Current HIV Research - Volume 16, Issue 1, 2018
Volume 16, Issue 1, 2018
-
-
Probing Structural Variation and Dynamics in the HIV-1 Env Fusion Glycoprotein
Authors: James B. Munro and Kelly K. LeeBackground: Recent advances in structural characterization of the HIV envelope glycoprotein (Env) have provided a high-resolution glimpse of the architecture of this target for neutralizing antibodies and the machinery responsible for mediating receptor binding and membrane fusion. These structures primarily capture the detailed organization of the receptor-naive, prefusion conformation of Env, but under native solution conditions Env is highly dynamic, sampling multiple conformational states as well as exhibiting local protein flexibility. Methods: Special emphasis is placed on the use of biophysical methods, including single-molecule fluorescence microscopy and hydrogen/deuterium-exchange mass spectrometry. Results: Using novel biophysical approaches, striking isolate-specific differences in Env's dynamic profile have been revealed that appear to underlie phenotypic differences of the viral isolates such as neutralization sensitivity and CD4 receptor reactivity. Conclusion: Structural studies are complemented by novel biophysical investigations that enable visualization of the dynamics of HIV-1 Env under native conditions. These approaches will also enable us to gain new insights into the mechanisms of action of antibodies and drugs.
-
-
-
Evolution of Host Target Cell Specificity During HIV-1 Infection
Authors: Olivia D. Council and Sarah B. JosephBackground: Many details of HIV-1 molecular virology have been translated into lifesaving antiviral drugs. Yet, we have an incomplete understanding of the cells in which HIV-1 replicates in untreated individuals and persists in during antiretroviral therapy. Methods: In this review we discuss how viral entry phenotypes have been characterized and the insights they have revealed about the target cells supporting HIV-1 replication. In addition, we will examine whether some HIV-1 variants have the ability to enter cells lacking CD4 (such as astrocytes) and the role that trans-infection plays in HIV-1 replication. Results: HIV-1 entry into a target cell is determined by whether the viral receptor (CD4) and the coreceptor (CCR5 or CXCR4) are expressed on that cell. Sustained HIV-1 replication in a cell type can produce viral lineages that are tuned to the CD4 density and coreceptor expressed on those cells; a fact that allows us to use Env protein entry phenotypes to infer information about the cells in which a viral lineage has been replicating and adapting. Conclusion: We now recognize that HIV-1 variants can be divided into three classes representing the primary target cells of HIV-1; R5 T cell-tropic variants that are adapted to entering memory CD4+ T cells, X4 T cell-tropic variants that are adapted to entering naïve CD4+ T cells and Mtropic variants that are adapted to entering macrophages and possibly other cells that express low levels of CD4. While much progress has been made, the relative contribution that infection of different cell subsets makes to viral pathogenesis and persistence is still being unraveled.
-
-
-
The Neutralizing Antibody Response to the HIV-1 Env Protein
More LessBackground: A vaccine able to elicit broadly neutralizing antibodies capable of blocking infection by global viruses has not been achieved, and remains a key public health challenge. Objective: During infection, a robust strain-specific neutralizing response develops in most people, but only a subset of infected people develop broadly neutralizing antibodies. Understanding how and why these broadly neutralizing antibodies develop has been a focus of the HIV-1 vaccine field for many years, and has generated extraordinary insights into the neutralizing response to HIV-1 infection. Results: This review describes the features, targets and developmental pathways of early strainspecific antibodies and later broadly neutralizing antibodies, and explores the reasons such broad antibodies are not more commonly elicited during infection. Conclusion: The insights from these studies have been harnessed for the development of pioneering new vaccine approaches that seek to drive B cell maturation towards breadth. Overall, this review describes how findings from infected donors have impacted on active and passive immunization approaches that seek to prevent HIV-1 infection.
