Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4021
  • E-ISSN: 1875-6506

Abstract

Introduction

Flavonoids in various fruits and vegetables exert multifaceted biological effects. They are widely explored for cardiovascular, antitumor, antioxidant, antibacterial, antifungal, neuroprotective, and anti-inflammatory effects. Flavonoid cardioprotection is helpful in the management of myocardial injury, stroke, atherosclerosis, hypertension, and ischemia. Cardiovascular disease (CVD) has become a global threat in recent years due to increased mortality and morbidity rates. The increased mortality due to CVD among women, children, and poor economic groups has boosted the socio-economic burden on health care. Various researchers have explored the commercial applications of flavonoids, including quercetin, apigenin, luteolin, and catechin, as dietary supplements.

Methods

The findings were searched in the Google Scholar, Scopus, PubMed, and PubChem databases.

Results

Preclinical and clinical investigations have promoted the safety of flavonoids, such as apigenin and quercetin, for use as nutraceuticals that promote health. Flavonoids and their potential mechanisms of action and clinical applications offer insights for researchers and scientists to explore in the fields of medical and nanomedicine sciences. Nanomedicine, like liposomes, carbon nanotubes, nanosponges, and nanoparticles containing flavonoids, is used for its efficacy, potency, and target delivery.

Discussion

Flavonols have the potential to regulate vasodilation and prevent apoptosis. Furthermore, their supplementation may reduce the risk of cardiovascular complications. Flavonoids function as antioxidants and exhibit potent anti-inflammatory effects by mediating inflammatory pathways, thereby contributing to the management of cardiovascular complications. Emerging evidence from researchers suggests flavonoids improve endothelial function and reduce blood pressure. Furthermore, flavonoids derived from cocoa, such as catechins, and those found in tea also enhance endothelial function. Nanosystems can enhance the solubility, permeability, and effectiveness of flavonoids as antioxidants, while also promoting controlled drug delivery. Nanoformulations can enhance the effects of morin, rutin, quercetin, and other flavonoids, significantly improving therapeutic outcomes.

Conclusion

These findings offer researchers and scientists a novel technological approach utilizing flavonoids to address metabolic syndromes and related health conditions, thereby supporting personalized care and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021373759250730062326
2025-08-26
2026-02-03
Loading full text...

Full text loading...

References

  1. Cardiovascular diseases.2024Available from: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
  2. BondonnoC.P. CroftK.D. WardN. ConsidineM.J. HodgsonJ.M. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function.Nutr. Rev.201573421623510.1093/nutrit/nuu014 26024545
    [Google Scholar]
  3. ArranzS. Valderas-MartinezP. Chiva-BlanchG. Cardioprotective effects of cocoa: Clinical evidence from randomized clinical intervention trials in humans.Mol. Nutr. Food Res.201357693694710.1002/mnfr.201200595 23650217
    [Google Scholar]
  4. VauzourD. VafeiadouK. Rodriguez-MateosA. RendeiroC. SpencerJ.P.E. The neuroprotective potential of flavonoids: A multiplicity of effects.Genes Nutr.200833-411512610.1007/s12263‑008‑0091‑4 18937002
    [Google Scholar]
  5. WilliamsR.J. SpencerJ.P.E. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease.Free Radic. Biol. Med.2012521354510.1016/j.freeradbiomed.2011.09.010 21982844
