Skip to content
2000
image of Potential Therapeutic Effects of Flavonoids in Cardiovascular Disorders: Review

Abstract

Introduction

Flavonoids in various fruits and vegetables exert multifaceted biological effects. They are widely explored for cardiovascular, antitumor, antioxidant, antibacterial, antifungal, neuroprotective, and anti-inflammatory effects. Flavonoid cardioprotection is helpful in the management of myocardial injury, stroke, atherosclerosis, hypertension, and ischemia. Cardiovascular disease (CVD) has become a global threat in recent years due to increased mortality and morbidity rates. The increased mortality due to CVD among women, children, and poor economic groups has boosted the socio-economic burden on health care. Various researchers have explored the commercial applications of flavonoids, including quercetin, apigenin, luteolin, and catechin, as dietary supplements.

Methods

The findings were searched in the Google Scholar, Scopus, PubMed, and PubChem databases.

Results

Preclinical and clinical investigations have promoted the safety of flavonoids, such as apigenin and quercetin, for use as nutraceuticals that promote health. Flavonoids and their potential mechanisms of action and clinical applications offer insights for researchers and scientists to explore in the fields of medical and nanomedicine sciences. Nanomedicine, like liposomes, carbon nanotubes, nanosponges, and nanoparticles containing flavonoids, is used for its efficacy, potency, and target delivery.

Discussions

Flavonols have the potential to regulate vasodilation and prevent apoptosis. Furthermore, their supplementation may reduce the risk of cardiovascular complications. Flavonoids function as antioxidants and exhibit potent anti-inflammatory effects by mediating inflammatory pathways, thereby contributing to the management of cardiovascular complications. Emerging evidence from researchers suggests flavonoids improve endothelial function and reduce blood pressure. Furthermore, flavonoids derived from cocoa, such as catechins, and those found in tea also enhance endothelial function. Nanosystems can enhance the solubility, permeability, and effectiveness of flavonoids as antioxidants, while also promoting controlled drug delivery. Nanoformulations can enhance the effects of morin, rutin, quercetin, and other flavonoids, significantly improving therapeutic outcomes.

Conclusions

These findings offer researchers and scientists a novel technological approach utilizing flavonoids to address metabolic syndromes and related health conditions, thereby supporting personalized care and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021373759250730062326
2025-08-26
2025-09-25
Loading full text...

Full text loading...

References

  1. Cardiovascular diseases 2024 Available from: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
  2. Bondonno C.P. Croft K.D. Ward N. Considine M.J. Hodgson J.M. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr. Rev. 2015 73 4 216 235 10.1093/nutrit/nuu014 26024545
    [Google Scholar]
  3. Arranz S. Valderas-Martinez P. Chiva-Blanch G. Cardioprotective effects of cocoa: Clinical evidence from randomized clinical intervention trials in humans. Mol. Nutr. Food Res. 2013 57 6 936 947 10.1002/mnfr.201200595 23650217
    [Google Scholar]
  4. Vauzour D. Vafeiadou K. Rodriguez-Mateos A. Rendeiro C. Spencer J.P.E. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr. 2008 3 3-4 115 126 10.1007/s12263‑008‑0091‑4 18937002
    [Google Scholar]
  5. Williams R.J. Spencer J.P.E. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med. 2012 52 1 35 45 10.1016/j.freeradbiomed.2011.09.010 21982844
    [Google Scholar]