-
-
-
The SIV Envelope Glycoprotein, Viral Tropism, and Pathogenesis: Novel Insights from Nonhuman Primate Models of AIDS
Background: Cellular tropism of human immunodeficiency virus (HIV-1) is closely linked to interactions between the viral envelope glycoprotein (Env) with CD4 and chemokine receptor family members, CCR5 and CXCR4. This interaction plays a key role in determining anatomic sites that are infected in vivo and the cascade of early and late events that result in chronic immune activation, immunosuppression and ultimately, AIDS. CD4+ T cells are critical to adaptive immune responses, and their early and rapid infection in gut lamina propria and secondary lymphoid tissues in susceptible hosts likely contributes to viral persistence and progression to disease. CD4+ macrophages are also infected, although their role in HIV-1 pathogenesis is more controversial. Methods: Pathogenic infection by simian immunodeficiency viruses (SIV) in Asian macaques as models of HIV-1 infection has enabled the impact of cellular tropism on pathogenesis to be directly probed. This review will highlight examples in which experimental interventions during SIV infection or the introduction of viral mutations have altered cellular tropism and, subsequently, pathogenesis. Results: Alterations to the interaction of Env and its cellular receptors has been shown to result in changes to CD4 dependence, coreceptor specificity, and viral tropism for gut CD4+ T cells and macrophages. Conclusion: Collectively, these findings have yielded novel insights into the critical role of the viral Env and tropism as a driver of pathogenesis and host control and have helped to identify new areas for targeted interventions in therapy and prevention of HIV-1 infection.
-
-
-
SIV Coreceptor Specificity in Natural and Non-Natural Host Infection: Implications for Cell Targeting and Differential Outcomes from Infection
Authors: Katherine S. Wetzel, Sarah T.C. Elliott and Ronald G. CollmanPathogenic HIV-1 infection of humans and SIVmac infection of macaques are the result of zoonotic transfer of primate immunodeficiency viruses from their natural hosts into non-natural host species. Natural host infections do not result in pathogenesis despite high levels of virus replication, and evidence suggests that differences in anatomical location and specific subsets of CD4+ T cells infected may underlie distinct outcomes from infection. The coreceptor CCR5 has long been considered the sole pathway for SIV entry and the key determinant of CD4+ cell targeting, but it has also been known that natural hosts express exceedingly low levels of CCR5 despite maintaining high levels of virus replication. This review details emerging data indicating that in multiple natural host species, CCR5 is dispensable for SIV infection ex vivo and/or in vivo and, contrary to the established dogma, alternative coreceptors, particularly CXCR6, play a central role in infection and cell targeting. Infections of non-natural hosts, however, are characterized by CCR5-exclusive entry. These findings suggest that alternative coreceptor-mediated cell targeting in natural hosts, combined with low CCR5 expression, may direct the virus to distinct populations of cells that are dispensable for immune homeostasis, particularly extralymphoid and more differentiated CD4+ T cells. In contrast, CCR5-mediated entry in non-natural hosts results in targeting of CD4+ T cells that are located in lymphoid tissues, critical for immune homeostasis, or necessary for gut barrier integrity. Thus, fundamental differences in viral entry coreceptor use may be central determinants of infection outcome. These findings redefine the normal SIV/host relationship in natural host species, shed new light on key features linked to zoonotic immunodeficiency virus transfer, and highlight important questions regarding how and why this coreceptor bottleneck occurs and the coevolutionary equilibrium is lost following cross-species transfer that results in AIDS.
-
-
-
Association BetweenLTFPolymorphism and Risk of HIV-1 Transmission Among Zambian Seropositive Mothers
Authors: Luisa Zupin, Vania Polesello, Ludovica Segat, Anselmo J. Kamada, Louise Kuhn and Sergio CrovellaBackground: Lactoferrin is a member of the innate immune system acting in the first line of defence against pathogens, and it is known for its antibacterial, antifungal and antiviral activity, including HIV-1. Two polymorphisms, T29A and R47K, in the exon 1 region of the LTF gene (encoding for the lactoferrin protein) were previously described as able to influence the lactoferrin antimicrobial function. Objectives: LTF T29A and R47K genetic variants were analysed in a Zambian population to unravel if these polymorphisms could play a role in HIV-1 mother-to-child HIV-1 transmission. Methods: LTF T29A and R47K polymorphisms were genotyped, using allelic specific fluorescent probes and real time PCR, in a population comprising 101 HIV-1 positive mothers and 333 children born to seropositive mothers. Results: Maternal LTF T29A A/A and A/G genotypes were found to be associated with decreased risk of HIV-1 MTCT, being more frequent among non-transmitter mothers respect to transmitter mothers. Conclusion: Our data suggested that maternal LTF genetic background contributes to the susceptibility to HIV-1 transmission from mother to new-borns.
