Skip to content
2000
image of Cardio-Ankle Vascular Index as a Marker of Arterial Stiffness: Principles, Application, and Clinical Utility

Abstract

Large artery stiffness (LAS) is widely recognized as a highly clinically relevant determinant of cardiovascular health and an independent prognostic marker. However, routine assessment of LAS has not yet been integrated into clinical practice. Arterial wall stiffness is dependent on distending pressure (., mean arterial pressure), which may confound the interpretation of individual measurements. The cardio-ankle vascular index (CAVI) is an index of arterial stiffness designed to mitigate the dependence of pulse wave velocity on blood pressure. However, because CAVI incorporates pulse wave velocity measured between the heart and the ankle, it is influenced by both the stiffness of the aorta and medium-sized muscular arteries. Several observational, longitudinal studies have demonstrated that higher CAVI is associated with cardiovascular events and mortality, although most available data are derived from Asian populations. Future studies of CAVI are needed to establish its prognostic value in addition to traditionally used cardiovascular risk factors in the setting of primary prevention. This review aims to provide a brief overview of the definition, theoretical principles, practical considerations, key strengths and limitations, and the clinical utility of CAVI.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021387484250623090403
2025-07-02
2025-09-13
Loading full text...

Full text loading...

References

  1. Belz G.G. Elastic properties and Windkessel function of the human aorta. Cardiovasc. Drugs Ther. 1995 9 1 73 83 10.1007/BF00877747 7786838
    [Google Scholar]
  2. Segers P. Rietzschel E.R. Chirinos J.A. How to measure arterial stiffness in humans. Arterioscler. Thromb. Vasc. Biol. 2020 40 5 1034 1043 10.1161/ATVBAHA.119.313132 31875700
    [Google Scholar]
  3. Chirinos J.A. Segers P. Hughes T. Townsend R. Large-artery stiffness in health and disease. J. Am. Coll. Cardiol. 2019 74 9 1237 1263 10.1016/j.jacc.2019.07.012 31466622
    [Google Scholar]
  4. Alvarez-Bueno C. Cunha P.G. Martinez-Vizcaino V. Arterial stiffness and cognition among adults: A systematic review and meta-analysis of observational and longitudinal studies. J. Am. Heart Assoc. 2020 9 5 e014621 10.1161/JAHA.119.014621 32106748
    [Google Scholar]
  5. Ben-Shlomo Y. Spears M. Boustred C. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014 63 7 636 646 10.1016/j.jacc.2013.09.063 24239664
    [Google Scholar]
  6. Safar M.E. London G.M. Plante G.E. Arterial stiffness and kidney function. Hypertension 2004 43 2 163 10.1161/01.HYP.0000114571.75762.b0
    [Google Scholar]
  7. Shirai K. Utino J. Otsuka K. Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J. Atheroscler. Thromb. 2006 13 2 101 107 10.5551/jat.13.101 16733298
    [Google Scholar]
  8. Yambe T. Kuwayama T. Nitta S. Brachio-ankle pulse wave velocity and cardio-ankle vascular index (CAVI). Biomed. Pharmacother. 2004 58 1 S95 10.1016/S0753‑3322(04)80015‑5
    [Google Scholar]
  9. Asmar R. Principles and usefulness of the cardio-ankle vascular index (CAVI): A new global arterial stiffness index. European. Heart J. Suppl. 2017 19 B4 B8 10.1093/eurheartj/suw058
    [Google Scholar]
  10. Takahashi K. Yamamoto T. Tsuda S. Coefficients in the cavi equation and the comparison between cavi with and without the coefficients using clinical data. J. Atheroscler. Thromb. 2019 26 5 465 475 10.5551/jat.44834 30518727
    [Google Scholar]
  11. Kim E.D. Ballew S.H. Tanaka H. Heiss G. Coresh J. Matsushita K. Short-term prognostic impact of arterial stiffness in older adults without prevalent cardiovascular disease. Hypertension 2019 74 6 1373 1382 10.1161/HYPERTENSIONAHA.119.13496 31679417
    [Google Scholar]
  12. Nye E.R. The effect of blood pressure alteration on the pulse wave velocity. Heart 1964 26 2 261 265 10.1136/hrt.26.2.261 14132030
    [Google Scholar]
  13. Tavolinejad H. Erten O. Maynard H. Chirinos J.A. Prognostic value of cardio-ankle vascular index for cardiovascular and kidney outcomes. JACC Adv 2024 3 7 101019 10.1016/j.jacadv.2024.101019 39130005
    [Google Scholar]
