Skip to content
2000
image of Ambulatory Central Blood Pressure Allows the Confirmation of True Hypertension in the Young

Abstract

Introduction

True isolated systolic hypertension (ISH) in youth must be evaluated by central blood pressure to avoid false or spurious hypertension. The purpose of this study was to perform a reliable assessment to confirm true hypertension and assess target organ damage.

Methods

Fifty-eight early diagnosed, untreated systolic hypertensive patients with office BP and 24-h ABPM (25±4, 32 male) underwent central blood pressure evaluation with a non-invasive, validated Mobil-O-Graph device. In all of them, left ventricular mass (LVMi echocardiogram), pulse wave velocity (PWV), cardiac index, peripheral vascular resistance, and urinary albumin excretion were recorded at the beginning of the study.

Results

All spurious systolic hypertensives had normal LVMi, cardiac output, peripheral vascular resistance, and urinary albumin excretion (UE), whereas true hypertensives showed a hyperkinetic behavior (high cardiac output) and early target organ damage (increased LVMi and higher urinary albumin excretion) at the time of observation.

Discussion

In this study, young patients with elevated cBP had left ventricular mass index and urinary albumin excretion higher than those with normal cBP. This observation suggests that this group of subjects are true hypertensives, contrary to the claim of being spurious hypertensives. Spurious hypertension should not be underestimated because it could be a temporary condition, since other authors have found that ISH and normal cSBP in adolescents may progress to sustained hypertension and hypertensive organ damage, thus requiring close monitoring.

Conclusion

In this study, central blood pressure was able to define true or spurious hypertension and confirm target organ damage in this youth cohort. A multicentric study will be of interest to confirm these preliminary findings.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021373638250811221313
2025-08-27
2025-10-27
Loading full text...

Full text loading...