    [Google Scholar]
  6. FlanaganE. MüllerM. HornbergerM. VauzourD. Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration.Curr. Nutr. Rep.201872495710.1007/s13668‑018‑0226‑1 29892788
    [Google Scholar]
  7. VauzourD. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alzheimer’s disease pathophysiology.J. Sci. Food Agric.20149461042105610.1002/jsfa.6473 24338740
    [Google Scholar]
  8. SpencerJ.P.E. Beyond antioxidants: The cellular and molecular interactions of flavonoids and how these underpin their actions on the brain.Proc. Nutr. Soc.201069224426010.1017/S0029665110000054 20158941
    [Google Scholar]
  9. SunW. ShahrajabianM.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health.Molecules2023284184510.3390/molecules28041845 36838831
    [Google Scholar]
  10. CarrizzoA. IzzoC. ForteM. A novel promising frontier for human health: The beneficial effects of nutraceuticals in cardiovascular diseases.Int. J. Mol. Sci.20202122870610.3390/ijms21228706 33218062
    [Google Scholar]
  11. MicekA. GodosJ. Del RioD. GalvanoF. GrossoG. Dietary flavonoids and cardiovascular disease: A comprehensive dose–response meta‐analysis.Mol. Nutr. Food Res.2021656200101910.1002/mnfr.202001019 33559970
    [Google Scholar]
  12. AielloP. ConsalviS. PoceG. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy.Semin. Cancer Biol.202169150165
    [Google Scholar]
  13. MuthaR.E. TatiyaA.U. SuranaS.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview.Future J Pharm Sci2021712510.1186/s43094‑020‑00161‑8 33495733
    [Google Scholar]
  14. GiulianiC. The flavonoid quercetin induces AP-1 activation in FRTL-5 thyroid cells.Antioxidants20198511210.3390/antiox8050112 31035637
    [Google Scholar]
  15. CalisZ. MogulkocR. BaltaciA.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation.Mini Rev. Med. Chem.202020151475148810.2174/1389557519666190617150051 31288717
    [Google Scholar]
  16. SasakiN. NakayamaT. Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration.Plant Cell Physiol.2015561284010.1093/pcp/pcu097 25015943
    [Google Scholar]
  17. PapadakiM. VikhorevP.G. MarstonS.B. MesserA.E. Uncoupling of myofilament Ca2+ sensitivity from troponin I phosphorylation by mutations can be reversed by epigallocatechin-3-gallate.Cardiovasc. Res.201510819911010.1093/cvr/cvv181 26109583
    [Google Scholar]
  18. MesserA.E. BaylissC.R. El-MezgueldiM. Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca2+-sensitivity and suppress the modulation of Ca2+-sensitivity by troponin I phosphorylation.Arch. Biochem. Biophys.201660111312010.1016/j.abb.2016.03.027 27036851
    [Google Scholar]
  19. QuanJ. JiaZ. LvT. Green tea extract catechin improves cardiac function in pediatric cardiomyopathy patients with diastolic dysfunction.J. Biomed. Sci.20192613210.1186/s12929‑019‑0528‑7 31064352
    [Google Scholar]
  20. WangF. LiZ. SongT. Proteomics study on the effect of silybin on cardiomyopathy in obese mice.Sci. Rep.2021111713610.1038/s41598‑021‑86717‑x 33785854
    [Google Scholar]
  21. SagarS. LiuP.P. CooperL.T. Myocarditis.Lancet2012379981773874710.1016/S0140‑6736(11)60648‑X 22185868
    [Google Scholar]
  22. SuzukiJ. OgawaM. FutamatsuH. KosugeH. SagesakaY.M. IsobeM. Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis.Eur. J. Heart Fail.20079215215910.1016/j.ejheart.2006.05.007 16829193
    [Google Scholar]
  23. ZempoH. SuzukiJ. WatanabeR. Cacao polyphenols ameliorate autoimmune myocarditis in mice.Hypertens. Res.201639420320910.1038/hr.2015.136 26657007
    [Google Scholar]
  24. Fernández-RojasB. Gutiérrez-VenegasG. Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects.Life Sci.201820943545410.1016/j.lfs.2018.08.029 30121198
