Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Introduction

The rapid increase in incidences of drug resistance and off-target toxicity in the case of Human Immunodeficiency Virus (HIV) has increased the demand for drugs with fewer side effects. HIV-1 Integrase (IN) is a promising target that helps integrate viral DNA with human DNA. It acts as a target for strand transfer inhibitors. However, the emergence of resistant mutations in the proteins necessitates the exploration of potent allosteric drugs. The allosteric integrase inhibitors (ALLINI) that interrupt the association of the integrase binding domain of the lens epithelium growth factor (LEDGF/p75) and LEDGF/p75 binding site of the IN are more promising as they hinder site specificity and viral replication.

Objective

In this study, a 3D-QSAR, molecular docking, and ADMET were carried out to investigate the binding of the C2-pyrazolopyrimidine amides and amide isosteres.

Methods

The 3D-QSAR model was developed using a series of 24 C-2 substituted pyrazolopyrimidine and amide isosteres. A statistically significant model was constructed, showing the determination coefficient (r2) and five-fold cross-validation (q2) at 0.946 and 0.506, respectively. Furthermore, the contour maps of the electrostatic potential and van der Waals coefficient provided structural modifications in the features to improve the inhibitory activity.

Results

A molecular docking study was also performed to check the binding of the compounds to the LEDGF/p75 binding site of the IN, along with ADMET evaluation.

Conclusion

The outcome of the study will help to prepare the potent molecules with enhanced allosteric inhibitory activity.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X360219250206082406
2025-02-12
2025-10-16
Loading full text...

Full text loading...