  6. Flanagan E. Müller M. Hornberger M. Vauzour D. Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Curr. Nutr. Rep. 2018 7 2 49 57 10.1007/s13668‑018‑0226‑1 29892788
    [Google Scholar]
  7. Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alzheimer’s disease pathophysiology. J. Sci. Food Agric. 2014 94 6 1042 1056 10.1002/jsfa.6473 24338740
    [Google Scholar]
  8. Spencer J.P.E. Beyond antioxidants: The cellular and molecular interactions of flavonoids and how these underpin their actions on the brain. Proc. Nutr. Soc. 2010 69 2 244 260 10.1017/S0029665110000054 20158941
    [Google Scholar]
  9. Sun W. Shahrajabian M.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules 2023 28 4 1845 10.3390/molecules28041845 36838831
    [Google Scholar]
  10. Carrizzo A. Izzo C. Forte M. A novel promising frontier for human health: The beneficial effects of nutraceuticals in cardiovascular diseases. Int. J. Mol. Sci. 2020 21 22 8706 10.3390/ijms21228706 33218062
    [Google Scholar]
  11. Micek A. Godos J. Del Rio D. Galvano F. Grosso G. Dietary flavonoids and cardiovascular disease: A comprehensive dose–response meta‐analysis. Mol. Nutr. Food Res. 2021 65 6 2001019 10.1002/mnfr.202001019 33559970
    [Google Scholar]
  12. Aiello P. Consalvi S. Poce G. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin. Cancer Biol. 2021 69 150 165
    [Google Scholar]
  13. Mutha R.E. Tatiya A.U. Surana S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future J. Pharm. Sci. 2021 7 1 25 10.1186/s43094‑020‑00161‑8 33495733
    [Google Scholar]
  14. Giuliani C. The flavonoid quercetin induces AP-1 activation in FRTL-5 thyroid cells. Antioxidants 2019 8 5 112 10.3390/antiox8050112 31035637
    [Google Scholar]
  15. Calis Z. Mogulkoc R. Baltaci A.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev. Med. Chem. 2020 20 15 1475 1488 10.2174/1389557519666190617150051 31288717
    [Google Scholar]
  16. Sasaki N. Nakayama T. Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration. Plant Cell Physiol. 2015 56 1 28 40 10.1093/pcp/pcu097 25015943
    [Google Scholar]
  17. Papadaki M. Vikhorev P.G. Marston S.B. Messer A.E. Uncoupling of myofilament Ca2+ sensitivity from troponin I phosphorylation by mutations can be reversed by epigallocatechin-3-gallate. Cardiovasc. Res. 2015 108 1 99 110 10.1093/cvr/cvv181 26109583
    [Google Scholar]
  18. Messer A.E. Bayliss C.R. El-Mezgueldi M. Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca2+-sensitivity and suppress the modulation of Ca2+-sensitivity by troponin I phosphorylation. Arch. Biochem. Biophys. 2016 601 113 120 10.1016/j.abb.2016.03.027 27036851
    [Google Scholar]
  19. Quan J. Jia Z. Lv T. Green tea extract catechin improves cardiac function in pediatric cardiomyopathy patients with diastolic dysfunction. J. Biomed. Sci. 2019 26 1 32 10.1186/s12929‑019‑0528‑7 31064352
    [Google Scholar]
  20. Wang F. Li Z. Song T. Proteomics study on the effect of silybin on cardiomyopathy in obese mice. Sci. Rep. 2021 11 1 7136 10.1038/s41598‑021‑86717‑x 33785854
    [Google Scholar]
  21. Sagar S. Liu P.P. Cooper L.T. Myocarditis. Lancet 2012 379 9817 738 747 10.1016/S0140‑6736(11)60648‑X 22185868
    [Google Scholar]
  22. Suzuki J. Ogawa M. Futamatsu H. Kosuge H. Sagesaka Y.M. Isobe M. Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur. J. Heart Fail. 2007 9 2 152 159 10.1016/j.ejheart.2006.05.007 16829193
    [Google Scholar]
  23. Zempo H. Suzuki J. Watanabe R. Cacao polyphenols ameliorate autoimmune myocarditis in mice. Hypertens. Res. 2016 39 4 203 209 10.1038/hr.2015.136 26657007
    [Google Scholar]
  24. Fernández-Rojas B. Gutiérrez-Venegas G. Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects. Life Sci. 2018 209 435 454 10.1016/j.lfs.2018.08.029 30121198
    [Google Scholar]