    [Google Scholar]
  25. Gutiérrez-VenegasG. Torras-CeballosA. Gómez-MoraJ.A. Fernández-RojasB. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts.Cell. Mol. Biol. Lett.20172211910.1186/s11658‑017‑0047‑z 28878808
    [Google Scholar]
  26. GuzzoF. ScognamiglioM. FiorentinoA. BuomminoE. D’AbroscaB. Plant derived natural products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm activity and molecular mechanisms.Molecules20202521502410.3390/molecules25215024 33138250
    [Google Scholar]
  27. Gutiérrez-VenegasG. González-RosasZ. Apigenin reduce lipoteichoic acid-induced inflammatory response in rat cardiomyoblast cells.Arch. Pharm. Res.201740224024910.1007/s12272‑016‑0756‑2 27193174
    [Google Scholar]
  28. FriskM. LeC. ShenX. Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction.J. Am. Coll. Cardiol.202177440541910.1016/j.jacc.2020.11.044 33509397
    [Google Scholar]
  29. ArrigoM. JessupM. MullensW. Acute heart failure.Nat. Rev. Dis. Primers2020611610.1038/s41572‑020‑0151‑7 32139695
    [Google Scholar]
  30. TomasoniD. AdamoM. LombardiC.M. MetraM. Highlights in heart failure.ESC Heart Fail.2019661105112710.1002/ehf2.12555 31997538
    [Google Scholar]
  31. ZhouB. TianR. Mitochondrial dysfunction in pathophysiology of heart failure.J. Clin. Invest.201812893716372610.1172/JCI120849 30124471
    [Google Scholar]
  32. GarbinciusJ.F. ElrodJ.W. Is the failing heart starved of mitochondrial calcium?Circ. Res.202112881205120710.1161/CIRCRESAHA.121.319030 33856917
    [Google Scholar]
  33. ChistiakovD.A. ShkuratT.P. MelnichenkoA.A. GrechkoA.V. OrekhovA.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review.Ann. Med.201850212112710.1080/07853890.2017.1417631 29237304
    [Google Scholar]
  34. SinghR.B. FedackoJ. PellaD. High exogenous antioxidant, restorative treatment (heart) for prevention of the six stages of heart failure: The heart diet.Antioxidants2022118146410.3390/antiox11081464 36009183
    [Google Scholar]
  35. XuQ. FuQ. LiZ. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice.Nat. Metab.20213121706172610.1038/s42255‑021‑00491‑8 34873338
    [Google Scholar]
  36. LópezB. RavassaS. MorenoM.U. Diffuse myocardial fibrosis: Mechanisms, diagnosis and therapeutic approaches.Nat. Rev. Cardiol.202118747949810.1038/s41569‑020‑00504‑1 33568808
    [Google Scholar]
  37. GyöngyösiM. WinklerJ. RamosI. Myocardial fibrosis: Biomedical research from bench to bedside.Eur. J. Heart Fail.201719217719110.1002/ejhf.696 28157267
    [Google Scholar]
  38. BacmeisterL. SchwarzlM. WarnkeS. Inflammation and fibrosis in murine models of heart failure.Basic Res. Cardiol.201911431910.1007/s00395‑019‑0722‑5 30887214
    [Google Scholar]
  39. ZhangY. LinX. ChuY. Dapagliflozin: A sodium–glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling.Cardiovasc. Diabetol.202120112110.1186/s12933‑021‑01312‑8 34116674
    [Google Scholar]
  40. PanZ. ZhaoW. ZhangX. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38‐MAPK and ERK1/2.Br. J. Pharmacol.2011162368870010.1111/j.1476‑5381.2010.01070.x 20942814
    [Google Scholar]
  41. GuanB.F. DaiX.F. HuangQ.B. Icariside II ameliorates myocardial ischemia and reperfusion injury by attenuating inflammation and apoptosis through the regulation of the PI3K/AKT signaling pathway.Mol. Med. Rep.20202243151316010.3892/mmr.2020.11396 32945440
    [Google Scholar]
  42. FanS. GuK. WuY. Liquiritinapioside – A mineralocorticoid-like substance from liquorice.Food Chem.201928941942510.1016/j.foodchem.2019.03.056 30955632
    [Google Scholar]
