 Available from:www.mdpi.com/journal/sensors
    [Google Scholar]
  22. de-Lima-Oliveira M. Salinet A.S.M. Nogueira R.C. Intracranial hypertension and cerebral autoregulation: A systematic review and meta-analysis. World Neurosurg. 2018 113 110 124 10.1016/j.wneu.2018.01.194 29421451
    [Google Scholar]
  23. Czosnyka M. Smielewski P. Piechnik S. Steiner L.A. Pickard J.D. Cerebral autoregulation following head injury. J. Neurosurg. 2001 95 5 756 763 10.3171/jns.2001.95.5.0756 11702864
    [Google Scholar]
  24. Steiner L.A. Czosnyka M. Piechnik S.K. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit. Care Med. 2002 30 4 733 738 10.1097/00003246‑200204000‑00002 11940737
    [Google Scholar]
  25. Ter Minassian A. Dubé L. Guilleux A.M. Wehrmann N. Ursino M. Beydon L. Changes in intracranial pressure and cerebral autoregulation in patients with severe traumatic brain injury. Crit. Care Med. 2002 30 7 1616 1622 10.1097/00003246‑200207000‑00036 12130988
    [Google Scholar]
  26. Lang E.W. Kasprowicz M. Smielewski P. Pickard J. Czosnyka M. Changes in cerebral partial oxygen pressure and cerebrovascular reactivity during intracranial pressure plateau waves. Neurocrit. Care 2015 23 1 85 91 10.1007/s12028‑014‑0074‑9 25501688
    [Google Scholar]
  27. Balestreri M. Czosnyka M. Steiner L.A. Intracranial hypertension: What additional information can be derived from ICP waveform after head injury? Acta Neurochir. 2004 146 2 131 141 10.1007/s00701‑003‑0187‑y 14963745
    [Google Scholar]
  28. de Lima Oliveira M. Paiva W. Teixeira M.J. Bor-Seng-Shu E. Brain metabolic crisis in traumatic brain injury: What does it mean? J. Neurotrauma 2014 31 20 1750 1751 10.1089/neu.2014.3386 24915159
    [Google Scholar]
  29. Oliveira M.L. de Azevedo D. de Azevedo M. Nogueira R.C. Teixeira M. Bor-Seng-Shu E. Encephalic hemodynamic phases in subarachnoid hemorrhage: How to improve the protective effect in patient prognoses. Neural Regen. Res. 2015 10 5 748 752 10.4103/1673‑5374.156969 26109948
    [Google Scholar]
  30. Cremer O.L. van Dijk G.W. Amelink G.J. de Smet A.M.G.A. Moons K.G.M. Kalkman C.J. Cerebral hemodynamic responses to blood pressure manipulation in severely head-injured patients in the presence or absence of intracranial hypertension. Anesth. Analg. 2004 99 4 1211 1217 10.1213/01.ANE.0000133917.67728.2A 15385378
    [Google Scholar]
  31. Pires P.W. Dams Ramos C.M. Matin N. Dorrance A.M. The effects of hypertension on the cerebral circulation. Am. J. Physiol. Heart Circ. Physiol. 2013 304 12 H1598 H1614 10.1152/ajpheart.00490.2012 23585139
    [Google Scholar]
  32. Tzeng Y.C. Ainslie P.N. Blood pressure regulation IX: Cerebral autoregulation under blood pressure challenges. Eur. J. Appl. Physiol. 2014 114 3 545 559 10.1007/s00421‑013‑2667‑y 23737006
    [Google Scholar]
  33. Shekhar S. Liu R. Travis O.K. Roman R.J. Fan F. Cerebral autoregulation in hypertension and ischemic stroke: A mini review. J Pharm Sci Exp Pharmacol 2017 2017 1 21 27 Available from:https://pmc.ncbi.nlm.nih.gov/articles/PMC5765762/ 29333537
    [Google Scholar]
  34. Durante A. Mazzapicchi A. Baiardo Redaelli M. Systemic and cardiac microvascular dysfunction in hypertension. Int. J. Mol. Sci. 2024 25 24 13294 10.3390/ijms252413294 39769057
    [Google Scholar]
  35. Rizzoni D. De Ciuceis C. Porteri E. Altered structure of small cerebral arteries in patients with essential hypertension. J. Hypertens. 2009 27 4 838 845 10.1097/HJH.0b013e32832401ea 19300112
    [Google Scholar]