  25. Gutiérrez-Venegas G. Torras-Ceballos A. Gómez-Mora J.A. Fernández-Rojas B. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts. Cell. Mol. Biol. Lett. 2017 22 1 19 10.1186/s11658‑017‑0047‑z 28878808
    [Google Scholar]
  26. Guzzo F. Scognamiglio M. Fiorentino A. Buommino E. D’Abrosca B. Plant derived natural products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm activity and molecular mechanisms. Molecules 2020 25 21 5024 10.3390/molecules25215024 33138250
    [Google Scholar]
  27. Gutiérrez-Venegas G. González-Rosas Z. Apigenin reduce lipoteichoic acid-induced inflammatory response in rat cardiomyoblast cells. Arch. Pharm. Res. 2017 40 2 240 249 10.1007/s12272‑016‑0756‑2 27193174
    [Google Scholar]
  28. Frisk M. Le C. Shen X. Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2021 77 4 405 419 10.1016/j.jacc.2020.11.044 33509397
    [Google Scholar]
  29. Arrigo M. Jessup M. Mullens W. Acute heart failure. Nat. Rev. Dis. Primers 2020 6 1 16 10.1038/s41572‑020‑0151‑7 32139695
    [Google Scholar]
  30. Tomasoni D. Adamo M. Lombardi C.M. Metra M. Highlights in heart failure. ESC Heart Fail. 2019 6 6 1105 1127 10.1002/ehf2.12555 31997538
    [Google Scholar]
  31. Zhou B. Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest. 2018 128 9 3716 3726 10.1172/JCI120849 30124471
    [Google Scholar]
  32. Garbincius J.F. Elrod J.W. Is the failing heart starved of mitochondrial calcium? Circ. Res. 2021 128 8 1205 1207 10.1161/CIRCRESAHA.121.319030 33856917
    [Google Scholar]
  33. Chistiakov D.A. Shkurat T.P. Melnichenko A.A. Grechko A.V. Orekhov A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018 50 2 121 127 10.1080/07853890.2017.1417631 29237304
    [Google Scholar]
  34. Singh R.B. Fedacko J. Pella D. High exogenous antioxidant, restorative treatment (heart) for prevention of the six stages of heart failure: The heart diet. Antioxidants 2022 11 8 1464 10.3390/antiox11081464 36009183
    [Google Scholar]
  35. Xu Q. Fu Q. Li Z. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 2021 3 12 1706 1726 10.1038/s42255‑021‑00491‑8 34873338
    [Google Scholar]
  36. López B. Ravassa S. Moreno M.U. Diffuse myocardial fibrosis: Mechanisms, diagnosis and therapeutic approaches. Nat. Rev. Cardiol. 2021 18 7 479 498 10.1038/s41569‑020‑00504‑1 33568808
    [Google Scholar]
  37. Gyöngyösi M. Winkler J. Ramos I. Myocardial fibrosis: Biomedical research from bench to bedside. Eur. J. Heart Fail. 2017 19 2 177 191 10.1002/ejhf.696 28157267
    [Google Scholar]
  38. Bacmeister L. Schwarzl M. Warnke S. Inflammation and fibrosis in murine models of heart failure. Basic Res. Cardiol. 2019 114 3 19 10.1007/s00395‑019‑0722‑5 30887214
    [Google Scholar]
  39. Zhang Y. Lin X. Chu Y. Dapagliflozin: A sodium–glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling. Cardiovasc. Diabetol. 2021 20 1 121 10.1186/s12933‑021‑01312‑8 34116674
    [Google Scholar]
  40. Pan Z. Zhao W. Zhang X. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38‐MAPK and ERK1/2. Br. J. Pharmacol. 2011 162 3 688 700 10.1111/j.1476‑5381.2010.01070.x 20942814
    [Google Scholar]
  41. Guan B.F. Dai X.F. Huang Q.B. Icariside II ameliorates myocardial ischemia and reperfusion injury by attenuating inflammation and apoptosis through the regulation of the PI3K/AKT signaling pathway. Mol. Med. Rep. 2020 22 4 3151 3160 10.3892/mmr.2020.11396 32945440
    [Google Scholar]
  42. Fan S. Gu K. Wu Y. Liquiritinapioside – A mineralocorticoid-like substance from liquorice. Food Chem. 2019 289 419 425 10.1016/j.foodchem.2019.03.056 30955632
    [Google Scholar]
  43. Wang L. Tan A. An X. Xia Y. Xie Y. Quercetin Dihydrate inhibition of cardiac fibrosis induced by angiotensin II in vivo and in vitro. Biomed. Pharmacother. 2020 127 110205 10.1016/j.biopha.2020.110205 32403046