  43. WangL. TanA. AnX. XiaY. XieY. Quercetin Dihydrate inhibition of cardiac fibrosis induced by angiotensin II in vivo and in vitro.Biomed. Pharmacother.202012711020510.1016/j.biopha.2020.110205 32403046
    [Google Scholar]
  44. ZhangJ. FuX. YangL. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro.Biomed. Pharmacother.202012911036410.1016/j.biopha.2020.110364 32531678
    [Google Scholar]
  45. da PurificaçãoN.R.C. GarciaV.B. FrezF.C.V. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats.Biomed. Pharmacother.202215111313110.1016/j.biopha.2022.113131 35643067
    [Google Scholar]
  46. ArkatS. UmbarkarP. SinghS. SitasawadS.L. Mitochondrial Peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in Diabetic cardiomyopathy.Free Radic. Biol. Med.20169748950010.1016/j.freeradbiomed.2016.06.019 27393003
    [Google Scholar]
  47. ZhangW. ZhengY. YanF. DongM. RenY. Research progress of quercetin in cardiovascular disease.Front. Cardiovasc. Med.202310120371310.3389/fcvm.2023.1203713 38054093
    [Google Scholar]
  48. LiaoH. ZhangN. MengY. Myricetin alleviates pathological cardiac hypertrophy via TRAF6/TAK1/MAPK and Nrf2 signaling pathway.Oxid. Med. Cell. Longev.20192019111410.1155/2019/6304058 31885808
    [Google Scholar]
  49. QinD. YueR. DengP. 8-Formylophiopogonanone B antagonizes doxorubicin-induced cardiotoxicity by suppressing heme oxygenase-1-dependent myocardial inflammation and fibrosis.Biomed. Pharmacother.202114011177910.1016/j.biopha.2021.111779 34062415
    [Google Scholar]
  50. YeF. HeJ. WuX. The regulatory mechanisms of Yulangsan MHBFC reversing cardiac remodeling in rats based on eNOS-NO signaling pathway.Biomed. Pharmacother.201911710914110.1016/j.biopha.2019.109141 31228800
    [Google Scholar]
  51. HeJ. YeF. TangX. Comparison of effects of MHBFC on cardiac hypertrophy after banding of the abdominal aorta in wild-type mice and eNOS knockout mice.Biomed. Pharmacother.20191091221123210.1016/j.biopha.2018.10.153 30551372
    [Google Scholar]
  52. PatelR.V. MistryB.M. ShindeS.K. SyedR. SinghV. ShinH.S. Therapeutic potential of quercetin as a cardiovascular agent.Eur. J. Med. Chem.201815588990410.1016/j.ejmech.2018.06.053 29966915
    [Google Scholar]
  53. BhaskarS. SudhakaranP.R. HelenA. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway.Cell. Immunol.201631013114010.1016/j.cellimm.2016.08.011 27585526
    [Google Scholar]
  54. da RochaE.V. FalchettiF. PernomianL. Quercetin decreases cardiac hypertrophic mediators and maladaptive coronary arterial remodeling in renovascular hypertensive rats without improving cardiac function.Naunyn Schmiedebergs Arch. Pharmacol.2023396593994910.1007/s00210‑022‑02349‑6 36527481
    [Google Scholar]
  55. ChekalinaN. BurmakY. PetrovY. Quercetin reduces the transcriptional activity of NF-kB in stable coronary artery disease.Indian Heart J.201870559359710.1016/j.ihj.2018.04.006 30392493
    [Google Scholar]
  56. SadekK.M. MahmoudS.F.E. ZeweilM.F. AbouzedT.K. Proanthocyanidin alleviates doxorubicin‐induced cardiac injury by inhibiting NFk B pathway and modulating oxidative stress, cell cycle, and fibrogenesis.J. Biochem. Mol. Toxicol.20213542271610.1002/jbt.22716 33484087
    [Google Scholar]
  57. BagchiD. SwaroopA. PreussH.G. BagchiM. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: An overview.Mutat. Res.2014768697310.1016/j.mrfmmm.2014.04.004 24751946
    [Google Scholar]
  58. MusialC. Kuban-JankowskaA. Gorska-PonikowskaM. Beneficial properties of green tea catechins.Int. J. Mol. Sci.2020215174410.3390/ijms21051744 32143309
    [Google Scholar]
  59. PastorizaS. MesíasM. CabreraC. Rufián-HenaresJ.A. Healthy properties of green and white teas: An update.Food Funct.2017882650266210.1039/C7FO00611J 28640307