  14. Limpijankit T. Jongjirasiri S. Meemook K. Unwanatham N. Thakkinstian A. Laothamatas J. Predictive values of coronary artery calcium and arterial stiffness for long term cardiovascular events in patients with stable coronary artery disease. Clin. Cardiol. 2023 46 2 171 183 10.1002/clc.23955 36448219
    [Google Scholar]
  15. Itano S. Yano Y. Nagasu H. Association of arterial stiffness with kidney function among adults without chronic kidney disease. Am. J. Hypertens. 2020 33 11 1003 1010 10.1093/ajh/hpaa097 32530466
    [Google Scholar]
  16. Miyoshi T. Ito H. Shirai K. Predictive value of the cardio-ankle vascular index for cardiovascular events in patients at cardiovascular risk. J. Am. Heart Assoc. 2021 10 16 e020103 10.1161/JAHA.120.020103 34369198
    [Google Scholar]
  17. Aiumtrakul N. Supasyndh O. Krittayaphong R. Phrommintikul A. Satirapoj B. Cardio-ankle vascular index with renal progression and mortality in high atherosclerosis risk: A prospective cohort study in CORE-Thailand. Clin. Exp. Nephrol. 2022 26 3 247 256 10.1007/s10157‑021‑02149‑x 34643840
    [Google Scholar]
  18. Kubota Y. Maebuchi D. Takei M. Cardio-ankle vascular index is a predictor of cardiovascular events. Artery Res. 2011 5 3 91 96 10.1016/j.artres.2011.03.005
    [Google Scholar]
  19. Kirigaya J. Iwahashi N. Tahakashi H. Impact of cardio-ankle vascular index on long-term outcome in patients with acute coronary syndrome. J. Atheroscler. Thromb. 2020 27 7 657 668 10.5551/jat.51409 31631100
    [Google Scholar]
  20. Chung S.L. Yang C.C. Chen C.C. Hsu Y.C. Lei M.H. Coronary artery calcium score compared with cardio-ankle vascular index in the prediction of cardiovascular events in asymptomatic patients with type 2 diabetes. J. Atheroscler. Thromb. 2015 22 12 1255 1265 10.5551/jat.29926 26269147
    [Google Scholar]
  21. Kato A. Takita T. Furuhashi M. Maruyama Y. Miyajima H. Kumagai H. Brachial-ankle pulse wave velocity and the cardio-ankle vascular index as a predictor of cardiovascular outcomes in patients on regular hemodialysis. Ther. Apher. Dial. 2012 16 3 232 241 10.1111/j.1744‑9987.2012.01058.x 22607566
    [Google Scholar]
  22. Sumin A.N. Shcheglova A.V. ZHidkova II, Ivanov SV, Barbarash OL. Assessment of arterial stiffness by cardio-ankle vascular index for prediction of five-year cardiovascular events after coronary artery bypass surgery. Glob. Heart 2021 16 1 90 10.5334/gh.1053 35141131
    [Google Scholar]
  23. Nagayama D. Fujishiro K. Nakamura K. Cardio-ankle vascular index is associated with prevalence and new-appearance of atrial fibrillation in japanese urban residents: A retrospective cross-sectional and cohort Study. Vasc. Health Risk Manag. 2022 18 5 15 10.2147/VHRM.S351602 35140470
    [Google Scholar]
  24. Limpijankit T. Vathesatogkit P. Matchariyakul D. Cardio ankle vascular index as a predictor of major adverse cardiovascular events in metabolic syndrome patients. Clin. Cardiol. 2021 44 11 1628 1635 10.1002/clc.23735 34586631
    [Google Scholar]
  25. Maebuchi D. Sakamoto M. Fuse J. The cardio-ankle vascular index predicts chronic kidney disease in Japanese subjects. Artery Res. 2013 7 1 48 53 10.1016/j.artres.2012.11.004
    [Google Scholar]
  26. Tavolinejad H. Boczar K.E. Spronck B. Determinants of cardio-ankle vascular index and heart-thigh index in a US cohort: The MESA. Hypertension 2025 Epub ahead of print [http://dx.doi.org/10.1161/HYPERTENSIONAHA.124.23970
    [Google Scholar]
  27. Frank O. Elastizitat der Blutgefae. Z. Biol. (Münch.) 1920 71 255 272 10.11239/JSMBE.48.482
    [Google Scholar]
  28. Bramwell J.C. Hill A.V. The velocity of pulse wave in man. Proc. R. Soc. Lond., B 1922 93 652 298 306 10.1098/rspb.1922.0022
    [Google Scholar]
  29. Avolio A. Spronck B. Tan I. Cox J. Butlin M. Basic principles that determine relationships between pulsatile hemodynamic phenomena and function of elastic vessels. Textbook of Arterial Stiffness and Pulsatile Hemodynamics in Health and Disease. Elsevier 2022 3 26 10.1016/B978‑0‑323‑91391‑1.00001‑7
    [Google Scholar]
  30. Miyoshi T. Ito H. Arterial stiffness in health and disease: The role of cardio–ankle vascular index. J. Cardiol. 2021 78 6 493 501 10.1016/j.jjcc.2021.07.011 34393004
    [Google Scholar]
  31. Wolinsky H. Glagov S. A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 1967 20 1 99 111 10.1161/01.RES.20.1.99 4959753
    [Google Scholar]
