Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Human Immunodeficiency Virus (HIV) remains a significant global health challenge, necessitating rapid, sensitive, and accessible diagnostic tools. We examined recent advancements in electrochemical sensors for HIV gene detection, focusing on various sensing strategies, nanomaterial integration, and novel platform designs. Electrochemical sensors have demonstrated remarkable progress in HIV detection, offering high sensitivity and specificity. DNA/RNA-based sensors, aptamer approaches, and nanostructured platforms have detection limits as low as attomolar concentrations. Innovative signal amplification techniques, such as branched DNA amplification and toehold strand displacement reactions, have further enhanced sensitivity. Multiplexed detection systems enable simultaneous quantification of multiple HIV targets and related biomarkers. Integration of microfluidic technologies has improved sample processing and detection efficiency. Paper-based sensors show promise for low-cost, disposable testing platforms suitable for resource-limited settings. While challenges remain in terms of selectivity in complex biological samples and point-of-care applicability, electrochemical sensors hold great potential for revolutionizing HIV diagnostics. Future developments in recognition elements, artificial intelligence integration, and combined sensing modalities are expected to address current limitations and expand the capabilities of these sensors, ultimately contributing to improved HIV management and epidemic control strategies.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X363311250206045837
2025-02-11
2025-09-28
Loading full text...

Full text loading...

References

  1. ObeaguE. ObeaguG. Human immunodeficiency virus and tuberculosis infection: a review of prevalence of associated factors.Int. J. Adv. Multidiscip. Res.20231010566210.22192/ijamr.2023.10.10.005
    [Google Scholar]
  2. AssefaY. GilksC.F. Ending the epidemic of HIV/AIDS by 2030: Will there be an endgame to HIV, or an endemic HIV requiring an integrated health systems response in many countries?Int. J. Infect. Dis.202010027327710.1016/j.ijid.2020.09.01132920236
    [Google Scholar]
  3. UwishemaO. AyoubG. BadriR. OnyeakaH. BerjaouiC. KarabulutE. AnisH. SammourC. Mohammed YagoubF.E.A. ChalhoubE. Neurological disorders in HIV: Hope despite challenges.Immun. Inflamm. Dis.2022103e59110.1002/iid3.59135146953
    [Google Scholar]
  4. Serrano-VillarS. GutiérrezF. MirallesC. BerenguerJ. RiveroA. MartínezE. MorenoS. Human immunodeficiency virus as a chronic disease: evaluation and management of nonacquired immune deficiency syndrome-defining conditions.Open Forum Infect. Dis.201632ofw09710.1093/ofid/ofw09727419169
    [Google Scholar]
  5. AmbrosioniJ. BlancoJ.L. Reyes-UrueñaJ.M. DaviesM.A. SuedO. MarcosM.A. MartínezE. BertagnolioS. AlcamíJ. MiroJ.M. AmbrosioniJ. BlancoJ.L. de la MoraL. Garcia-AlcaideF. González-CordónA. InciarteA. LagunoM. LealL. Martínez-ChamorroE. Martínez-RebollarM. MiróJ.M. RojasJ.F. TorresB. MallolasJ. AlbiacL. AgöeroD.L. BodroM. CardozoC. ChumbitaM. GarcíaN. García-VidalC. Hernández-MenesesM.M. HerreraS. LinaresL. MorenoA. MorataL. Martínez-MartínezJ.A. PuertaP. RicoV. SorianoA. MartínezM. MosqueraM.M. MarcosM.A. VilaJ. TusetM. SoyD. VilellaA. AlmuedoA. PinazoM.J. MuñozJ. Overview of SARS-CoV-2 infection in adults living with HIV.Lancet HIV202185e294e30510.1016/S2352‑3018(21)00070‑933915101
    [Google Scholar]