    [Google Scholar]
  44. Zhang J. Fu X. Yang L. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro. Biomed. Pharmacother. 2020 129 110364 10.1016/j.biopha.2020.110364 32531678
    [Google Scholar]
  45. da Purificação N.R.C. Garcia V.B. Frez F.C.V. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats. Biomed. Pharmacother. 2022 151 113131 10.1016/j.biopha.2022.113131 35643067
    [Google Scholar]
  46. Arkat S. Umbarkar P. Singh S. Sitasawad S.L. Mitochondrial Peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in Diabetic cardiomyopathy. Free Radic. Biol. Med. 2016 97 489 500 10.1016/j.freeradbiomed.2016.06.019 27393003
    [Google Scholar]
  47. Zhang W. Zheng Y. Yan F. Dong M. Ren Y. Research progress of quercetin in cardiovascular disease. Front. Cardiovasc. Med. 2023 10 1203713 10.3389/fcvm.2023.1203713 38054093
    [Google Scholar]
  48. Liao H. Zhang N. Meng Y. Myricetin alleviates pathological cardiac hypertrophy via TRAF6/TAK1/MAPK and Nrf2 signaling pathway. Oxid. Med. Cell. Longev. 2019 2019 1 1 14 10.1155/2019/6304058 31885808
    [Google Scholar]
  49. Qin D. Yue R. Deng P. 8-Formylophiopogonanone B antagonizes doxorubicin-induced cardiotoxicity by suppressing heme oxygenase-1-dependent myocardial inflammation and fibrosis. Biomed. Pharmacother. 2021 140 111779 10.1016/j.biopha.2021.111779 34062415
    [Google Scholar]
  50. Ye F. He J. Wu X. The regulatory mechanisms of Yulangsan MHBFC reversing cardiac remodeling in rats based on eNOS-NO signaling pathway. Biomed. Pharmacother. 2019 117 109141 10.1016/j.biopha.2019.109141 31228800
    [Google Scholar]
  51. He J. Ye F. Tang X. Comparison of effects of MHBFC on cardiac hypertrophy after banding of the abdominal aorta in wild-type mice and eNOS knockout mice. Biomed. Pharmacother. 2019 109 1221 1232 10.1016/j.biopha.2018.10.153 30551372
    [Google Scholar]
  52. Patel R.V. Mistry B.M. Shinde S.K. Syed R. Singh V. Shin H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 2018 155 889 904 10.1016/j.ejmech.2018.06.053 29966915
    [Google Scholar]
  53. Bhaskar S. Sudhakaran P.R. Helen A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell. Immunol. 2016 310 131 140 10.1016/j.cellimm.2016.08.011 27585526
    [Google Scholar]
  54. da Rocha E.V. Falchetti F. Pernomian L. Quercetin decreases cardiac hypertrophic mediators and maladaptive coronary arterial remodeling in renovascular hypertensive rats without improving cardiac function. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 5 939 949 10.1007/s00210‑022‑02349‑6 36527481
    [Google Scholar]
  55. Chekalina N. Burmak Y. Petrov Y. Quercetin reduces the transcriptional activity of NF-kB in stable coronary artery disease. Indian Heart J. 2018 70 5 593 597 10.1016/j.ihj.2018.04.006 30392493
    [Google Scholar]
  56. Sadek K.M. Mahmoud S.F.E. Zeweil M.F. Abouzed T.K. Proanthocyanidin alleviates doxorubicin‐induced cardiac injury by inhibiting NF‐ k B pathway and modulating oxidative stress, cell cycle, and fibrogenesis. J. Biochem. Mol. Toxicol. 2021 35 4 22716 10.1002/jbt.22716 33484087
    [Google Scholar]
  57. Bagchi D. Swaroop A. Preuss H.G. Bagchi M. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: An overview. Mutat. Res. 2014 768 69 73 10.1016/j.mrfmmm.2014.04.004 24751946
    [Google Scholar]
  58. Musial C. Kuban-Jankowska A. Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020 21 5 1744 10.3390/ijms21051744 32143309
    [Google Scholar]
  59. Pastoriza S. Mesías M. Cabrera C. Rufián-Henares J.A. Healthy properties of green and white teas: An update. Food Funct. 2017 8 8 2650 2662 10.1039/C7FO00611J 28640307
    [Google Scholar]