References

  1. HIV and AIDS2024https://www.who.int/news-room/fact-sheets/detail/hiv-aids
  2. SharmaA.K. GeorgeV. ValiathanR. Pilakka-KanthikeelS. PallikkuthS. Inhibitors of HIV-1 entry and integration: Recent developments and impact on treatment.Recent Pat. Inflamm. Allergy Drug Discov.20137215116110.2174/1872213X1130702000623578097
    [Google Scholar]
  3. BatisseC. LapaillerieD. HumbertN. Integrase-LEDGF/p75 complex triggers the formation of biomolecular condensates that modulate HIV-1 integration efficiency in vitro.J. Biol. Chem.2024300610737410.1016/j.jbc.2024.10737438762180
    [Google Scholar]
  4. Tarrago-LitvakL. AndreolaM. FournierM. Inhibitors of HIV-1 reverse transcriptase and integrase: Classical and emerging therapeutical approaches.Curr. Pharm. Des.20028859561410.2174/138161202460716211945161
    [Google Scholar]
  5. RenziG. CartaF. SupuranC.T. The integrase: An overview of a key player enzyme in the antiviral scenario.Int. J. Mol. Sci.202324151218710.3390/ijms24151218737569561
    [Google Scholar]
  6. KwonH.J. TirumalaiR. LandyA. EllenbergerT. Flexibility in DNA recombination: Structure of the lambda integrase catalytic core.Science1997276530912613110.1126/science.276.5309.1269082984
    [Google Scholar]
  7. AndréolaM.L. Closely related antiretroviral agents as inhibitors of two HIV-1 enzymes, ribonuclease H and integrase: “killing two birds with one stone”.Curr. Pharm. Des.200410303713372310.2174/138161204338264815579066
    [Google Scholar]
  8. MoranguinhoI. TaveiraN. BártoloI. Antiretroviral treatment of HIV-2 infection: Available drugs, resistance pathways, and promising new compounds.Int. J. Mol. Sci.2023246590510.3390/ijms2406590536982978
    [Google Scholar]
  9. KrishnanL. EngelmanA. Retroviral integrase proteins and HIV-1 DNA integration.J. Biol. Chem.201228749408584086610.1074/jbc.R112.39776023043109
    [Google Scholar]
  10. EriketiZ.L. ChristosN. AthanasiosN. KostrikisL.G. HIV-1 integrase: From biology to chemotherapeutics.Curr. HIV Res.20075436538810.2174/15701620778102396517627500
    [Google Scholar]
  11. KesslJ.J. McKeeC.J. EidahlJ.O. ShkriabaiN. KatzA. KvaratskheliaM. HIV-1 integrase-DNA recognition mechanisms.Viruses20091371373610.3390/v103071321994566
    [Google Scholar]
  12. EijkelenboomA.P.A.M. van den EntF.M.I. VosA. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: A three-helix bundle stabilized by zinc.Curr. Biol.199771073974610.1016/S0960‑9822(06)00332‑09368756
    [Google Scholar]
  13. KulkoskyJ. JonesK.S. KatzR.A. MackJ.P. SkalkaA.M. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases.Mol. Cell. Biol.1992125233123381314954
    [Google Scholar]
  14. Ballandras-ColasA. BrownM. CookN.J. Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function.Nature2016530759035836110.1038/nature1695526887496
    [Google Scholar]
  15. ChikkamathV. NagappaA.N. Role of structural flexibility of HIV-1 integrase in the design of potent anti-HIV drugs.Curr. Chem. Biol.2018121405210.2174/2212796812666180529103809
    [Google Scholar]
  16. BrownP.O. BowermanB. VarmusH.E. BishopJ.M. Retroviral integration: Structure of the initial covalent product and its precursor, and a role for the viral IN protein.Proc. Natl. Acad. Sci. USA19898682525252910.1073/pnas.86.8.25252539592
    [Google Scholar]
  17. FujiwaraT. MizuuchiK. Retroviral DNA integration: Structure of an integration intermediate.Cell198854449750410.1016/0092‑8674(88)90071‑23401925
    [Google Scholar]
  18. MaertensG.N. EngelmanA.N. CherepanovP. Structure and function of retroviral integrase.Nat. Rev. Microbiol.2022201203410.1038/s41579‑021‑00586‑934244677
    [Google Scholar]
  19. MaehigashiT. AhnS. KimU.I. A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site.PLoS Pathog.2021177e100967110.1371/journal.ppat.100967134293041
    [Google Scholar]