  6. ThompsonM.A. HorbergM.A. AgwuA.L. ColasantiJ.A. JainM.K. ShortW.R. SinghT. AbergJ.A. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV medicine association of the infectious diseases society of america.Clin. Infect. Dis.20217311e3572e360510.1093/cid/ciaa139133225349
    [Google Scholar]
  7. OpeyemiA.A. ObeaguE.I. Regulations of malaria in children with human immunodeficiency virus infection: A review.Medicine (Baltimore)202310246e3616610.1097/MD.000000000003616637986340
    [Google Scholar]
  8. BaconO. ChinJ. CohenS.E. HessolN.A. SachdevD. CoffeyS. ScheerS. BuchbinderS. HavlirD.V. HsuL. Decreased time from human immunodeficiency virus diagnosis to care, antiretroviral therapy initiation, and virologic suppression during the citywide RAPID initiative in San Francisco.Clin. Infect. Dis.2021731e122e12810.1093/cid/ciaa62032449916
    [Google Scholar]
  9. RahmanS.M.A. VaidyaN.K. ZouX. Impact of early treatment programs on HIV epidemics: An immunity-based mathematical model.Math. Biosci.2016280384910.1016/j.mbs.2016.07.00927474205
    [Google Scholar]
  10. PoonP.K. WongN. LeungW. WongB.C. KwongT. KwanT. LuiG.C. TsangO.T. LeeM. WongK. LeeS. The differential impacts of early detection and accelerated antiretroviral therapy on the epidemiologic trend of sexually acquired HIV infection in Hong Kong.PLoS One2022179e027449810.1371/journal.pone.027449836103496
    [Google Scholar]
  11. CaiQ. WuD. LiH. JieG. ZhouH. Versatile photoelectrochemical and electrochemiluminescence biosensor based on 3D CdSe QDs-DNA nanonetwork-SnO2 nanoflower coupled with DNA walker amplification for HIV detection.Biosens. Bioelectron.202119111345510.1016/j.bios.2021.11345534175650
    [Google Scholar]
  12. WuG. CheneyC. HuangQ. HazudaD.J. HowellB.J. ZuckP. Improved detection of HIV Gag p24 protein using a combined immunoprecipitation and digital elisa method.Front. Microbiol.20211263670310.3389/fmicb.2021.63670333796087
    [Google Scholar]
  13. GuneyM.H. NagalekshmiK. McCauleyS.M. CarboneC. AydemirO. LubanJ. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus.Proc. Natl. Acad. Sci. USA202412129e240434912110.1073/pnas.240434912138985764
    [Google Scholar]
  14. BukasovR. DossymD. FilchakovaO. Detection of RNA viruses from influenza and HIV to Ebola and SARS-CoV-2: a review.Anal. Methods2021131345510.1039/D0AY01886D33283798
    [Google Scholar]
  15. ShapiroA.E. OlsonA.M. KidoguchiL. NiuX. NgcoboZ. MagcabaZ.P. NgwaneM.W. WhitmanG.R. WeigelK.M. WoodR.C. WilsonD.P.K. DrainP.K. CangelosiG.A. Complementary nonsputum diagnostic testing for tuberculosis in people with HIV using oral swab PCR and urine lipoarabinomannan detection.J. Clin. Microbiol.2022608e00431-2210.1128/jcm.00431‑2235913145
    [Google Scholar]
  16. ShresthaA. PoudelL. ShresthaS. JhaN. KuikelB.S. ShakyaP. KunwarR.S. PandeyL.R. KcM.B. WilsonE.C. DeubaK. Multilevel determinants of antiretroviral therapy initiation and retention in the test-and-treat era of Nepal: a qualitative study.BMC Health Serv. Res.202424192710.1186/s12913‑024‑11311‑639138448
    [Google Scholar]
  17. NikolopoulosG.K. TsantesA.G. Recent HIV infection: diagnosis and public health implications.Diagnostics (Basel)20221211265710.3390/diagnostics1211265736359500
    [Google Scholar]
  18. KheraH.K. MishraR. Nucleic acid based testing (NABing): A game changer technology for public health.Mol. Biotechnol.20246692168220010.1007/s12033‑023‑00870‑437695473
    [Google Scholar]