    [Google Scholar]
  60. XuR. YangK. DingJ. ChenG. Effect of green tea supplementation on blood pressure.Medicine20209961904710.1097/MD.0000000000019047 32028419
    [Google Scholar]
  61. JaffriJ.M. MohamedS. RohimiN. AhmadI.N. NoordinM.M. ManapY.A. Antihypertensive and cardiovascular effects of catechin-rich oil palm (Elaeis guineensis) leaf extract in nitric oxide-deficient rats.J. Med. Food2011147-877578310.1089/jmf.2010.1170 21631357
    [Google Scholar]
  62. TeramotoM. MurakiI. YamagishiK. TamakoshiA. IsoH. Green tea and coffee consumption and all-cause mortality among persons with and without stroke or myocardial infarction.Stroke202152395796510.1161/STROKEAHA.120.032273 33535784
    [Google Scholar]
  63. BaoL. LuF. ChenH. High concentration of epigallocatechin-3-gallate increased the incidences of arrhythmia and diastolic dysfunction via β2-adrenoceptor.J. Food Sci.2015803T659T66310.1111/1750‑3841.12803 25676191
    [Google Scholar]
  64. BoukhabzaM. El HilalyJ. AttiyaN. In Silico evaluation of the potential antiarrhythmic effect of Epigallocatechin‐3‐Gallate on cardiac channelopathies.Comput. Math. Methods Med.2016201617861653 27882075
    [Google Scholar]
  65. FuS. LiY. WuY. YueY. YangD. Icariside II improves myocardial fibrosis in spontaneously hypertensive rats by inhibiting collagen synthesis.J. Pharm. Pharmacol.202072222723510.1111/jphp.13190 31820448
    [Google Scholar]
  66. IrfanM. KwonT.H. LeeD.H. Antiplatelet and antithrombotic effects of Epimedium koreanum Nakai.Evid. Based Complement. Alternat. Med.20212021111110.1155/2021/7071987 33953788
    [Google Scholar]
  67. HuaW. ZhangY. WuX. Icariin attenuates interleukin-1β-induced inflammatory response in human nucleus pulposus cells.Curr. Pharm. Des.201823396071607810.2174/1381612823666170615112158 28619001
    [Google Scholar]
  68. FuS. LiY.L. WuY.T. YueY. QianZ.Q. YangD.L. Icariside II attenuates myocardial fibrosis by inhibiting nuclear factor-κB and the TGF-β1/Smad2 signalling pathway in spontaneously hypertensive rats.Biomed. Pharmacother.2018100647110.1016/j.biopha.2018.01.138 29421583
    [Google Scholar]
  69. SiH. LiuD. Genistein, a soy phytoestrogen, upregulates the expression of human endothelial nitric oxide synthase and lowers blood pressure in spontaneously hypertensive rats.J. Nutr.2008138229730410.1093/jn/138.2.297 18203895
    [Google Scholar]
  70. ChoT.M. PengN. ClarkJ.T. Genistein attenuates the hypertensive effects of dietary NaCl in hypertensive male rats.Endocrinology2007148115396540210.1210/en.2007‑0245 17673523
    [Google Scholar]
  71. HodgsonJ.M. CroftK.D. Dietary flavonoids: Effects on endothelial function and blood pressure.J. Sci. Food Agric.200686152492249810.1002/jsfa.2675
    [Google Scholar]
  72. NachvakS.M. MoradiS. Anjom-shoaeJ. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose–response meta-analysis of prospective cohort studies.J. Acad. Nutr. Diet.2019119914831500.e1710.1016/j.jand.2019.04.011 31278047
    [Google Scholar]
  73. KuriyamaS. MorioY. TobaM. Genistein attenuates hypoxic pulmonary hypertension via enhanced nitric oxide signaling and the erythropoietin system.Am. J. Physiol. Lung Cell. Mol. Physiol.201430611L996L100510.1152/ajplung.00276.2013 24705719
    [Google Scholar]
  74. Santos-ParkerJ.R. StrahlerT.R. BassettC.J. BisphamN.Z. ChoncholM.B. SealsD.R. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress.Aging (Albany NY)20179118720810.18632/aging.101149 28070018
    [Google Scholar]