  60. Xu R. Yang K. Ding J. Chen G. Effect of green tea supplementation on blood pressure. Medicine 2020 99 6 19047 10.1097/MD.0000000000019047 32028419
    [Google Scholar]
  61. Jaffri J.M. Mohamed S. Rohimi N. Ahmad I.N. Noordin M.M. Manap Y.A. Antihypertensive and cardiovascular effects of catechin-rich oil palm (Elaeis guineensis) leaf extract in nitric oxide-deficient rats. J. Med. Food 2011 14 7-8 775 783 10.1089/jmf.2010.1170 21631357
    [Google Scholar]
  62. Teramoto M. Muraki I. Yamagishi K. Tamakoshi A. Iso H. Green tea and coffee consumption and all-cause mortality among persons with and without stroke or myocardial infarction. Stroke 2021 52 3 957 965 10.1161/STROKEAHA.120.032273 33535784
    [Google Scholar]
  63. Bao L. Lu F. Chen H. High concentration of epigallocatechin-3-gallate increased the incidences of arrhythmia and diastolic dysfunction via β2-adrenoceptor. J. Food Sci. 2015 80 3 T659 T663 10.1111/1750‑3841.12803 25676191
    [Google Scholar]
  64. Boukhabza M. El Hilaly J. Attiya N. In Silico evaluation of the potential antiarrhythmic effect of Epigallocatechin‐3‐Gallate on cardiac channelopathies. Comput. Math. Methods Med. 2016 2016 1 7861653 [PMID: 27882075
    [Google Scholar]
  65. Fu S. Li Y. Wu Y. Yue Y. Yang D. Icariside II improves myocardial fibrosis in spontaneously hypertensive rats by inhibiting collagen synthesis. J. Pharm. Pharmacol. 2020 72 2 227 235 10.1111/jphp.13190 31820448
    [Google Scholar]
  66. Irfan M. Kwon T.H. Lee D.H. Antiplatelet and antithrombotic effects of Epimedium koreanum Nakai. Evid. Based Complement. Alternat. Med. 2021 2021 1 1 11 10.1155/2021/7071987 33953788
    [Google Scholar]
  67. Hua W. Zhang Y. Wu X. Icariin attenuates interleukin-1β-induced inflammatory response in human nucleus pulposus cells. Curr. Pharm. Des. 2018 23 39 6071 6078 10.2174/1381612823666170615112158 28619001
    [Google Scholar]
  68. Fu S. Li Y.L. Wu Y.T. Yue Y. Qian Z.Q. Yang D.L. Icariside II attenuates myocardial fibrosis by inhibiting nuclear factor-κB and the TGF-β1/Smad2 signalling pathway in spontaneously hypertensive rats. Biomed. Pharmacother. 2018 100 64 71 10.1016/j.biopha.2018.01.138 29421583
    [Google Scholar]
  69. Si H. Liu D. Genistein, a soy phytoestrogen, upregulates the expression of human endothelial nitric oxide synthase and lowers blood pressure in spontaneously hypertensive rats. J. Nutr. 2008 138 2 297 304 10.1093/jn/138.2.297 18203895
    [Google Scholar]
  70. Cho T.M. Peng N. Clark J.T. Genistein attenuates the hypertensive effects of dietary NaCl in hypertensive male rats. Endocrinology 2007 148 11 5396 5402 10.1210/en.2007‑0245 17673523
    [Google Scholar]
  71. Hodgson J.M. Croft K.D. Dietary flavonoids: Effects on endothelial function and blood pressure. J. Sci. Food Agric. 2006 86 15 2492 2498 10.1002/jsfa.2675
    [Google Scholar]
  72. Nachvak S.M. Moradi S. Anjom-shoae J. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose–response meta-analysis of prospective cohort studies. J. Acad. Nutr. Diet. 2019 119 9 1483 1500.e17 10.1016/j.jand.2019.04.011 31278047
    [Google Scholar]
  73. Kuriyama S. Morio Y. Toba M. Genistein attenuates hypoxic pulmonary hypertension via enhanced nitric oxide signaling and the erythropoietin system. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014 306 11 L996 L1005 10.1152/ajplung.00276.2013 24705719
    [Google Scholar]
  74. Santos-Parker J.R. Strahler T.R. Bassett C.J. Bispham N.Z. Chonchol M.B. Seals D.R. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging (Albany NY) 2017 9 1 187 208 10.18632/aging.101149 28070018
    [Google Scholar]
  75. Yao Y. Wang W. Li M. Curcumin exerts its anti-hypertensive effect by down-regulating the AT1 receptor in vascular smooth muscle cells. Sci. Rep. 2016 6 1 25579 10.1038/srep25579 27146402