  19. PandeyS.K. MohantaG.C. KumarV. GuptaK. Diagnostic tools for rapid screening and detection of SARS-CoV-2 infection.Vaccines (Basel)2022108120010.3390/vaccines1008120036016088
    [Google Scholar]
  20. MaukM. SongJ. BauH.H. GrossR. BushmanF.D. CollmanR.G. LiuC. Miniaturized devices for point of care molecular detection of HIV.Lab Chip201717338239410.1039/C6LC01239F28092381
    [Google Scholar]
  21. BrazacaL.C. dos SantosP.L. de OliveiraP.R. RochaD.P. StefanoJ.S. KalinkeC. Abarza MuñozR.A. BonacinJ.A. JanegitzB.C. CarrilhoE. Biosensing strategies for the electrochemical detection of viruses and viral diseases – A review.Anal. Chim. Acta2021115933838410.1016/j.aca.2021.33838433867035
    [Google Scholar]
  22. WelchE.C. PowellJ.M. ClevingerT.B. FairmanA.E. ShuklaA. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials.Adv. Funct. Mater.20213144210412610.1002/adfm.202104126
    [Google Scholar]
  23. YinX. LangerS. ZhangZ. HerbertK.M. YohS. KönigR. ChandaS.K. Sensor sensibility—HIV-1 and the innate immune response.Cells20209125410.3390/cells901025431968566
    [Google Scholar]
  24. NemčekováK. LabudaJ. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review.Mater. Sci. Eng. C202112011175110.1016/j.msec.2020.11175133545892
    [Google Scholar]
  25. MohamadF. Mat ZaidM. AbdullahJ. ZawawiR. LimH. SulaimanY. Abdul RahmanN. Synthesis and characterization of polyaniline/graphene composite nanofiber and its application as an electrochemical DNA biosensor for the detection of mycobacterium tuberculosis.Sensors (Basel)20171712278910.3390/s1712278929207463
    [Google Scholar]
  26. BrettC.M.A. Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors.Molecules2022275149710.3390/molecules2705149735268599
    [Google Scholar]
  27. KrügerA. de Jesus SantosA.P. de SáV. UlrichH. WrengerC. Aptamer applications in emerging viral diseases.Pharmaceuticals (Basel)202114762210.3390/ph1407062234203242
    [Google Scholar]
  28. Sánchez-BásconesE. ParraF. Lobo-CastañónM.J. Aptamers against viruses: Selection strategies and bioanalytical applications.Trends Analyt. Chem.202114311634910.1016/j.trac.2021.116349
    [Google Scholar]
  29. McManusM. HendersonJ. GautamA. BrodyR. WeissE.R. PersaudD. MickE. LuzuriagaK. Quantitative HIV-1 antibodies correlate with plasma HIV-1 RNA and cell-associated DNA levels in children on ART.Clin. Infect. Dis.2018175310.1093/cid/ciy75330668843
    [Google Scholar]
  30. LiS. ZhangH. ZhuM. KuangZ. LiX. XuF. MiaoS. ZhangZ. LouX. LiH. XiaF. Electrochemical biosensors for whole blood analysis: recent progress, challenges, and future perspectives.Chem. Rev.2023123127953803910.1021/acs.chemrev.1c0075937262362
    [Google Scholar]
  31. Ménard-MoyonC. BiancoA. Kalantar-ZadehK. Two-dimensional material-based biosensors for virus detection.ACS Sens.20205123739376910.1021/acssensors.0c0196133226779
    [Google Scholar]
  32. KappenJ. SkorupaM. KrukiewiczK. Conducting polymers as versatile tools for the electrochemical detection of cancer biomarkers.Biosensors (Basel)20221313110.3390/bios1301003136671866
    [Google Scholar]
  33. LiJ. JinX. FengM. HuangS. FengJ. Ultrasensitive and highly selective electrochemical biosensor for HIV gene detection based on amino-reduced graphene oxide and β-cyclodextrin modified glassy carbon electrode.Int. J. Electrochem. Sci.20201532727273810.20964/2020.03.62
    [Google Scholar]
  34. CampuzanoS. Yáñez-SedeñoP. PingarrónJ. Electrochemical genosensing of circulating biomarkers.Sensors (Basel)201717486610.3390/s1704086628420103
    [Google Scholar]