  75. YaoY. WangW. LiM. Curcumin exerts its anti-hypertensive effect by down-regulating the AT1 receptor in vascular smooth muscle cells.Sci. Rep.2016612557910.1038/srep25579 27146402
    [Google Scholar]
  76. Al-KhayriJ.M. SahanaG.R. NagellaP. JosephB.V. AlessaF.M. Al-MssallemM.Q. Flavonoids as potential anti-inflammatory molecules: A review.Molecules2022279290110.3390/molecules27092901 35566252
    [Google Scholar]
  77. TaoY. ZhuF. PanM. LiuQ. WangP. Pharmacokinetic, metabolism, and metabolomic strategies provide deep insight into the underlying mechanism of Ginkgo biloba flavonoids in the treatment of cardiovascular disease.Front. Nutr.2022985737010.3389/fnut.2022.857370 35399672
    [Google Scholar]
  78. BatihaG.E.S. Al-SnafiA.E. ThuwainiM.M. Morus alba: A comprehensive phytochemical and pharmacological review.Naunyn Schmiedebergs Arch. Pharmacol.202339671399141310.1007/s00210‑023‑02434‑4 36877269
    [Google Scholar]
  79. ZullkifleeN. TahaH. UsmanA. Propolis: Its role and efficacy in human health and diseases.Molecules20222718612010.3390/molecules27186120 36144852
    [Google Scholar]
  80. HouT. NetalaV.R. ZhangH. XingY. LiH. ZhangZ. Perilla frutescens: A rich source of pharmacological active compounds.Molecules20222711357810.3390/molecules27113578 35684514
    [Google Scholar]
  81. DongM. LiJ. YangD. LiM. WeiJ. Biosynthesis and pharmacological activities of flavonoids, Triterpene Saponins and polysaccharides derived from Astragalus membranaceus.Molecules20232813501810.3390/molecules28135018 37446680
    [Google Scholar]
  82. XianB. WangR. JiangH. Comprehensive review of two groups of flavonoids in Carthamus tinctorius L.Biomed. Pharmacother.202215311346210.1016/j.biopha.2022.113462 36076573
    [Google Scholar]
  83. KozłowskaA. Szostak-WęgierekD. Targeting cardiovascular diseases by flavonols: An update.Nutrients2022147143910.3390/nu14071439 35406050
    [Google Scholar]
  84. ZhangS. WangY. YuM. Discovery of herbacetin as a novel SGK1 inhibitor to alleviate myocardial hypertrophy.Adv. Sci.202292210148510.1002/advs.202101485 34761560
    [Google Scholar]
  85. ThomasS.D. JhaN.K. JhaS.K. SadekB. OjhaS. Pharmacological and molecular insight on the cardioprotective role of apigenin.Nutrients202315238510.3390/nu15020385 36678254
    [Google Scholar]
  86. HegedüsI. AndreideszK. SzentpéteriJ.L. The utilization of physiologically active molecular components of grape seeds and grape Marc.Int. J. Mol. Sci.202223191116510.3390/ijms231911165 36232467
    [Google Scholar]
  87. Tobar-DelgadoE. Mejía-EspañaD. Osorio-MoraO. Serna-CockL. Rutin: Family farming products’ extraction sources, industrial applications and current trends in biological activity protection.Molecules20232815586410.3390/molecules28155864 37570834
    [Google Scholar]
  88. MesmarJ. AbdallahR. BadranA. MarescaM. ShaitoA. BaydounE. Ziziphus nummularia: A comprehensive review of its phytochemical constituents and pharmacological properties.Molecules20222713424010.3390/molecules27134240 35807485
    [Google Scholar]
  89. Al-SnafiA.E. TeiboJ.O. ShaheenH.M. The therapeutic value of Myrtus communis L.: An updated review.Naunyn Schmiedebergs Arch. Pharmacol.202439774579460010.1007/s00210‑024‑02958‑3 38319389
    [Google Scholar]
  90. TestaiL. PagnottaE. PiragineE. Cardiovascular benefits of Eruca sativa mill. Defatted seed meal extract: Potential role of hydrogen sulfide.Phytother. Res.20223662616262710.1002/ptr.7479 35478197
    [Google Scholar]
  91. XuanT. LiuY. LiuR. Advances in extraction, purification, and analysis techniques of the main components of kudzu root: A comprehensive review.Molecules20232818657710.3390/molecules28186577 37764353
    [Google Scholar]
