Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4021
  • E-ISSN: 1875-6506

Abstract

Introduction

Left Ventricular Dysfunction (LVD) is a frequent complication in Diabetes mellitus (DM) patients, often worsened by cardiovascular disease. This study explores the role of dipyridamole (DP)-induced heart rate variability and G-SPECT imaging in evaluating LVD in DM patients. This study aimed to evaluate the relationship between heart rate ratio (HRR) during DP stress and LVD parameters derived from gated SPECT (G-SPECT) in DM patients, aiming to identify if HRR can serve as a marker for early LVD assessment.

Methods

A cross-sectional study of 125 patients referred for cardiac scanning. Patients were grouped by diabetic status and HRR (≤ 1.2 vs. > 1.2) post-DP. G-SPECT-derived left ventricular parameters were compared between groups.

Results

G-SPECT showed that peak filling rate (PFR) was higher in non-DM patients. In the HRR ≤ 1.2 group, DM patients had significantly higher end-diastolic volume (EDV) and end-systolic volume (ESV) than non-DM patients (EDV: 66.41±31 vs. 51.34±18, p-value:0.009; ESV: 27.88±11.21 vs. 18.63±15.5, p- p-value: 0.015).

Discussion

This study evaluated the role of heart rate response during dipyridamole stress testing combined with G-SPECT imaging in assessing left ventricular dysfunction (LVD) in diabetic patients. The findings indicate that changes in ventricular volume parameters, along with heart rate response, may serve as early markers of cardiac impairment, potentially facilitating earlier detection and improved management of cardiac complications in this population.

Conclusion

Reduced HRR during DP stress, combined with G-SPECT, may aid in the assessment of LVD in DM patients, potentially facilitating earlier diagnostic insights.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021363888250805114639
2025-08-27
2025-12-24
Loading full text...

Full text loading...