  35. BigdeliI.K. YeganehM. ShoushtariM.T. ZadehM.K. Electrochemical impedance spectroscopy (EIS) for biosensing.Nanosens. Smart. Manuf.2021353355410.1016/B978‑0‑12‑823358‑0.00025‑3
    [Google Scholar]
  36. MaE. LiuC. BaiX. FanP. LiG. ChenK. LiL. QuQ. An ultrasensitive electrochemical DNA biosensor based on the highly conductive Nd–Sb-co-doped SnO2@Pt nanocomposite for the rapid detection of HIV-DNA.J. Mater. Res.202237213617362810.1557/s43578‑022‑00731‑x
    [Google Scholar]
  37. SahaR. SinghS.N. SamalJ. GuptaE. BhattacharyaS. Impedance spectroscopy-based detection of viral RNA from clinical samples.IEEE Sens. Lett.2023781410.1109/LSENS.2023.329736837529707
    [Google Scholar]
  38. MoçoA.C.R. NetoJ.A.S. de MoraesD.D. GuedesP.H. BrussascoJ.G. FlauzinoJ.M.R. LuzL.F.G. SoaresM.M.C.N. MadurroJ.M. Brito-MadurroA.G. Carbon ink-based electrodes modified with nanocomposite as a platform for electrochemical detection of HIV RNA.Microchem. J.202117010673910.1016/j.microc.2021.106739
    [Google Scholar]
  39. AbdulbariH.A. BasheerE.A.M. Electrochemical biosensors: electrode development, materials, design, and fabrication.ChemBioEng Rev.2017429210510.1002/cben.201600009
    [Google Scholar]
  40. ZhangJ. ZhaoW. ZhangH. WangZ. FanC. ZangL. Recent achievements in enhancing anaerobic digestion with carbon- based functional materials.Bioresour. Technol.201826655556710.1016/j.biortech.2018.07.07630037522
    [Google Scholar]
  41. RizviA. S. MurtazaG. XuX. GaoP. QiuL. MengZ. Aptamer-linked photonic crystal assay for high-throughput screening of HIV and SARS-CoV-2.Anal. Chem.202289178620862510.1021/acs.analchem.2c03467
    [Google Scholar]
  42. ZouX. WuJ. GuJ. ShenL. MaoL. Application of aptamers in virus detection and antiviral therapy.Front. Microbiol.201910146210.3389/fmicb.2019.0146231333603
    [Google Scholar]
  43. GonzálezV. MartínM. FernándezG. García-SacristánA. Use of aptamers as diagnostics tools and antiviral agents for human viruses.Pharmaceuticals (Basel)2016947810.3390/ph904007827999271
    [Google Scholar]
  44. NandiS. MondalA. RobertsA. GandhiS. Biosensor platforms for rapid HIV detection.Adv. Clin. Chem.20209813410.1016/bs.acc.2020.02.00132564784
    [Google Scholar]
  45. SanthanamM. AlgovI. AlfontaL. DNA/RNA electrochemical biosensing devices a future replacement of PCR methods for a fast epidemic containment.Sensors (Basel)20202016464810.3390/s2016464832824787
    [Google Scholar]
  46. PajkossyT. JurczakowskiR. Electrochemical impedance spectroscopy in interfacial studies.Curr. Opin. Electrochem.201711535810.1016/j.coelec.2017.01.006
    [Google Scholar]
  47. LaschukN.O. EastonE.B. ZenkinaO.V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry.RSC Advances20211145279252793610.1039/D1RA03785D35480766
    [Google Scholar]
  48. ShamsipurM. SamandariL. FarzinL. Besharati-SeidaniA. Development of an ultrasensitive electrochemical genosensor for detection of HIV-1 pol gene using a gold nanoparticles coated carbon paste electrode impregnated with lead ion-imprinted polymer nanomaterials as a novel electrochemical probe.Microchem. J.202116010571410.1016/j.microc.2020.105714
    [Google Scholar]
  49. ZhangD. PengY. QiH. GaoQ. ZhangC. Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator.Biosens. Bioelectron.20102551088109410.1016/j.bios.2009.09.03219850463
    [Google Scholar]
  50. XuY. ZhengZ. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.Biosens. Bioelectron.20167959359910.1016/j.bios.2015.12.05726761615
    [Google Scholar]