  36. Kadry H. Noorani B. Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020 17 1 69 10.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  37. Figueroa X. Ungvari Z.I. Stobart J.L. Filosa J.A. Presa J.L. Saravia F. 2020 Vasculo-Neuronal Coupling and Neurovascular Coupling at the Neu-rovascular Unit: Impact of Hypertension Available from:www.frontiersin.org
  38. Hudson N. Campbell M. Tight junctions of the neurovascular unit. Front. Mol. Neurosci. 2021 14 752781 10.3389/fnmol.2021.752781 34867185
    [Google Scholar]
  39. Santisteban M.M. Ahn S.J. Lane D. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension 2020 76 3 795 807 10.1161/HYPERTENSIONAHA.120.15581 32654560
    [Google Scholar]
  40. Profaci C.P. Munji R.N. Pulido R.S. Daneman R. The blood–brain barrier in health and disease: Important unanswered questions. J. Exp. Med. 2020 217 4 20190062 10.1084/jem.20190062 32211826
    [Google Scholar]
  41. Costea L. The Blood-Brain Barrier and Its Intercellular Junctions in Age-Related Brain Disorders. 2019 Available from:https://pubmed.ncbi.nlm.nih.gov/31684130/
    [Google Scholar]
  42. Huang X. Hussain B. Chang J. Peripheral inflammation and blood–brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther. 2021 27 1 36 47 10.1111/cns.13569 33381913
    [Google Scholar]
  43. Keep R.F. Jones H.C. Drewes L.R. Advances in brain barriers and brain fluids research in 2021: Great progress in a time of adversity. Fluids Barriers CNS 2022 19 1 1 13 10.1186/s12987‑022‑00343‑x 35676538
    [Google Scholar]
  44. Biancardi V.C. Stern J.E. Compromised blood–brain barrier permeability: Novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J. Physiol. 2016 594 6 1591 1600 10.1113/JP271584 26580484
    [Google Scholar]
  45. Buttler L. Jordão M.T. Fragas M.G. Ruggeri A. Ceroni A. Michelini L.C. Maintenance of blood-brain barrier integrity in hypertension: A novel benefit of exercise training for autonomic control. Front. Physiol. 2017 8 1048 10.3389/fphys.2017.01048 29311978
    [Google Scholar]
  46. Setiadi A. Korim W.S. Elsaafien K. Yao S.T. The role of the blood–brain barrier in hypertension. Exp. Physiol. 2018 103 3 337 342 10.1113/EP086434 28986948
    [Google Scholar]
  47. Katsi V. Marketou M. Maragkoudakis S. Blood–brain barrier dysfunction: The undervalued frontier of hypertension. J. Hum. Hypertens. 2020 34 10 682 691 10.1038/s41371‑020‑0352‑2 32424144
    [Google Scholar]
  48. Fragas M.G. Cândido V.B. Davanzo G.G. Rocha-Santos C. Ceroni A. Michelini L.C. Transcytosis within PVN capillaries: A mechanism determining both hypertension-induced blood-brain barrier dysfunction and exercise-induced correction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021 321 5 R732 R741 10.1152/ajpregu.00154.2020 34549626
    [Google Scholar]
  49. Ungvari Z. Toth P. Tarantini S. Hypertension-induced cognitive impairment: From pathophysiology to public health. Nat. Rev. Nephrol. 2021 17 10 639 654 10.1038/s41581‑021‑00430‑6 34127835
    [Google Scholar]
  50. Toth P. Tucsek Z. Sosnowska D. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J. Cereb. Blood Flow Metab. 2013 33 11 1732 1742 10.1038/jcbfm.2013.143 23942363
    [Google Scholar]
  51. Biancardi V.C. Son S.J. Ahmadi S. Filosa J.A. Stern J.E. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension 2014 63 3 572 579 10.1161/HYPERTENSIONAHA.113.01743 24343120
    [Google Scholar]
  52. Pelisch N. Hosomi N. Ueno M. Blockade of AT1 receptors protects the blood-brain barrier and improves cognition in Dahl salt-sensitive hypertensive rats. Am. J. Hypertens. 2011 24 3 362 368 10.1038/ajh.2010.241 21164491
    [Google Scholar]
  53. Fernandes M.V. Rosso Melo M. Mowry F.E. Intracranial pressure during the development of renovascular hypertension. Hypertension 2021 77 4 1311 1322 10.1161/HYPERTENSIONAHA.120.16217 33689460