References

  1. DavariA. Jalali-ZefreiF. Gholami-ChabokB. Left ventricular wall motion as an additional valuable parameter in diabetic patients with normal myocardial perfusion imaging.Curr. Radiopharm.202418214114610.2174/0118744710312688240814100448 39253932
    [Google Scholar]
  2. GuZ TitusR RegmiH TavasoliR SurS SenS. Abstract WP132: A novel approach of monitoring stroke recovery: contactless sensor for gait speed and fugl-meyer action duration estimation.Stroke202556AWP1322(Suppl. 1)10.1161/str.56.suppl_1.WP132
    [Google Scholar]
  3. Zolfaghari DehkharghaniM. MousaviS. KianifardN. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of myocardial infarction.Int. J. Cardiol. Heart Vasc.20245510152910.1016/j.ijcha.2024.101529 39498345
    [Google Scholar]
  4. Jalali-zefreiF SouriZ Izadi BenamF Assessment of left ventricular shape index and eccentricity index as promising parameters for detection of left ventricular remodeling in cardiovascular events.Curr. Cardiol. Rev.20252110.2174/011573403X357558250122062037 39931848
    [Google Scholar]
  5. MahdavimanshadiM. AnarakiM.G. MowlaiM. AhmadiradZ. A multistage stochastic optimization model for resilient pharmaceutical supply chain in COVID-19 pandemic based on patient group priority.2024 Systems and Information Engineering Design Symposium (SIEDS)Charlottesville, VA, USA, 03-03 May 2024, pp. 382-387.10.1109/SIEDS61124.2024.10534683
    [Google Scholar]
  6. MalekH. YaghoobiN. Jalali ZefreiF. FiroozabadiH. RastgouF. BakhshandehH. Association between stress-induced left ventricular diastolic dysfunction and ischemic heart disease in myocardial perfusion imaging.Indian Heart J.202122395103
    [Google Scholar]
  7. ShaghaghiZ. Jalali ZefreiF. SalariA. HojjatiS.A. Fakhr MousaviS.A. FarzipourS. Promising radiopharmaceutical tracers for detection of cardiotoxicity in cardio-oncology.Curr. Radiopharm.202316317118410.2174/1874471016666230228102231 36852813
    [Google Scholar]
  8. GorurG.D. CiftciE.A. KozdagG. Reduced heart rate response to dipyridamole in patients undergoing myocardial perfusion SPECT.Ann. Nucl. Med.201226860961510.1007/s12149‑012‑0618‑z 22714113
    [Google Scholar]
  9. HenzlovaM.J. DuvallW.L. EinsteinA.J. TravinM.I. VerberneH.J. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers.J. Nucl. Cardiol.201623360663910.1007/s12350‑015‑0387‑x 26914678
    [Google Scholar]
  10. LeeK.H. YoonJ.K. LeeM.G. LeeS.H. LeeW.R. KimB.T. Dipyridamole myocardial SPECT with low heart rate response indicates cardiac autonomic dysfunction in patients with diabetes.J. Nucl. Cardiol.20018212913510.1067/mnc.2001.111798 11295689
    [Google Scholar]
  11. BarlettaG. Del BeneM.R. Effects of dipyridamole on cardiac and systemic haemodynamics: real-time three-dimensional stress echo beyond regional wall motion.J. Cardiovasc. Med201112745545910.2459/JCM.0b013e328343c2b8 21228713
    [Google Scholar]
  12. GoganA. PotreO. AvramV.F. AndorM. CaruntuF. TimarB. Cardiac autonomic neuropathy in diabetes mellitus: Pathogenesis, epidemiology, diagnosis and clinical implications: A narrative review.J. Clin. Med.202514367110.3390/jcm14030671 39941342
    [Google Scholar]
  13. VaseghiM. ShivkumarK. The role of the autonomic nervous system in sudden cardiac death.Prog. Cardiovasc. Dis.200850640441910.1016/j.pcad.2008.01.003 18474284
    [Google Scholar]
  14. PicardM. TauveronI. MagdasyS. Effect of exercise training on heart rate variability in type 2 diabetes mellitus patients: A systematic review and meta-analysis.PLoS One2021165e025186310.1371/journal.pone.0251863 33999947
    [Google Scholar]
  15. De LorenzoA. LimaR.S.L. Reduced heart rate response to dipyridamole as a marker of left ventricular dysfunction in diabetic patients undergoing myocardial perfusion scintigraphy.Clin. Nucl. Med.200934527527810.1097/RLU.0b013e31819e5198 19387201
    [Google Scholar]
  16. MaadaniM. SarrafN.S. AlilouS. Relationship between preprocedural lipid levels and periprocedural myocardial injury in patients undergoing elective percutaneous coronary intervention.Tex. Heart Inst. J.2022496e20738410.14503/THIJ‑20‑7384 36515930
    [Google Scholar]
  17. TiwariR. KumarR. MalikS. RajT. KumarP. Analysis of heart rate variability and implication of different factors on heart rate variability.Curr. Cardiol. Rev.2021175e16072118977010.2174/1573403X16999201231203854 33390146
    [Google Scholar]