-
-
-
IL-10 Promoter -592 Polymorphism may Influence Susceptibility to HIV Infection in South Indian Population
Background: Genetic factors play an important role in the development of disease susceptibility or protection. Cytokine gene polymorphisms are reported to be associated with altered levels of cytokine production that can impact disease progression in HIV and TB. Objective: In this study, we studied IL-10 -592(C/A) and TGF-β -509 (C/T) promoter polymorphisms to understand their role in susceptibility or resistance to HIV and TB in a South Indian population. Method: Genomic DNA was isolated from healthy controls, pulmonary tuberculosis patients (n=122) and HIV positive individuals (n=100) and used for genotyping by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) method. Results: Results revealed that under dominant model (CC vs CA+AA), IL-10 -592 ‘A’ allele either ‘CA’ or ‘AA’ combinations significantly associated with susceptibility to HIV compared to healthy controls (OR: 1.88(1.05-3.35); p=0.030). However, we found no significant association with TB. TGF-β -509 polymorphism did not associate with either HIV or TB under overdominant model. Neither of the promoter polymorphisms associated with sex in either HIV or TB. However, a trend towards higher risk to HIV was found in females compared with males in IL-10 -592 ‘AA’; genotype. Conclusion: This study suggests the association of IL-10 -592 “AA” genotype with susceptibility to HIV under dominant model in the Southern Indian population. Future studies are needed with a larger sample size in order to confirm the observations made in this study.
-
-
-
Comparative Genetic Variability in HIV-1 Subtype C vpuGene in Early Age Groups of Infants
Authors: Uma Sharma, Poonam Gupta, Sunil Gupta, S. Venkatesh and Mohammad HusainObjective: Identifying the genetic variability in vertically transmitted viruses in early infancy is important to understand the disease progression. Being important in HIV-1 disease pathogenesis, vpu gene, isolated from young infants was investigated to understand the viral characteristics. Method: Blood samples were obtained from 80 HIV-1 positive infants, categorized in two age groups; acute (<6 months) and early (>6-18 months). A total of 77 PCR positive samples, amplified for vpu gene, were sequenced and analyzed. Results: 73 isolates belonged to subtype C. Analysis of heterogeneity of amino acid sequences in infant groups showed that in the sequences of acute age group both insertions and deletions were present while in the early age group only deletions were present. In the acute age group, a deletion of 3 residues (RAE) in the first alfa helix in one sequence and insertions of 1-2 residues (DM, GH, G and H) in the second alfa helix in 4 sequences were observed. In the early age group, deletion of 2 residues (VN) in the cytoplasmic tail region in 2 sequences was observed. Length of the amino terminal was observed to be gradually increasing with the increasing age of the infants. Protein Variation Effect Analyzer software showed that deleterious mutations were more in the acute than the early age group. Entropy analysis revealed that heterogeneity of the residues was comparatively higher in the sequences of acute than the early age group. Conclusion: Mutations observed in the helixes may affect the conformation and lose the ability to degrade CD4 receptors. Heterogeneity was decreasing with the increasing ages of the infants, indicating positive selection for robust virion survival.
-
-
-
Investigating HIV-Human Interaction Networks to Unravel Pathogenic Mechanism for Drug Discovery: A Systems Biology Approach
Authors: Cheng-Wei Li and Bor-Sen ChenBackground: Two big issues in the study of pathogens are determining how pathogens infect hosts and how the host defends itself against infection. Therefore, investigating host-pathogen interactions is important for understanding pathogenicity and host defensive mechanisms and treating infections. Methods: In this study, we used omics data, including time-course data from high-throughput sequencing, real-time polymerase chain reaction, and human microRNA (miRNA) and protein-protein interaction to construct an interspecies protein-protein and miRNA interaction (PPMI) network of human CD4+ T cells during HIV-1 infection through system modeling and identification. Results: By applying a functional annotation tool to the identified PPMI network at each stage of HIV infection, we found that repressions of three miRNAs, miR-140-5p, miR-320a, and miR-941, are involved in the development of autoimmune disorders, tumor proliferation, and the pathogenesis of T cells at the reverse transcription stage. Repressions of miR-331-3p and miR-320a are involved in HIV-1 replication, replicative spread, anti-apoptosis, cell proliferation, and dysregulation of cell cycle control at the integration/replication stage. Repression of miR-341-5p is involved in carcinogenesis at the late stage of HIV-1 infection. Conclusion: By investigating the common core proteins and changes in specific proteins in the PPMI network between the stages of HIV-1 infection, we obtained pathogenic insights into the functional core modules and identified potential drug combinations for treating patients with HIV-1 infection, including thalidomide, oxaprozin, and metformin, at the reverse transcription stage; quercetin, nifedipine, and fenbendazole, at the integration/replication stage; and staurosporine, quercetin, prednisolone, and flufenamic acid, at the late stage.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month