  51. Torrente-RodríguezR.M. CampuzanoS. MontielV.R.V. MontoyaJ.J. PingarrónJ.M. Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification.Biosens. Bioelectron.20168651652110.1016/j.bios.2016.07.00327447448
    [Google Scholar]
  52. QaddareS.H. SalimiA. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level.Biosens. Bioelectron.201789Pt 277378010.1016/j.bios.2016.10.03327816581
    [Google Scholar]
  53. Ruiz-Valdepeñas MontielV. PovedanoE. VargasE. Torrente-RodríguezR.M. PedreroM. ReviejoA.J. CampuzanoS. PingarrónJ.M. Comparison of different strategies for the development of highly sensitive electrochemical nucleic acid biosensors using neither nanomaterials nor nucleic acid amplification.ACS Sens.20183121122110.1021/acssensors.7b0086929282977
    [Google Scholar]
  54. FarzinL. ShamsipurM. SamandariL. SheibaniS. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies.Talanta202020612020110.1016/j.talanta.2019.12020131514868
    [Google Scholar]
  55. GuoY. ChenJ. ChenG. A label-free electrochemical biosensor for detection of HIV related gene based on interaction between DNA and protein.Sens. Actuators B Chem.201318411311710.1016/j.snb.2013.04.046
    [Google Scholar]
  56. RashidJ.I.A. YusofN.A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review.Sens. Biosensing Res.201716193110.1016/j.sbsr.2017.09.001
    [Google Scholar]
  57. BiS. YueS. ZhangS. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine.Chem. Soc. Rev.201746144281429810.1039/C7CS00055C28573275
    [Google Scholar]
  58. FarkaZ. JuříkT. KovářD. TrnkováL. SkládalP. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges.Chem. Rev.20171171599731004210.1021/acs.chemrev.7b0003728753280
    [Google Scholar]
  59. PetraliaS. ConociS. PCR technologies for point of care testing: progress and perspectives.ACS Sens.20172787689110.1021/acssensors.7b0029928750519
    [Google Scholar]
  60. TsangH.F. ChanL.W.C. TongJ.C.H. WongH.T. LaiC.K.C. AuT.C.C. ChanA.K.C. NgL.P.W. ChoW.C.S. WongS.C.C. Implementation and new insights in molecular diagnostics for HIV infection.Expert Rev. Mol. Diagn.201818543344110.1080/14737159.2018.146439329641941
    [Google Scholar]
  61. ChenY. QianC. LiuC. ShenH. WangZ. PingJ. WuJ. ChenH. Nucleic acid amplification free biosensors for pathogen detection.Biosens. Bioelectron.202015311204910.1016/j.bios.2020.11204932056663
    [Google Scholar]
  62. LiZ. XuH. LiS. WuS. MiaoX. Zettomole electrochemical HIV DNA detection using 2D DNA-Au nanowire structure, hemin/G-quadruplex and polymerase chain reaction multi-signal synergistic amplification.Anal. Chim. Acta2021115933842810.1016/j.aca.2021.33842833867042
    [Google Scholar]
  63. BabamiriB. SalimiA. HallajR. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore.Biosens. Bioelectron.201811733233910.1016/j.bios.2018.06.00329933224
    [Google Scholar]
  64. ZiółkowskiR. JarczewskaM. GórskiŁ. MalinowskaE. From small molecules toward whole cells detection: application of electrochemical aptasensors in modern medical diagnostics.Sensors (Basel)202121372410.3390/s2103072433494499
    [Google Scholar]
  65. BalaJ. ChinnapaiyanS. DuttaR.K. UnwallaH. Aptamers in HIV research diagnosis and therapy.RNA Biol.201815332733710.1080/15476286.2017.141413129431588
    [Google Scholar]
  66. ChakrabortyB. DasS. GuptaA. XiongY. T-vV. KizerM.E. DuanJ. ChandrasekaranA.R. WangX. Aptamers for viral detection and inhibition.ACS Infect. Dis.20228466769210.1021/acsinfecdis.1c0054635220716
    [Google Scholar]