    [Google Scholar]
  76. Al-Khayri J.M. Sahana G.R. Nagella P. Joseph B.V. Alessa F.M. Al-Mssallem M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022 27 9 2901 10.3390/molecules27092901 35566252
    [Google Scholar]
  77. Tao Y. Zhu F. Pan M. Liu Q. Wang P. Pharmacokinetic, metabolism, and metabolomic strategies provide deep insight into the underlying mechanism of Ginkgo biloba flavonoids in the treatment of cardiovascular disease. Front. Nutr. 2022 9 857370 10.3389/fnut.2022.857370 35399672
    [Google Scholar]
  78. Batiha G.E.S. Al-Snafi A.E. Thuwaini M.M. Morus alba: A comprehensive phytochemical and pharmacological review. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 7 1399 1413 10.1007/s00210‑023‑02434‑4 36877269
    [Google Scholar]
  79. Zullkiflee N. Taha H. Usman A. Propolis: Its role and efficacy in human health and diseases. Molecules 2022 27 18 6120 10.3390/molecules27186120 36144852
    [Google Scholar]
  80. Hou T. Netala V.R. Zhang H. Xing Y. Li H. Zhang Z. Perilla frutescens: A rich source of pharmacological active compounds. Molecules 2022 27 11 3578 10.3390/molecules27113578 35684514
    [Google Scholar]
  81. Dong M. Li J. Yang D. Li M. Wei J. Biosynthesis and pharmacological activities of flavonoids, Triterpene Saponins and polysaccharides derived from Astragalus membranaceus. Molecules 2023 28 13 5018 10.3390/molecules28135018 37446680
    [Google Scholar]
  82. Xian B. Wang R. Jiang H. Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomed. Pharmacother. 2022 153 113462 10.1016/j.biopha.2022.113462 36076573
    [Google Scholar]
  83. Kozłowska A. Szostak-Węgierek D. Targeting cardiovascular diseases by flavonols: An update. Nutrients 2022 14 7 1439 10.3390/nu14071439 35406050
    [Google Scholar]
  84. Zhang S. Wang Y. Yu M. Discovery of herbacetin as a novel SGK1 inhibitor to alleviate myocardial hypertrophy. Adv. Sci. 2022 9 2 2101485 10.1002/advs.202101485 34761560
    [Google Scholar]
  85. Thomas S.D. Jha N.K. Jha S.K. Sadek B. Ojha S. Pharmacological and molecular insight on the cardioprotective role of apigenin. Nutrients 2023 15 2 385 10.3390/nu15020385 36678254
    [Google Scholar]
  86. Hegedüs I. Andreidesz K. Szentpéteri J.L. The utilization of physiologically active molecular components of grape seeds and grape Marc. Int. J. Mol. Sci. 2022 23 19 11165 10.3390/ijms231911165 36232467
    [Google Scholar]
  87. Tobar-Delgado E. Mejía-España D. Osorio-Mora O. Serna-Cock L. Rutin: Family farming products’ extraction sources, industrial applications and current trends in biological activity protection. Molecules 2023 28 15 5864 10.3390/molecules28155864 37570834
    [Google Scholar]
  88. Mesmar J. Abdallah R. Badran A. Maresca M. Shaito A. Baydoun E. Ziziphus nummularia: A comprehensive review of its phytochemical constituents and pharmacological properties. Molecules 2022 27 13 4240 10.3390/molecules27134240 35807485
    [Google Scholar]
  89. Al-Snafi A.E. Teibo J.O. Shaheen H.M. The therapeutic value of Myrtus communis L.: An updated review. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 7 4579 4600 10.1007/s00210‑024‑02958‑3 38319389
    [Google Scholar]
  90. Testai L. Pagnotta E. Piragine E. Cardiovascular benefits of Eruca sativa mill. Defatted seed meal extract: Potential role of hydrogen sulfide. Phytother. Res. 2022 36 6 2616 2627 10.1002/ptr.7479 35478197
    [Google Scholar]
  91. Xuan T. Liu Y. Liu R. Advances in extraction, purification, and analysis techniques of the main components of kudzu root: A comprehensive review. Molecules 2023 28 18 6577 10.3390/molecules28186577 37764353
    [Google Scholar]