    [Google Scholar]
  54. Mohammadi M.T. Dehghani G.A. Acute hypertension induces brain injury and blood–brain barrier disruption through reduction of claudins mRNA expression in rat. Pathol. Res. Pract. 2014 210 12 985 990 10.1016/j.prp.2014.05.007 24996562
    [Google Scholar]
  55. Abbott N.J. Rönnbäck L. Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006 7 1 41 53 10.1038/nrn1824 16371949
    [Google Scholar]
  56. Zlokovic B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008 57 2 178 201 10.1016/j.neuron.2008.01.003 18215617
    [Google Scholar]
  57. Kongstad L. Grände P.O. Arterial hypertension increases intracranial pressure in cat after opening of the blood-brain barrier. J. Trauma 2001 51 3 490 496 10.1097/00005373‑200109000‑00011 11535896
    [Google Scholar]
  58. Costa M.M.D. Lima L.M. Costa T.O. Intracranial pressure waveform and hypertension. J. Hypertens. 2023 41 Suppl. 3 58 10.1097/01.hjh.0000939340.63390.99 38075977
    [Google Scholar]
  59. Ocamoto G.N. da Silva L.N. da Silva Rocha Tomaz C. Characterization of intracranial compliance in healthy subjects using a noninvasive method - Results from a multicenter prospective observational study. J. Clin. Monit. Comput. 2024 38 6 1249 1261 10.1007/s10877‑024‑01191‑w 39031230
    [Google Scholar]
  60. Inuzuka S. Correia M.C. Costa M.M.D. Non-invasive central blood pressure and intracranial waveform assessment in hypertensive patients: A cross-sectional study. Arq. Bras. Cardiol. 2025 122 5 20240778 10.36660/abc.20240778 40366917
    [Google Scholar]
  61. Vilela G.H.F. Cabella B. Mascarenhas S. Validation of a new minimally invasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir. Suppl. 2016 122 97 100 10.1007/978‑3‑319‑22533‑3_19 27165885
    [Google Scholar]
  62. Robba C. Santori G. Czosnyka M. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: A systematic review and meta-analysis. Intensive Care Med. 2018 44 8 1284 1294 10.1007/s00134‑018‑5305‑7 30019201
    [Google Scholar]
  63. Frigieri G Piza PV de T An unexpected correlation between non-invasive intracranial pressure waveform assessment in hypertensive patients. Could this be the link between hypertension and cerebro-vascular diseases as well as cognitive impairments? Med Res Arch 2023 11 7.2
    [Google Scholar]
  64. Grech O. Clouter A. Mitchell J.L. Cognitive performance in idiopathic intracranial hypertension and relevance of intracranial pressure. Brain Commun. 2021 3 3 fcab202 10.1093/braincomms/fcab202 34704028
    [Google Scholar]
  65. Wang W. Clough M. White O. Shuey N. Van Der Walt A. Fielding J. Detecting cognitive impairment in idiopathic intracranial hypertension using ocular motor and neuropsychological testing. Front. Neurol. 2021 12 772513 10.3389/fneur.2021.772513 34867761
    [Google Scholar]
  66. Brasil S. Godoy D.A. Hawryluk G.W.J. A point-of-care noninvasive technique for surrogate ICP waveforms application in neurocritical care. Neurocrit. Care 2024 40 1 170 176 10.1007/s12028‑023‑01786‑2 37438552
    [Google Scholar]
  67. Saraiva L.S. Frigieri G. Eibel B. Barbosa E.C.D. Brain compliance: A new assessment for clinical practice? Front. Cardiovasc. Med. 2025 12 1526017 10.3389/fcvm.2025.1526017 40443968
    [Google Scholar]
  68. Patel S. Maria-Rios J. Parikh A. Okorie O.N. Diagnosis and management of elevated intracranial pressure in the emergency department. Int. J. Emerg. Med. 2023 16 1 72 10.1186/s12245‑023‑00540‑x 37833652
    [Google Scholar]