  20. KaurM. RawalR.K. RathG. GoyalA.K. Structure based drug design: Clinically relevant HIV-1 integrase inhibitors.Curr. Top. Med. Chem.201918312664268010.2174/156802661966619011914323930659539
    [Google Scholar]
  21. SalariS. KarbasforooshanH. HosseinjaniH. Anti-HIV integrase inhibitors as new candidates for the treatment of COVID-19: A narrative literature review.Antiinfect. Agents2022202e28092119684310.2174/2211352519666210928110627
    [Google Scholar]
  22. SeverB. OtsukaM. FujitaM. CiftciH. A review of FDA-approved Anti-HIV-1 drugs, Anti-Gag compounds, and potential strategies for HIV-1 eradication.Int. J. Mol. Sci.2024257365910.3390/ijms2507365938612471
    [Google Scholar]
  23. WohlD.A. YazdanpanahY. BaumgartenA. Bictegravir combined with emtricitabine and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection: Week 96 results from a randomised, double-blind, multicentre, phase 3, non-inferiority trial.Lancet HIV201966e355e36310.1016/S2352‑3018(19)30077‑331068270
    [Google Scholar]
  24. PsichogiouM. PoulakouG. BasoulisD. ParaskevisD. MarkogiannakisA. DaikosG.L. Recent advances in antiretroviral agents: Potent integrase inhibitors.Curr. Pharm. Des.201723182552256728356041
    [Google Scholar]
  25. QuashieP.K. MesplèdeT. WainbergM.A. HIV drug resistance and the advent of integrase inhibitors.Curr. Infect. Dis. Rep.20131518510010.1007/s11908‑012‑0305‑123180144
    [Google Scholar]
  26. KomalD. KhushbooJ. AaftaabS. LakshmiS. MallikaA. Targeting integrase enzyme: A therapeutic approach to combat HIV resistance.Mini Rev. Med. Chem.202020321923810.2174/138955751966619101512493231613727
    [Google Scholar]
  27. HimmelD.M. ArnoldE. Non-nucleoside reverse transcriptase inhibitors join forces with integrase inhibitors to combat HIV.Pharmaceuticals202013612210.3390/ph1306012232545407
    [Google Scholar]
  28. BonnardD. Le RouzicE. SingerM.R. Biological and structural analyses of new potent allosteric inhibitors of HIV-1 integrase.Antimicrob. Agents Chemother.2023677e00462e2310.1128/aac.00462‑2337310224
    [Google Scholar]
  29. CraigieR. BushmanF.D. Host factors in retroviral integration and the selection of integration target sites.Mob. DNA2015III10351050
    [Google Scholar]
  30. LesbatsP. EngelmanA.N. CherepanovP. Retroviral DNA integration.Chem. Rev.201611620127301275710.1021/acs.chemrev.6b0012527198982
    [Google Scholar]
  31. WaheedA.A. BrassA.L. GummuluruS. TachedjianG. Host-pathogen interactions of retroviruses.Mol. Biol. Int.2012201264851210.1155/2012/648512
    [Google Scholar]
  32. KoneruP.C. Mechanistic and structural investigations into the mode of action of allosteric HIV-1 integrase inhibitors.Thesis, The Ohio State University, Columbus, Ohio, USA2019
    [Google Scholar]
  33. ChoiE. MallareddyJ.R. LuD. KolluruS. Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase.Future Sci. OA201849FSO33810.4155/fsoa‑2018‑006030416746
    [Google Scholar]
  34. BruggemansA. VansantG. BalakrishnanM. GS-9822, a preclinical LEDGIN candidate, displays a block-and-lock phenotype in cell culture.Antimicrob. Agents Chemother.202365502328010.1128/aac33619061
    [Google Scholar]
  35. EngelmanA. CherepanovP. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication.PLoS Pathog.200843e100004610.1371/journal.ppat.100004618369482
    [Google Scholar]
  36. LlanoM. VanegasM. HutchinsN. ThompsonD. DelgadoS. PoeschlaE.M. Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75.J. Mol. Biol.2006360476077310.1016/j.jmb.2006.04.07316793062
    [Google Scholar]
  37. BusschotsK. VoetA. De MaeyerM. Identification of the LEDGF/p75 binding site in HIV-1 integrase.J. Mol. Biol.200736551480149210.1016/j.jmb.2006.10.09417137594
    [Google Scholar]
  38. LapaillerieD. LelandaisB. MauroE. Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75.Nucleic Acids Res.20214919112411125610.1093/nar/gkab88634634812
    [Google Scholar]