  67. YooH. JoH. OhS.S. Detection and beyond: challenges and advances in aptamer-based biosensors.Mater. Adv.2020182663268710.1039/D0MA00639D
    [Google Scholar]
  68. GogolaJ.L. MartinsG. GevaerdA. BlanesL. CardosoJ. MarchiniF.K. BanksC.E. BergaminiM.F. Marcolino-JuniorL.H. Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier.Anal. Chim. Acta2021116633854810.1016/j.aca.2021.33854834022998
    [Google Scholar]
  69. CurulliA. Functional nanomaterials enhancing electrochemical biosensors as smart tools for detecting infectious viral diseases.Molecules2023289377710.3390/molecules2809377737175186
    [Google Scholar]
  70. SilwanaB. MatoetoeM.C. Review—nanostructured electrochemical sensors for determination of the first generation of the NNRTIs for HIV-1.ECS Adv.2022104650210.1149/2754‑2734/ac9323
    [Google Scholar]
  71. Hassan PourB. HaghnazariN. KeshavarziF. AhmadiE. ZarifB.R. A sensitive sensor based on molecularly imprinted polypyrrole on reduced graphene oxide modified glassy carbon electrode for nevirapine analysis.Anal. Methods202113404767477710.1039/D1AY00500F34569556
    [Google Scholar]
  72. ForoughiM.M. JahaniS. Aramesh-BoroujeniZ. Rostaminasab DolatabadM. ShahbazkhaniK. Synthesis of 3D cubic of Eu3+/Cu2O with clover-like faces nanostructures and their application as an electrochemical sensor for determination of antiretroviral drug nevirapine.Ceram. Int.20214714197271973610.1016/j.ceramint.2021.03.311
    [Google Scholar]
  73. YeterE.Ç. ŞahinS. CaglayanM.O. ÜstündağZ. An electrochemical label-free DNA impedimetric sensor with AuNP-modified glass fiber/carbonaceous electrode for the detection of HIV-1 DNA.Chem. Pap.2021751778710.1007/s11696‑020‑01280‑532836707
    [Google Scholar]
  74. ValizadehA. SohrabiN. BadrzadehF. Electrochemical detection of HIV-1 by nanomaterials.Artif. Cells Nanomed. Biotechnol.20174581467147710.1080/21691401.2017.128249428129690
    [Google Scholar]
  75. DasguptaA. RajukumarL.P. RotellaC. LeiY. TerronesM. Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications.Nano Today20171211613510.1016/j.nantod.2016.12.011
    [Google Scholar]
  76. MaY. ShenX.L. ZengQ. WangH.S. WangL.S. A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24.Talanta201716412112710.1016/j.talanta.2016.11.04328107905
    [Google Scholar]
  77. VermisoglouE. PanáčekD. JayaramuluK. PykalM. FrébortI. KolářM. HajdúchM. ZbořilR. OtyepkaM. Human virus detection with graphene-based materials.Biosens. Bioelectron.202016611243610.1016/j.bios.2020.11243632750677
    [Google Scholar]
  78. SenguptaJ. AdhikariA. HussainC.M. Graphene-based analytical lab-on-chip devices for detection of viruses: A review.Carbon Trends2021410007210.1016/j.cartre.2021.100072
    [Google Scholar]
  79. MaK. LiX. XuB. TianW. Label-free bioassay with graphene oxide-based fluorescent aptasensors: A review.Anal. Chim. Acta2021118833885910.1016/j.aca.2021.33885934794573
    [Google Scholar]
  80. GongQ. HanH. YangH. ZhangM. SunX. LiangY. LiuZ. ZhangW. QiaoJ. Sensitive electrochemical DNA sensor for the detection of HIV based on a polyaniline/graphene nanocomposite.J. Materiomics20195231331910.1016/j.jmat.2019.03.004
    [Google Scholar]
  81. EbrahimiM. AsadiM. AkhavanO. Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders.ACS Biomater. Sci. Eng.202281548110.1021/acsbiomaterials.1c0118434967216
    [Google Scholar]
  82. GongQ. WangY. YangH. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film.Biosens. Bioelectron.201789Pt 156556910.1016/j.bios.2016.02.04526920111
    [Google Scholar]