  69. Czosnyka M. Czosnyka Z. Origin of intracranial pressure pulse waveform. Acta Neurochir. 2020 162 8 1815 1817 10.1007/s00701‑020‑04424‑4 32535797
    [Google Scholar]
  70. Brasil S. Solla D.J.F. Nogueira R de C. Teixeira M.J. Malbouisson L.M.S. Paiva W.S. Intracranial compliance assessed by intracranial pressure pulse waveform. Brain Sci. 2021 11 8 10.3390/brainsci11080971
    [Google Scholar]
  71. Lloyd-Jones D.M. Allen N.B. Anderson C.A.M. Black T. Brewer L.C. Foraker R.E. Life’s essential 8: Updating and enhancing the American Heart Association’s construct of cardiovascular health: A presidential advisory from the American Heart Association. Circulation 2022 146 5 e18 e43 10.1161/CIR.0000000000001078 35766027
    [Google Scholar]
  72. Meschia J.F. Bushnell C. Boden-Albala B. Guidelines for the primary prevention of stroke: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014 45 12 3754 3832 10.1161/STR.0000000000000046 25355838
    [Google Scholar]
  73. Lattanzi S. Brigo F. Silvestrini M. Blood pressure variability and stroke: A risk marker of outcome and target for intervention. J. Clin. Hypertens. 2021 23 1 103 105 10.1111/jch.14092 33125836
    [Google Scholar]
  74. Lattanzi S. Brigo F. Silvestrini M. Blood pressure and stroke: From incidence to outcome. J. Clin. Hypertens. 2019 21 5 605 607 10.1111/jch.13525 30957397
    [Google Scholar]
  75. Todo K. Blood pressure variability in acute ischemic stroke. Hypertens. Res. 2024 47 3 679 680 10.1038/s41440‑023‑01556‑9 38177289
    [Google Scholar]
  76. Ou Y.N. Tan C.C. Shen X.N. Blood pressure and risks of cognitive impairment and dementia. Hypertension 2020 76 1 217 225 10.1161/HYPERTENSIONAHA.120.14993 32450739
    [Google Scholar]
  77. Iadecola C. Smith E.E. Anrather J. Gu C. Mishra A. Misra S. The neurovasculome: Key roles in brain health and cognitive impairment: A scientific statement from the American Heart Association/American Stroke Association. Stroke 2023 54 6 e251 e271 10.1161/STR.0000000000000431 37009740
    [Google Scholar]
  78. Marcum Z.A. Gabriel N. Bress A.P. Hernandez I. Association of new use of antihypertensives that stimulate vs inhibit type 2 and 4 angiotensin II receptors with dementia among medicare beneficiaries. JAMA Netw. Open 2023 6 1 2249370 10.1001/jamanetworkopen.2022.49370 36598787
    [Google Scholar]
  79. den Brok M.G.H.E. van Dalen J.W. Abdulrahman H. Antihypertensive medication classes and the risk of dementia: A systematic review and network meta-analysis. J. Am. Med. Dir. Assoc. 2021 22 7 1386 1395.e15 10.1016/j.jamda.2020.12.019 33460618
    [Google Scholar]
  80. Bosch J. O’Donnell M. Swaminathan B. Effects of blood pressure and lipid lowering on cognition: Results from the HOPE-3 study. Neurology 2019 92 13 e1435 e1446 10.1212/WNL.0000000000007174 30814321
    [Google Scholar]
  81. Williamson J.D. Pajewski N.M. Auchus A.P. Effect of intensive vs standard blood pressure control on probable dementia. JAMA 2019 321 6 553 561 10.1001/jama.2018.21442 30688979
    [Google Scholar]
  82. Coca A. Vicario A. Cunha P. Cerezo G. How to Prevent Cognitive Decline and Dementia in Hypertension. 2024 Available from: https://link.springer.com/10.1007/978-3-031-64928-8_20 10.1007/978‑3‑031‑64928‑8_20
    [Google Scholar]
  83. Correia M.C. de Jesus Lima M.H. Bitencourt A.R. Intracranial pressure and vascular aging: A narrative review on its role in monitoring cognitive decline. Artery Res. 2025 31 1 17 10.1007/s44200‑025‑00085‑9
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021394152250922224959
Loading
/content/journals/chyr/10.2174/0115734021394152250922224959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test