  92. Mu Y. Yang Y. Jiang S. Benefits of puerarin on metabolic syndrome and its associated cardiovascular diseases in rats fed a high-fat/high-sucrose diet. Nutrients 2024 16 9 1273 10.3390/nu16091273 38732519
    [Google Scholar]
  93. Lu Q. Kishi H. Zhang Y. Morita T. Kobayashi S. Hesperetin inhibits sphingosylphosphorylcholine-induced vascular smooth muscle contraction by regulating the Fyn/Rho-kinase pathway. J. Cardiovasc. Pharmacol. 2022 79 4 456 466 10.1097/FJC.0000000000001210 34983908
    [Google Scholar]
  94. Ma E. Jin L. Qian C. Bioinformatics-guided identification of ethyl acetate extract of Citri Reticulatae Pericarpium as a functional food ingredient with anti-inflammatory potential. Molecules 2022 27 17 5435 10.3390/molecules27175435 36080202
    [Google Scholar]
  95. Ahmad I. Mashwani Z.R. Zohaib Younas, Yousaf T, Ahmad A, Vladulescu C. Antioxidant activity, metabolic profiling, in-silico molecular docking and ADMET analysis of nano selenium treated sesame seed bioactive compounds as potential novel drug targets against cardiovascular disease related receptors. Heliyon 2024 10 7 27909 10.1016/j.heliyon.2024.e27909 38571619
    [Google Scholar]
  96. Cheng X. Huang T. Wang C. Natural compound library screening identifies oroxin A for the treatment of myocardial ischemia/reperfusion injury. Front. Pharmacol. 2022 13 894899 10.3389/fphar.2022.894899 35645816
    [Google Scholar]
  97. Liu B. Su H. Luteolin improves vasoconstriction function and survival of septic mice via AMPK/NF-κB pathway. Heliyon 2023 9 2 13330 10.1016/j.heliyon.2023.e13330
    [Google Scholar]
  98. Chen D. Zhang H. Yuan T. Puerarin-V prevents the progression of hypoxia- and monocrotaline-induced pulmonary hypertension in rodent models. Acta Pharmacol. Sin. 2022 43 9 2325 2339 10.1038/s41401‑022‑00865‑y 35190697
    [Google Scholar]
  99. Khurm M. Guo Y. Wu Q. Conocarpus lancifolius (combretaceae): Pharmacological effects, LC-ESI-MS/MS profiling and in silico attributes. Metabolites 2023 13 7 794 10.3390/metabo13070794 37512501
    [Google Scholar]
  100. Arena K. Trovato E. Cacciola F. Spagnuolo L. Phytochemical characterization of Rhus coriaria L. extracts by headspace solid-phase micro extraction gas chromatography, comprehensive two-dimensional liquid chromatography, and antioxidant activity evaluation. Mol 2022 27 5 1727 10.3390/molecules27051727
    [Google Scholar]
  101. Ali A. Mueed A. Cottrell J.J. Dunshea F.R. LC-ESI-QTOF-MS/MS Identification and characterization of phenolic compounds from leaves of australian myrtles and their antioxidant activities. Molecules 2024 29 10 2259 10.3390/molecules29102259 38792121
    [Google Scholar]
  102. Abdi Syahputra R. Dalimunthe A. Utari Z.D. Nanotechnology and flavonoids: Current research and future perspectives on cardiovascular health. J. Funct. Foods 2024 120 106355 10.1016/j.jff.2024.106355
    [Google Scholar]
  103. Giannouli M. Karagkiozaki V. Pappa F. Moutsios I. Gravalidis C. Logothetidis S. Fabrication of quercetin-loaded PLGA nanoparticles via electrohydrodynamic atomization for cardiovascular disease. Mater. Today Proc. 2018 5 8 15998 16005 10.1016/j.matpr.2018.05.044
    [Google Scholar]
  104. Li W. Wu J. Zhang J. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile. Drug Deliv. 2018 25 1 827 837 10.1080/10717544.2018.1455763 29587545
    [Google Scholar]
  105. Touqeer S.I. Jahan N. Abbas N. Ali A. Formulation and process optimization of Rauvolfia serpentina nanosuspension by HPMC and in vitro evaluation of ace inhibitory potential. J. Funct. Biomater. 2022 13 4 268 10.3390/jfb13040268 36547528
    [Google Scholar]
  106. Ahmad M.Z. Pathak K. Das R.J. Design and optimization of quercetin-loaded polymeric eudragit L-100 nanoparticles for anti-diabetic activity with improved oral delivery: In-vitro and in-vivo evaluation. J. Inorg. Organomet. Polym. Mater. 2023 33 8 2411 2428 10.1007/s10904‑023‑02694‑w