  18. NaguehS.F. Left ventricular diastolic function.JACC Cardiovasc. Imaging202013122824410.1016/j.jcmg.2018.10.038 30982669
    [Google Scholar]
  19. KimY.H. LeeK.H. ChangH.J. Depressed heart rate response to vasodilator stress for myocardial SPECT predicts mortality in patients after myocardial infarction.Int. J. Cardiovasc. Imaging200622566367010.1007/s10554‑005‑9066‑3 16628384
    [Google Scholar]
  20. BahardoustM. MousaviS. DehkharghaniM.Z. Association of tramadol versus codeine prescriptions with all-cause mortality and cardiovascular diseases among patients with osteoarthritis: A systematic review and meta-analysis of propensity score-matched population-based cohort studies.Adv. Rheumatol.20246418010.1186/s42358‑024‑00417‑4 39420382
    [Google Scholar]
  21. DorbalaS. AnanthasubramaniamK. ArmstrongI.S. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: Instrumentation, acquisition, processing, and interpretation.J. Nucl. Cardiol.20182551784184610.1007/s12350‑018‑1283‑y 29802599
    [Google Scholar]
  22. IshaqueS. KhanN. KrishnanS. Trends in heart-rate variability signal analysis.Front Digit Health2021363944410.3389/fdgth.2021.639444 34713110
    [Google Scholar]
  23. FathiM. MoghaddamN.M. JahromiS.N. A prognostic model for 1-month mortality in the postoperative intensive care unit.Surg. Today202252579580310.1007/s00595‑021‑02391‑6 34698938
    [Google Scholar]
  24. Karayaylaliİ. SanM. KudaiberdievaG. Heart rate variability, left ventricular functions, and cardiac autonomic neuropathy in patients undergoing chronic hemodialysis.Ren. Fail.200325584585310.1081/JDI‑120024299 14575292
    [Google Scholar]
  25. RizzaV. TondiL. PattiA.M. Diabetic cardiomyopathy: Pathophysiology, imaging assessment and therapeutical strategies.Int J Cardiol Cardiovasc Risk Prev20242320033810.1016/j.ijcrp.2024.200338 39734497
    [Google Scholar]
  26. GhaedianT. AbdinejadM. AienehP. EbrahimiS. RezaeiM. Characterization of left ventricular diastolic parameters of gated-single-photon emission computed tomography myocardial perfusion imaging in patients with diabetes and normal myocardial perfusion and systolic function.Nucl. Med. Commun.202344978879410.1097/MNM.0000000000001721 37334545
    [Google Scholar]
  27. BennettN.M. QamruddinS. CollettiP.M. Diastolic function with 16-phase gated myocardial perfusion SPECT.Clin. Nucl. Med.2014397e355e35810.1097/RLU.0000000000000458 24893129
    [Google Scholar]
  28. KorkmazA. CaliskanB. ErdemF. Evaluation of diastolic function in patients with normal perfusion and type 2 diabetes mellitus with gated single-photon emission computed tomography.World J. Nucl. Med.201716320621110.4103/1450‑1147.207278 28670179
    [Google Scholar]
  29. PanK.L. HsuY.C. ChangS.T. ChungC.M. LinC.L. The role of cardiac fibrosis in diabetic cardiomyopathy: From pathophysiology to clinical diagnostic tools.Int. J. Mol. Sci.20232410860410.3390/ijms24108604 37239956
    [Google Scholar]
  30. StoneP.H. MullerJ.E. HartwellT. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: Contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis.J. Am. Coll. Cardiol.1989141495710.1016/0735‑1097(89)90053‑3 2661630
    [Google Scholar]
  31. KwastS LässingJ FalzR Altered cardiac contractility and aerobic muscular capacity markers during exercise in patients with obesity and DMT II.BMC Sports Sci. Med. Rehabil.202517110010.1186/s13102‑025‑01145‑y 40296039
    [Google Scholar]
  32. SegallL. NistorI. CovicA. Heart failure in patients with chronic kidney disease: A systematic integrative review.BioMed Res. Int.2014201412110.1155/2014/937398 24959595
    [Google Scholar]
  33. DrawzP.E. BabineauD.C. BrecklinC. Heart rate variability is a predictor of mortality in chronic kidney disease: A report from the CRIC Study.Am. J. Nephrol.201338651752810.1159/000357200 24356377
    [Google Scholar]
  34. MokhtariT. TaheriM.N. AkhlaghiS. AryannejadA. XiangY. MahajanV. Enhanced epigenetic modulation via mRNA-encapsulated lipid nanoparticles enables targeted anti-inflammatory control.bioRxiv20252025.02.24.63999610.1101/2025.02.24.639996
    [Google Scholar]
  35. AlterP. RuppH. RomingerM.B. Depression of heart rate variability in patients with increased ventricular wall stress.Pacing Clin. Electrophysiol.200932s1S26S3110.1111/j.1540‑8159.2008.02223.x
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021363888250805114639
Loading
/content/journals/chyr/10.2174/0115734021363888250805114639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test