  83. IslamS. ShuklaS. BajpaiV.K. HanY.K. HuhY.S. KumarA. GhoshA. GandhiS. A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors.Biosens. Bioelectron.201912679279910.1016/j.bios.2018.11.04130557838
    [Google Scholar]
  84. LuQ. SuT. ShangZ. JinD. ShuY. XuQ. HuX. Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection.Biosens. Bioelectron.202118411322910.1016/j.bios.2021.11322933894427
    [Google Scholar]
  85. MahmoudK.A. HrapovicS. LuongJ.H.T. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode.ACS Nano2008251051105710.1021/nn800077419206503
    [Google Scholar]
  86. AdamT. GopinathC.B. NanosensorsS. Recent perspectives on attainments and future promise of downstream applications.Process Biochem.202211715317310.1016/j.procbio.2022.03.024
    [Google Scholar]
  87. MaM. HeL. ShiX. WangY. HaiH. WeiX. Ultrasensitive detection of HIV DNA using an electrochemical biosensor with branched DNA amplification.Int. J. Electrochem. Sci.2023181010028610.1016/j.ijoes.2023.100286
    [Google Scholar]
  88. DongY. YaoC. ZhuY. YangL. LuoD. YangD. DNA functional materials assembled from branched DNA: design, synthesis, and applications.Chem. Rev.2020120179420948110.1021/acs.chemrev.0c0029432672036
    [Google Scholar]
  89. HuY. LiH. LiJ. A novel electrochemical biosensor for HIV-related DNA detection based on toehold strand displacement reaction and cruciform DNA crystal.J. Electroanal. Chem. (Lausanne)2018822667210.1016/j.jelechem.2018.05.011
    [Google Scholar]
  90. YanoN. FedulovA.V. Targeted DNA demethylation: vectors, effectors and perspectives.Biomedicines2023115133410.3390/biomedicines1105133437239005
    [Google Scholar]
  91. ShamsipurM. SamandariL. TaherpourA.A. PashabadiA. Sub-femtomolar detection of HIV-1 gene using DNA immobilized on composite platform reinforced by a conductive polymer sandwiched between two nanostructured layers: A solid signal-amplification strategy.Anal. Chim. Acta2019105571610.1016/j.aca.2018.12.01330782372
    [Google Scholar]
  92. DiaoW. TangM. DingS. LiX. ChengW. MoF. YanX. MaH. YanY. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices.Biosens. Bioelectron.201810022823410.1016/j.bios.2017.08.04228918231
    [Google Scholar]
  93. ZhaoC. LiuX. A portable paper-based microfluidic platform for multiplexed electrochemical detection of human immunodeficiency virus and hepatitis C virus antibodies in serum.Biomicrofluidics201610202411910.1063/1.494531127158287
    [Google Scholar]
  94. WhiteR.J. KallewaardH.M. HsiehW. PattersonA.S. KasehagenJ.B. CashK.J. UzawaT. SohH.T. PlaxcoK.W. Wash-free, electrochemical platform for the quantitative, multiplexed detection of specific antibodies.Anal. Chem.20128421098110310.1021/ac202757c22145706
    [Google Scholar]
  95. ZhaoK.R. WangL. LiuP.F. HangX.M. WangH.Y. YeS.Y. LiuZ.J. LiangG.X. A signal-switchable electrochemiluminescence biosensor based on the integration of spherical nucleic acid and CRISPR/Cas12a for multiplex detection of HIV/HPV DNAs.Sens. Actuators B Chem.202134613048510.1016/j.snb.2021.130485
    [Google Scholar]
  96. LiuD. ZhangY. ZhuM. YuZ. MaX. SongY. ZhouS. YangC. Microfluidic-integrated multicolor immunosensor for visual detection of HIV-1 p24 antigen with the naked eye.Anal. Chem.20209217118261183310.1021/acs.analchem.0c0209132867503
    [Google Scholar]
  97. Schmidt-SpeicherL.M. LängeK. Microfluidic integration for electrochemical biosensor applications.Curr. Opin. Electrochem.20212910075510.1016/j.coelec.2021.100755
    [Google Scholar]