    [Google Scholar]
  107. Vijay V. Perumal M.K. Morin, a polypharmacological marvel: Unveiling its versatility and recent advances in bioavailability enhancement. Food Biosci. 2025 65 106104 10.1016/j.fbio.2025.106104
    [Google Scholar]
  108. Khademi R. Mirzaei A. Mirzaei A. Edjlali F.R. Askari V.R. Baradaran Rahimi V. Morin, as a natural flavonoid, provides promising influences against cardiovascular diseases. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 6 6293 6310 10.1007/s00210‑024‑03783‑4 39808314
    [Google Scholar]
  109. Fuior E. Deleanu M. Constantinescu C. Functional role of VCAM-1 targeted flavonoid-loaded lipid nanoemulsions in reducing endothelium inflammation. Pharmaceutics 2019 11 8 391 10.3390/pharmaceutics11080391 31382634
    [Google Scholar]
  110. Jaiswal S. Anjum M.M. Thakur S. Evaluation of cardioprotective effect of naringin loaded lignin nanoparticles against isoproterenol induced myocardial infarction. J. Drug Deliv. Sci. Technol. 2023 89 105076 10.1016/j.jddst.2023.105076
    [Google Scholar]
  111. Liu C.J. Yao L. Hu Y.M. Zhao B.T. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int. J. Nanomedicine 2021 16 741 752 10.2147/IJN.S277377 33564233
    [Google Scholar]
  112. Zhang L. Zhu K. Zeng H. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int. J. Nanomedicine 2019 14 6061 6071 10.2147/IJN.S211130 31534336
    [Google Scholar]
  113. Lozano O. Lázaro-Alfaro A. Silva-Platas C. Nanoencapsulated quercetin improves cardioprotection during hypoxia‐reoxygenation injury through preservation of mitochondrial function. Oxid. Med. Cell. Longev. 2019 2019 1 1 14 10.1155/2019/7683051 31341535
    [Google Scholar]
  114. Zhang J. Wang Y. Bao C. Curcumin loaded PEG PDLLA nanoparticles for attenuating palmitate induced oxidative stress and cardiomyocyte apoptosis through AMPK pathway. Int. J. Mol. Med. 2019 44 2 672 682 10.3892/ijmm.2019.4228 31173176
    [Google Scholar]
  115. Li X. Xiao H. Lin C. Synergistic effects of liposomes encapsulating atorvastatin calcium and curcumin and targeting dysfunctional endothelial cells in reducing atherosclerosis. Int. J. Nanomedicine 2019 14 649 665 10.2147/IJN.S189819 30697048
    [Google Scholar]
  116. Guo J. Xing X. Lv N. Therapy for myocardial infarction: In vitro and in vivo evaluation of puerarin-prodrug and tanshinone co-loaded lipid nanoparticulate system. Biomed. Pharmacother. 2019 120 109480 10.1016/j.biopha.2019.109480 31562980
    [Google Scholar]
  117. Liao C.L. Liu Y. Huang M.Z. Liu H.Y. Ye Z.L. Su Q. RETRACTED ARTICLE: Myocardial ischemia reperfusion injury is alleviated by curcumin-peptide hydrogel via upregulating autophagy and protecting mitochondrial function. Stem Cell Res. Ther. 2021 12 1 89 10.1186/s13287‑020‑02101‑y 33509263
    [Google Scholar]
  118. Song X. Gan K. Qin S. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Sci. Rep. 2019 9 1 6365 10.1038/s41598‑019‑42909‑0 31019215
    [Google Scholar]
  119. Chandarana M. Curtis A. Hoskins C. The use of nanotechnology in cardiovascular disease. Appl. Nanosci. 2018 8 7 1607 1619 10.1007/s13204‑018‑0856‑z
    [Google Scholar]
  120. Rambaran T.F. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects. SN Appl. Sci. 2020 2 8 1335 10.1007/s42452‑020‑3110‑8
    [Google Scholar]
  121. Yang P. Ren J. Yang L. Nanoparticles in the new era of cardiovascular therapeutics: Challenges and opportunities. Int. J. Mol. Sci. 2023 24 6 5205 10.3390/ijms24065205 36982284
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021373759250730062326
Loading
/content/journals/chyr/10.2174/0115734021373759250730062326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test