  32. Spronck B. Avolio A.P. Tan I. Butlin M. Reesink K.D. Delhaas T. Arterial stiffness index beta and cardio-ankle vascular index inherently depend on blood pressure but can be readily corrected. J. Hypertens. 2017 35 1 98 104 10.1097/HJH.0000000000001132 27906838
    [Google Scholar]
  33. Shirai K. Song M. Suzuki J. Contradictory effects of β1- and α1- aderenergic receptor blockers on cardio-ankle vascular stiffness index (CAVI)--CAVI independent of blood pressure. J. Atheroscler. Thromb. 2011 18 1 49 55 10.5551/jat.3582 21071883
    [Google Scholar]
  34. Spronck B. Obeid M.J. Paravathaneni M. Predictive ability of pressure-corrected arterial stiffness indices: comparison of pulse wave velocity, cardio-ankle vascular index (CAVI), and CAVI0. Am. J. Hypertens. 2022 35 3 272 280 10.1093/ajh/hpab168 34664629
    [Google Scholar]
  35. Miyoshi T. Doi M. Hirohata S. Cardio-ankle vascular index is independently associated with the severity of coronary atherosclerosis and left ventricular function in patients with ischemic heart disease. J. Atheroscler. Thromb. 2010 17 3 249 258 10.5551/jat.1636 20103976
    [Google Scholar]
  36. Yoshida Y. Nakanishi K. Jin Z. Association between progression of arterial stiffness and left ventricular remodeling in a community-based cohort. JACC Adv 2023 2 5 100409 10.1016/j.jacadv.2023.100409 38938996
    [Google Scholar]
  37. Yoshida Y. Nakanishi K. Daimon M. Association of arterial stiffness with left atrial structure and phasic function: A community-based cohort study. J. Hypertens. 2020 38 6 1140 1148 10.1097/HJH.0000000000002367 32371804
    [Google Scholar]
  38. Wang H. Liu J. Zhao H. Relationship between cardio-ankle vascular index and plasma lipids in hypertension subjects. J. Hum. Hypertens. 2015 29 2 105 108 10.1038/jhh.2014.37 24831100
    [Google Scholar]
  39. Wang N. Guo Y. Li X. Association between cardio-ankle vascular index and masked uncontrolled hypertension in hypertensive patients: A cross-sectional study. J. Healthc. Eng. 2022 2022 1 8 10.1155/2022/3167518 36545481
    [Google Scholar]
  40. Xue Q. Qin M. Jia J. Liu J. Wang Y. Association between frailty and the cardio-ankle vascular index. Clin. Interv. Aging 2019 14 735 742 10.2147/CIA.S195109 31114178
    [Google Scholar]
  41. Zhong J. Wang Y. Wang X. Significance of CAVI, hs-CRP and Homocysteine in subclinical arteriosclerosis among a healthy population in China. Clin. Invest. Med. 2013 36 2 E81 E86 10.25011/cim.v36i2.19570 23544609
    [Google Scholar]
  42. Budoff M.J. Alpert B. Chirinos J.A. Clinical applications measuring arterial stiffness: An expert consensus for the application of cardio-ankle vascular index. Am. J. Hypertens. 2022 35 5 441 453 10.1093/ajh/hpab178 34791038
    [Google Scholar]
  43. Matsushita K. Ding N. Kim E.D. Cardio ankle vascular index and cardiovascular disease: Systematic review and meta analysis of prospective and cross sectional studies. J. Clin. Hypertens. (Greenwich) 2019 21 1 16 24 10.1111/jch.13425 30456903
    [Google Scholar]
  44. Yukutake T. Yamada M. Fukutani N. Arterial stiffness determined according to the cardio-ankle vascular index(CAVI) is associated with mild cognitive decline in community-dwelling elderly subjects. J. Atheroscler. Thromb. 2014 21 1 49 55 10.5551/jat.19992 24025666
    [Google Scholar]
  45. Akaida S. Taniguchi Y. Nakai Y. Independent association between cognitive frailty and cardio-ankle vascular index in community-dwelling older adults. Gerontology 2024 70 5 499 506 10.1159/000536653 38408446
    [Google Scholar]
  46. Liu H. Liu J. Zhao H. Wang H. Association of brain white matter lesions with arterial stiffness assessed by cardio-ankle vascular index. The Beijing Vascular Disease Evaluation STudy (BEST). Brain Imaging Behav. 2021 15 2 1025 1032 10.1007/s11682‑020‑00309‑3 33068268
    [Google Scholar]
  47. Tachibana H. Washida K. Kowa H. Kanda F. Toda T. Vascular function in alzheimer’s disease and vascular dementia. Am. J. Alzheimers Dis. Other Demen. 2016 31 5 437 442 10.1177/1533317516653820 27284205
    [Google Scholar]
  48. Kubozono T. Miyata M. Ueyama K. Association between arterial stiffness and estimated glomerular filtration rate in the Japanese general population. J. Atheroscler. Thromb. 2009 16 6 840 845 10.5551/jat.1230 20032588
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021387484250623090403
Loading
/content/journals/chyr/10.2174/0115734021387484250623090403
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test