References

  1. Litwin M. Niemirska A. Obrycki Ł. Guidelines of the paediatric section of the polish society of hypertension on diagnosis and treatment of arterial hypertension in children and adolescents. Arterial Hypertens 2018 22 45 73 10.5603/AH.2018.0007
    [Google Scholar]
  2. Pucci G. Cheriyan J. Hubsch A. Evaluation of the Vicorder, a novel cuff-based device for the noninvasive estimation of central blood pressure. J. Hypertens. 2013 31 1 77 85 10.1097/HJH.0b013e32835a8eb1 23079681
    [Google Scholar]
  3. Saladini F. Santonastaso M. Mos L. Isolated systolic hypertension of young-to-middle-age individuals implies a relatively low risk of developing hypertension needing treatment when central blood pressure is low. J. Hypertens. 2011 29 7 1311 1319 10.1097/HJH.0b013e3283481a32 21659824
    [Google Scholar]
  4. Palatini P. Rosei E.A. Avolio A. Isolated systolic hypertension in the young. J. Hypertens. 2018 36 6 1222 1236 10.1097/HJH.0000000000001726
    [Google Scholar]
  5. Kollias A. Lagou S. Zeniodi M.E. Boubouchairopoulou N. Stergiou G.S. Association of central versus brachial blood pressure with target-organ damage: Systematic review and meta-analysis. Hypertension 2016 67 1 183 190 10.1161/HYPERTENSIONAHA.115.06066 26597821
    [Google Scholar]
  6. Roman M.J. Devereux R.B. Kizer J.R. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: The strong heart study. Hypertension 2007 50 1 197 203 10.1161/HYPERTENSIONAHA.107.089078
    [Google Scholar]
  7. Wang K-L. Cheng H-M. Chuang S-Y. Central or peripheral systolic or pulse pressure: Which best relates to target organs and future mortality? J. Hypertens. 2009 27 3 461 467 10.1097/HJH.0b013e3283220ea4
    [Google Scholar]
  8. Roman M.J. Okin P.M. Kizer J.R. Lee E.T. Howard B.V. Devereux R.B. Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: The Strong Heart Study. J. Hypertens. 2010 28 2 384 388 10.1097/HJH.0b013e328333d228 20051906
    [Google Scholar]
  9. Mahmud A. Feely J. Spurious systolic hypertension of youth: Fit young men with elastic arteries. Am. J. Hypertens. 2003 16 3 229 232 10.1016/S0895‑7061(02)03255‑7 12620702
    [Google Scholar]
  10. Sorof J.M. Alexandrov A.V. Garami Z. Carotid ultrasonography for detection of vascular abnormalities in hypertensive children. Pediatr. Nephrol. 2003 18 10 1020 1024 10.1007/s00467‑003‑1187‑0 12883975
    [Google Scholar]
  11. Sanchez R.A. Sanchez M.J. Pessana F. Ramirez A.J. Insulin resistance is associated to future hypertension in normotensive salt-sensitive individuals: A 10-year follow-up study. J. Hypertens. 2024 42 11 1915 1921 10.1097/HJH.0000000000003810 39248115
    [Google Scholar]
  12. Weber T. Wassertheurer S. Rammer M. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension 2011 58 5 825 832 10.1161/HYPERTENSIONAHA.111.176313 21911710
    [Google Scholar]
  13. a Diaz A. Tringler M. Galli C. Ramirez A. Cabrera Fischer E.I. Arterial stiffness in a rural population of Argentina: Pilot study. High Blood Press. Cardiovasc. Prev. 2015 22 4 403 409 10.1007/s40292‑015‑0110‑7 26068976
    [Google Scholar]
  14. b Bia D. Zócalo Y. Sánchez R. Brachial blood pressure invasively and non-invasively obtained using oscillometry and applanation tonometry: Impact of mean blood pressure equations and calibration schemes on agreement levels. J. Cardiovasc. Dev. Dis. 2023 10 2 45 10.3390/jcdd10020045 36826541
    [Google Scholar]
  15. Bia D. Zócalo Y. Sánchez R. Aortic systolic and pulse pressure invasively and non-invasively obtained: Comparative analysis of recording techniques, arterial sites of measurement, waveform analysis algorithms and calibration methods. Front. Physiol. 2023 14 1113972 10.3389/fphys.2023.1113972 36726850
    [Google Scholar]
  16. Christen A.I. Armentano R.L. Miranda A. Arterial wall structure and dynamics in type 2 diabetes mellitus methodological aspects and pathophysiological findings. Curr. Diabetes Rev. 2010 6 6 367 377 10.2174/157339910793499146 20879975
    [Google Scholar]
  17. Devereux R.B. Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977 55 4 613 618 10.1161/01.CIR.55.4.613 138494
    [Google Scholar]
  18. Lantelme P. Bouchayer D. Gayet C. Lievre M. Gessek J. Milon H. Influence of a rapid change of left ventricular dimensions on the echocardiographic measurement of left ventricular mass by the Penn convention. J. Hypertens. 1999 17 9 1323 1328 10.1097/00004872‑199917090‑00013 10489111
    [Google Scholar]
  19. Obrycki Ł. Feber J. Brzezińska G. Litwin M. Evolution of isolated systolic hypertension with normal central blood pressure in adolescents—prospective study. Pediatr. Nephrol. 2021 36 2 361 371 10.1007/s00467‑020‑04731‑z 32880746
    [Google Scholar]
  20. Atasoy S. Middeke M. Johar H. Peters A. Heier M. Ladwig K.H. Cardiovascular mortality risk in young adults with isolated systolic hypertension: Findings from population-based MONICA/KORA cohort study. J. Hum. Hypertens. 2022 36 12 1059 1065 10.1038/s41371‑021‑00619‑z 34650215
    [Google Scholar]
  21. Zambanini A. Cunningham S.L. Parker K.H. Khir A.W. McG Thom SA, Hughes AD. Wave-energy patterns in carotid, brachial, and radial arteries: A noninvasive approach using wave-intensity analysis. Am. J. Physiol. Heart Circ. Physiol. 2005 289 1 H270 H276 10.1152/ajpheart.00636.2003 15722409
    [Google Scholar]
  22. Brown N. Impedance matching at arterial bifurcations. J. Biomech. 1993 26 1 59 67 10.1016/0021‑9290(93)90613‑J 8423169
    [Google Scholar]
  23. Taylor M.G. The input impedance of an assembly of randomly branching elastic tubes. Biophys. J. 1966 6 1 29 51 10.1016/S0006‑3495(66)86638‑9 5903152
    [Google Scholar]
  24. Julius S. Borderline Hypertension. Clin. Exp. Hypertens. 1999 21 5-6 741 747 10.3109/10641969909061004 10423097
    [Google Scholar]
  25. Ferreira D.L.S. Fraser A. Howe L.D. Associations of central and peripheral blood pressure with cardiac structure and function in an adolescent birth cohort: The Avon Longitudinal Study of Parents and Children. J. Am. Coll. Cardiol. 2015 65 18 2048 2050 10.1016/j.jacc.2015.01.060 25953754
    [Google Scholar]
  26. Hughes A.D. Davey Smith G. Howe L.D. Differences between brachial and aortic blood pressure in adolescence and their implications for diagnosis of hypertension. J. Hypertens. 2024 42 8 1382 1389 10.1097/HJH.0000000000003743 38660719
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021373638250811221313
Loading
/content/journals/chyr/10.2174/0115734021373638250811221313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test