  39. ChristF. DebyserZ. The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy.Virology2013435110210910.1016/j.virol.2012.09.03323217620
    [Google Scholar]
  40. DemeulemeesterJ. ChaltinP. MarchandA. De MaeyerM. DebyserZ. ChristF. LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: A patent review (2006 – 2014).Expert Opin. Ther. Pat.201424660963210.1517/13543776.2014.89875324666332
    [Google Scholar]
  41. PoeschlaE.M. Integrase, LEDGF/p75 and HIV replication.Cell. Mol. Life Sci.20086591403142410.1007/s00018‑008‑7540‑518264802
    [Google Scholar]
  42. PeeseK M AllardC W ConnollyT 6,7,8-Tetrahydro-1,6-naphthyridine derivatives as potent HIV-1-Integrase-allosteric-site inhibitors.J Med Chem2019623134810.1021/acs.jmedchem
    [Google Scholar]
  43. DebyserZ BruggemansA Van BelleS JanssensJ ChristF. LEDGINs, inhibitors of the interaction between HIV-1 Integrase and LEDGF/p75, are potent antivirals with a potential to cure HIV infection.Adv Exp Med Biol202113229711410.1007/978‑981‑16‑0267‑2_4
    [Google Scholar]
  44. FengL LarueR C SlaughterA KesslJ J KvaratskheliaM. HIV-1 integrase multimerization as a therapeutic target.Curr Top Microbiol Immunol20153899311910.1007/82_2015_439
    [Google Scholar]
  45. KugelmanJ.R. The role Of LEDGF/p75 in transcriptional regulation.Thesis, The University of Texas at El Paso, Texas2010
    [Google Scholar]
  46. PattersonK. Transposons: Molecular tools for genome investigation.PhD Thesis, University of California2016
    [Google Scholar]
  47. HareS. CherepanovP. The interaction between lentiviral integrase and LEDGF: Structural and functional insights.Viruses20091378080110.3390/v103078021994569
    [Google Scholar]
  48. PanwarU. SinghS.K. In silico virtual screening of potent inhibitor to hamper the interaction between HIV-1 integrase and LEDGF/p75 interaction using E-pharmacophore modeling, molecular docking, and dynamics simulations.Comput. Biol. Chem.20219310750910.1016/j.compbiolchem.2021.10750934153658
    [Google Scholar]
  49. WielensJ. HeadeyS.J. DeadmanJ.J. Fragment-based design of ligands targeting a novel site on the integrase enzyme of human immunodeficiency virus 1.ChemMedChem20116225826110.1002/cmdc.20100048321275048
    [Google Scholar]
  50. EspositoF. TintoriC. MartiniR. Kuwanon‐L as a new allosteric HIV‐1 integrase inhibitor: Molecular modeling and biological evaluation.ChemBioChem201516172507251210.1002/cbic.20150038526360521
    [Google Scholar]
  51. PatelM. CianciC. AllardC.W. Design, synthesis and SAR study of novel C2-pyrazolopyrimidine amides and amide isosteres as allosteric integrase inhibitors.Bioorg. Med. Chem. Lett.2020302112751610.1016/j.bmcl.2020.12751632860982
    [Google Scholar]
  52. StudioD. Discovery studio.2008 Available from: https://discover.3ds.com/discovery-studio-visualizer-download
    [Google Scholar]
  53. JejurikarB.L. RohaneS.H. Drug designing in discovery studio.Asian J. Research. Chem202114213510.5958/0974‑4150.2021.00025.0
    [Google Scholar]
  54. ArodolaO.A. SolimanM.E.S. Hybrid 2D/3D-quantitative structure-activity relationship and modeling studies perspectives of pepstatin A analogs as cathepsin D inhibitors.Future Med. Chem.201810152610.4155/fmc‑2017‑007729235371
    [Google Scholar]
  55. BrooksB.R. BruccoleriR.E. OlafsonB.D. StatesD.J. SwaminathanS. KarplusM. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations.J. Comput. Chem.19834218721710.1002/jcc.540040211
    [Google Scholar]
  56. LuoY. ZhangS. QiuK.M. Synthesis, biological evaluation, 3D-QSAR studies of novel aryl-2H-pyrazole derivatives as telomerase inhibitors.Bioorg. Med. Chem. Lett.20132341091109510.1016/j.bmcl.2012.12.01023312949
    [Google Scholar]
  57. KothandanG. GadheC.G. MadhavanT. ChoiC.H. ChoS.J. Docking and 3D-QSAR (quantitative structure activity relationship) studies of flavones, the potent inhibitors of p-glycoprotein targeting the nucleotide binding domain.Eur. J. Med. Chem.20114694078408810.1016/j.ejmech.2011.06.00821723648