  92. MuY. YangY. JiangS. Benefits of puerarin on metabolic syndrome and its associated cardiovascular diseases in rats fed a high-fat/high-sucrose diet.Nutrients2024169127310.3390/nu16091273 38732519
    [Google Scholar]
  93. LuQ. KishiH. ZhangY. MoritaT. KobayashiS. Hesperetin inhibits sphingosylphosphorylcholine-induced vascular smooth muscle contraction by regulating the Fyn/Rho-kinase pathway.J. Cardiovasc. Pharmacol.202279445646610.1097/FJC.0000000000001210 34983908
    [Google Scholar]
  94. MaE. JinL. QianC. Bioinformatics-guided identification of ethyl acetate extract of Citri Reticulatae Pericarpium as a functional food ingredient with anti-inflammatory potential.Molecules20222717543510.3390/molecules27175435 36080202
    [Google Scholar]
  95. AhmadI. MashwaniZ.R. Zohaib Younas, Yousaf T, Ahmad A, Vladulescu C. Antioxidant activity, metabolic profiling, in-silico molecular docking and ADMET analysis of nano selenium treated sesame seed bioactive compounds as potential novel drug targets against cardiovascular disease related receptors.Heliyon20241072790910.1016/j.heliyon.2024.e27909 38571619
    [Google Scholar]
  96. ChengX. HuangT. WangC. Natural compound library screening identifies oroxin A for the treatment of myocardial ischemia/reperfusion injury.Front. Pharmacol.20221389489910.3389/fphar.2022.894899 35645816
    [Google Scholar]
  97. LiuB. SuH. Luteolin improves vasoconstriction function and survival of septic mice via AMPK/NF-κB pathway.Heliyon2023921333010.1016/j.heliyon.2023.e13330
    [Google Scholar]
  98. ChenD. ZhangH. YuanT. Puerarin-V prevents the progression of hypoxia- and monocrotaline-induced pulmonary hypertension in rodent models.Acta Pharmacol. Sin.20224392325233910.1038/s41401‑022‑00865‑y 35190697
    [Google Scholar]
  99. KhurmM. GuoY. WuQ. Conocarpus lancifolius (combretaceae): Pharmacological effects, LC-ESI-MS/MS profiling and in silico attributes.Metabolites202313779410.3390/metabo13070794 37512501
    [Google Scholar]
  100. ArenaK. TrovatoE. CacciolaF. SpagnuoloL. Phytochemical characterization of Rhus coriaria L. extracts by headspace solid-phase micro extraction gas chromatography, comprehensive two-dimensional liquid chromatography, and antioxidant activity evaluation.Mol2022275172710.3390/molecules27051727
    [Google Scholar]
  101. AliA. MueedA. CottrellJ.J. DunsheaF.R. LC-ESI-QTOF-MS/MS Identification and characterization of phenolic compounds from leaves of australian myrtles and their antioxidant activities.Molecules20242910225910.3390/molecules29102259 38792121
    [Google Scholar]
  102. Abdi SyahputraR. DalimuntheA. UtariZ.D. Nanotechnology and flavonoids: Current research and future perspectives on cardiovascular health.J. Funct. Foods202412010635510.1016/j.jff.2024.106355
    [Google Scholar]
  103. GiannouliM. KaragkiozakiV. PappaF. MoutsiosI. GravalidisC. LogothetidisS. Fabrication of quercetin-loaded PLGA nanoparticles via electrohydrodynamic atomization for cardiovascular disease.Mater. Today Proc.201858159981600510.1016/j.matpr.2018.05.044
    [Google Scholar]
  104. LiW. WuJ. ZhangJ. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile.Drug Deliv.201825182783710.1080/10717544.2018.1455763 29587545
    [Google Scholar]
  105. TouqeerS.I. JahanN. AbbasN. AliA. Formulation and process optimization of Rauvolfia serpentina nanosuspension by HPMC and in vitro evaluation of ace inhibitory potential.J. Funct. Biomater.202213426810.3390/jfb13040268 36547528
    [Google Scholar]
  106. AhmadM.Z. PathakK. DasR.J. Design and optimization of quercetin-loaded polymeric eudragit L-100 nanoparticles for anti-diabetic activity with improved oral delivery: In-vitro and in-vivo evaluation.J. Inorg. Organomet. Polym. Mater.20233382411242810.1007/s10904‑023‑02694‑w