  98. DectorA. Galindo-de-la-RosaJ. Amaya-CruzD.M. Ortíz-VerdínA. Guerra-BalcázarM. Olivares-RamírezJ.M. ArriagaL.G. Ledesma-GarcíaJ. Towards autonomous lateral flow assays: Paper-based microfluidic fuel cell inside an HIV-test using a blood sample as fuel.Int. J. Hydrogen Energy20174246279792798610.1016/j.ijhydene.2017.07.079
    [Google Scholar]
  99. BenjaminS. de LimaF. NascimentoV. de AndradeG. OriáR. Advancement in paper-based electrochemical biosensing and emerging diagnostic methods.Biosensors (Basel)202313768910.3390/bios1307068937504088
    [Google Scholar]
  100. NovianaE. McCordC.P. ClarkK.M. JangI. HenryC.S. Electrochemical paper-based devices: sensing approaches and progress toward practical applications.Lab Chip202020193410.1039/C9LC00903E31620764
    [Google Scholar]
  101. ColozzaN. CaratelliV. MosconeD. ArduiniF. Origami paper-based electrochemical (bio)sensors: state of the art and perspective.Biosensors (Basel)202111932810.3390/bios1109032834562920
    [Google Scholar]
  102. JiangY. LiS. ZhuP. ZhaoJ. XiongX. WuY. ZhangX. LiY. SongT. XiaoW. WangZ. HanJ. Electrochemical DNA biosensors based on the intrinsic topological insulator BiSbTeSe 2 for potential application in HIV determination.ACS Appl. Bio Mater.2022531084109110.1021/acsabm.1c0115335157417
    [Google Scholar]
  103. SrisomwatC. YakohA. ChuaypenN. TangkijvanichP. VilaivanT. ChailapakulO. Amplification-free DNA sensor for the one-step detection of the hepatitis B virus using an automated paper-based lateral flow electrochemical device.Anal. Chem.20219352879288710.1021/acs.analchem.0c0428333326737
    [Google Scholar]
  104. LiX. QinZ. FuH. LiT. PengR. LiZ. RiniJ.M. LiuX. Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach.Biosens. Bioelectron.202117711267210.1016/j.bios.2020.11267233461849
    [Google Scholar]
  105. GugI.T. TertisM. HosuO. CristeaC. Salivary biomarkers detection: Analytical and immunological methods overview.Trends Analyt. Chem.201911330131610.1016/j.trac.2019.02.020
    [Google Scholar]
  106. NasrollahiF. HaghniazR. HosseiniV. DavoodiE. MahmoodiM. KaramikamkarS. DarabiM.A. ZhuY. LeeJ. DiltemizS.E. MontazerianH. SangabathuniS. TavafoghiM. JucaudV. SunW. KimH.J. AhadianS. KhademhosseiniA. Micro and nanoscale technologies for diagnosis of viral infections.Small20211745210069210.1002/smll.20210069234310048
    [Google Scholar]
  107. GrayE.R. TurbéV. LawsonV.E. PageR.H. CookZ.C. FernsR.B. NastouliE. PillayD. YatsudaH. AtheyD. McKendryR.A. Ultra-rapid, sensitive and specific digital diagnosis of HIV with a dual-channel SAW biosensor in a pilot clinical study.NPJ Digit. Med.2018113510.1038/s41746‑018‑0041‑531304317
    [Google Scholar]
  108. LiT. XingW. YuF. XueZ. YangX. ZouG. ZhuY. Pathogen identification: ultrasensitive nucleic acid detection via a dynamic dna nanosystem-integrated ratiometric electrochemical sensing strategy.Anal. Chem.20229450177251773210.1021/acs.analchem.2c0473636472242
    [Google Scholar]
  109. KazerS.W. AicherT.P. MuemaD.M. CarrollS.L. Ordovas-MontanesJ. MiaoV.N. TuA.A. ZieglerC.G.K. NyquistS.K. WongE.B. IsmailN. DongM. MoodleyA. BergerB. LoveJ.C. DongK.L. LeslieA. NdhlovuZ.M. Ndung’uT. WalkerB.D. ShalekA.K. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection.Nat. Med.202026451151810.1038/s41591‑020‑0799‑232251406
    [Google Scholar]
/content/journals/chr/10.2174/011570162X363311250206045837
Loading
/content/journals/chr/10.2174/011570162X363311250206045837
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test