    [Google Scholar]
  58. DebnathA. Application of 3D-QSAR techniques in anti-HIV-1 drug design: An overview.Curr. Pharm. Des.200511243091311010.2174/138161205486490216178747
    [Google Scholar]
  59. KubinyiH. Comparative molecular field analysis (CoMFA), topomer CoMFA, and hologram QSAR studies on a series of novel HIV-1 protease inhibitors.Chem Biol Drug Des19988969183110.1111/cbdd.12917
    [Google Scholar]
  60. GolbraikhA. TropshaA. Beware of q2!J. Mol. Graph. Model.200220426927610.1016/S1093‑3263(01)00123‑111858635
    [Google Scholar]
  61. AhmedN. AnwarS. Thet HtarT. Docking based 3D-QSAR study of tricyclic guanidine analogues of batzelladine K as anti-malarial agents.Front Chem.201753610.3389/fchem.2017.0003628664157
    [Google Scholar]
  62. HuangL. WuX. FuX. Ligand based 3D-QSAR model, pharmacophore, molecular docking and ADME to identify potential fibroblast growth factor receptor 1 inhibitors.J. Biomol. Struct. Dyn.202240167584759710.1080/07391102.2021.189904933734039
    [Google Scholar]
  63. ImC. Docking and three-dimensional quantitative structure–activity relationship analyses of imidazole and thiazolidine derivatives as Aurora A kinase inhibitors.Arch. Pharm. Res.201639121635164310.1007/s12272‑016‑0870‑127909956
    [Google Scholar]
  64. KhedkarV.M. AmbreP.K. VermaJ. ShaikhM.S. PissurlenkarR.R.S. CoutinhoE.C. Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors.J. Mol. Model.20101671251126810.1007/s00894‑009‑0636‑520069323
    [Google Scholar]
  65. AkamatsuM. Current state and perspectives of 3D-QSAR.Curr. Top. Med. Chem.20022121381139410.2174/156802602339288712470286
    [Google Scholar]
  66. DinhT. TberZ. ReyJ.S. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir.bioRxiv2024
    [Google Scholar]
  67. BermanH.M. WestbrookJ. FengZ. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  68. KramerB. RareyM. LengauerT. CASP2 experiences with docking flexible ligands using FLEXX.Proteins199729S1Suppl. 122122510.1002/(SICI)1097‑0134(1997)1+221::AID‑PROT303.0.CO;2‑O9485516
    [Google Scholar]
  69. RareyM. KramerB. LengauerT. KlebeG. A fast flexible docking method using an incremental construction algorithm.J. Mol. Biol.1996261347048910.1006/jmbi.1996.04778780787
    [Google Scholar]
  70. RanaN. PatelD. ParmarM. MukherjeeN. JhaP.C. ManhasA. Targeting allosteric binding site in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) to identify natural product inhibitors via structure-based computational approach.Sci. Rep.20231311809010.1038/s41598‑023‑45175‑337872243
    [Google Scholar]
  71. BöhmH-J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure.J. Comput. Aided Mol. Des.19948324325610.1007/BF001267437964925
    [Google Scholar]
  72. BhatiaR. NarangR.K. RawalR.K. Repurposing of RdRp inhibitors against SARS-CoV-2 through molecular docking tools.Coronaviruses20201110811610.2174/2666796701999200617155629
    [Google Scholar]
  73. da Silva-JuniorE.F. Barcellos FrancaP.H. RibeiroF.F. Molecular docking studies applied to a dataset of cruzain inhibitors.Curr. Computeraided Drug Des.2018141687810.2174/157340991366617051911275828523999
    [Google Scholar]
  74. FangC. XiaoZ. Receptor-based 3D-QSAR in drug design: Methods and applications in kinase studies.Curr. Top. Med. Chem.201616131463147710.2174/156802661566615091512094326369822
    [Google Scholar]
  75. YangY.S. ZhangF. TangD.J. YangY.H. ZhuH.L. Modification, biological evaluation and 3D QSAR studies of novel 2-(1,3-diaryl- 4,5-dihydro-1H-pyrazol-5-yl)phenol derivatives as inhibitors of B-Raf kinase.PLoS One201495e9570210.1371/journal.pone.009570224827980
    [Google Scholar]
/content/journals/chr/10.2174/011570162X360219250206082406
Loading
/content/journals/chr/10.2174/011570162X360219250206082406
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test