    [Google Scholar]
  107. VijayV. PerumalM.K. Morin, a polypharmacological marvel: Unveiling its versatility and recent advances in bioavailability enhancement.Food Biosci.20256510610410.1016/j.fbio.2025.106104
    [Google Scholar]
  108. KhademiR. MirzaeiA. MirzaeiA. EdjlaliF.R. AskariV.R. Baradaran RahimiV. Morin, as a natural flavonoid, provides promising influences against cardiovascular diseases.Naunyn Schmiedebergs Arch. Pharmacol.202539866293631010.1007/s00210‑024‑03783‑4 39808314
    [Google Scholar]
  109. FuiorE. DeleanuM. ConstantinescuC. Functional role of VCAM-1 targeted flavonoid-loaded lipid nanoemulsions in reducing endothelium inflammation.Pharmaceutics201911839110.3390/pharmaceutics11080391 31382634
    [Google Scholar]
  110. JaiswalS. AnjumM.M. ThakurS. Evaluation of cardioprotective effect of naringin loaded lignin nanoparticles against isoproterenol induced myocardial infarction.J. Drug Deliv. Sci. Technol.20238910507610.1016/j.jddst.2023.105076
    [Google Scholar]
  111. LiuC.J. YaoL. HuY.M. ZhaoB.T. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism.Int. J. Nanomedicine20211674175210.2147/IJN.S277377 33564233
    [Google Scholar]
  112. ZhangL. ZhuK. ZengH. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity.Int. J. Nanomedicine2019146061607110.2147/IJN.S211130 31534336
    [Google Scholar]
  113. LozanoO. Lázaro-AlfaroA. Silva-PlatasC. Nanoencapsulated quercetin improves cardioprotection during hypoxia‐reoxygenation injury through preservation of mitochondrial function.Oxid. Med. Cell. Longev.20192019111410.1155/2019/7683051 31341535
    [Google Scholar]
  114. ZhangJ. WangY. BaoC. Curcumin loaded PEG PDLLA nanoparticles for attenuating palmitate induced oxidative stress and cardiomyocyte apoptosis through AMPK pathway.Int. J. Mol. Med.201944267268210.3892/ijmm.2019.4228 31173176
    [Google Scholar]
  115. LiX. XiaoH. LinC. Synergistic effects of liposomes encapsulating atorvastatin calcium and curcumin and targeting dysfunctional endothelial cells in reducing atherosclerosis.Int. J. Nanomedicine20191464966510.2147/IJN.S189819 30697048
    [Google Scholar]
  116. GuoJ. XingX. LvN. Therapy for myocardial infarction: In vitro and in vivo evaluation of puerarin-prodrug and tanshinone co-loaded lipid nanoparticulate system.Biomed. Pharmacother.201912010948010.1016/j.biopha.2019.109480 31562980
    [Google Scholar]
  117. LiaoC.L. LiuY. HuangM.Z. LiuH.Y. YeZ.L. SuQ. RETRACTED ARTICLE: Myocardial ischemia reperfusion injury is alleviated by curcumin-peptide hydrogel via upregulating autophagy and protecting mitochondrial function.Stem Cell Res. Ther.20211218910.1186/s13287‑020‑02101‑y 33509263
    [Google Scholar]
  118. SongX. GanK. QinS. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure.Sci. Rep.201991636510.1038/s41598‑019‑42909‑0 31019215
    [Google Scholar]
  119. ChandaranaM. CurtisA. HoskinsC. The use of nanotechnology in cardiovascular disease.Appl. Nanosci.2018871607161910.1007/s13204‑018‑0856‑z
    [Google Scholar]
  120. RambaranT.F. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects.SN Appl Sci202028133510.1007/s42452‑020‑3110‑8
    [Google Scholar]
  121. YangP. RenJ. YangL. Nanoparticles in the new era of cardiovascular therapeutics: Challenges and opportunities.Int. J. Mol. Sci.2023246520510.3390/ijms24065205 36982284
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021373759250730062326
Loading
/content/journals/chyr/10.2174/0115734021373759250730062326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test