Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Background

The concept of designer exosomes involves developing engineered exosomes to overcome the limitations of natural exosomes in targeted drug delivery and vaccine development.

Methods

In this study, the multiepitope constructs were designed based on immunogenic regions of mutant Nef protein of Human Immunodeficiency Virus-1 (HIV-1 Nefmut) that were prone to high Post-Translational Modifications (PTMs), such as palmitoylation and myristoylation. These constructs with high scores in PTMs were selected for interactions with molecules involved in exosome biogenesis, anchoring of a protein in membranes, and enzymes involved in PTMs (, the mutant enzyme ZDHHC21 p.T209S). Moreover, the selected multiepitope construct with the highest PTM score and stable linkage with these molecules was fused to the first exon of the HIV-1 Tat protein as an antigen candidate, and to GFP as a tracking tool for evaluating their effects on the PTM scores and affinity binding with various molecules.

Results

Our data demonstrated that the multiepitope construct No.13 had better scores for incorporation into exosomes compared to the whole sequences of Nefmut and wild-type Nef protein (Nefwt). Furthermore, the linkage of Tat protein to construct No. 13 did not hinder its loading in exosomes compared to GFP, suggesting the use of this construct in vaccine development.

Conclusion

The multiepitope construct No.13 harboring potent Nefmut epitopes can be applied for linkage with other viral antigens, enhancing their delivery into exosomes for therapeutic applications.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X361821250512115612
2025-05-21
2025-11-08
Loading full text...

Full text loading...

References

  1. WelchJ.L. StapletonJ.T. OkeomaC.M. Vehicles of intercellular communication: Exosomes and HIV-1.J. Gen. Virol.2019100335036610.1099/jgv.0.001193 30702421
    [Google Scholar]
  2. TeowS.Y. LiewK. KhooA.S.B. PehS.C. Pathogenic role of exosomes in epstein-barr virus (EBV)-associated cancers.Int. J. Biol. Sci.201713101276128610.7150/ijbs.19531 29104494
    [Google Scholar]
  3. LuY. MaiZ. CuiL. ZhaoX. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration.Stem Cell Res. Ther.20231415510.1186/s13287‑023‑03275‑x 36978165
    [Google Scholar]
  4. PaolicelliR.C. BergaminiG. RajendranL. Cell-to-cell communication by extracellular vesicles: Focus on microglia.Neuroscience201940514815710.1016/j.neuroscience.2018.04.003 29660443
    [Google Scholar]
  5. XuM. YangQ. SunX. WangY. Recent advancements in the loading and modification of therapeutic exosomes.Front. Bioeng. Biotechnol.2020858613010.3389/fbioe.2020.586130 33262977
    [Google Scholar]
  6. JafariD. ShajariS. JafariR. Designer exosomes: A new platform for biotechnology therapeutics.BioDrugs202034556758610.1007/s40259‑020‑00434‑x 32754790
    [Google Scholar]
  7. MadisonM. OkeomaC. Exosomes: Implications in HIV-1 Pathogenesis.Viruses2015774093411810.3390/v7072810 26205405
    [Google Scholar]
  8. Raab-TraubN. DittmerD.P. Viral effects on the content and function of extracellular vesicles.Nat. Rev. Microbiol.201715955957210.1038/nrmicro.2017.60 28649136
    [Google Scholar]
  9. LenassiM. CagneyG. LiaoM. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells.Traffic201011111012210.1111/j.1600‑0854.2009.01006.x 19912576
    [Google Scholar]
  10. ColemanS.H. DayJ.R. GuatelliJ.C. The HIV-1 Nef protein as a target for antiretroviral therapy.Emerg. Ther. Targets20015112210.1517/14728222.5.1.1 15992165
    [Google Scholar]
  11. LattanziL. FedericoM. A strategy of antigen incorporation into exosomes: Comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles.Vaccine201230507229723710.1016/j.vaccine.2012.10.010 23099330
    [Google Scholar]
  12. BonitoP. RidolfiB. Columba-CabezasS. HPV-E7 delivered by engineered exosomes elicits a protective CD8+ T cell-mediated immune response.Viruses2015731079109910.3390/v7031079 25760140
    [Google Scholar]
  13. Di BonitoP. ChiozziniC. ArenaccioC. Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation.Int. J. Nanomedicine2017124579459110.2147/IJN.S131309 28694699
    [Google Scholar]
  14. de GassartA. GéminardC. FévrierB. RaposoG. VidalM. Lipid raft-associated protein sorting in exosomes.Blood20031021343364344 12881314
    [Google Scholar]
  15. ManfrediF. Di BonitoP. ArenaccioC. AnticoliS. FedericoM. Incorporation of heterologous proteins in engineered exosomes.Methods Mol. Biol.2016144824926010.1007/978‑1‑4939‑3753‑0_18 27317186
    [Google Scholar]
  16. CostaL.J. ChenN. LopesA. Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1.Retrovirology200633310.1186/1742‑4690‑3‑33 16764724
    [Google Scholar]
  17. HanQ.F. LiW.J. HuK.S. Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer.Mol. Cancer202221120710.1186/s12943‑022‑01671‑0 36320056
    [Google Scholar]
  18. FedericoM. From virus-like particles to engineered exosomes for a new generation of vaccines.Future Virol.20127547348210.2217/fvl.12.29
    [Google Scholar]
  19. SoltaniN. PakniyaF. ParchamiN. BehbahaniM. MohabatkarH. In-silico comparison of post-translational modifications of SARS-CoV and SARS-CoV-2 structural proteins.Shahrekord Univ. Med. Sci. J.2021234168173
    [Google Scholar]
  20. ReshM.D. Fatty acylation of proteins: New insights into membrane targeting of myristoylated and palmitoylated proteins.Biochim. Biophys. Acta19991451111610.1016/s0167‑4889(99)00075‑0 10446384
    [Google Scholar]
  21. BlaskovicS. BlancM. van der GootF.G. What does S-palmitoylation do to membrane proteins?FEBS J.2013280122766277410.1111/febs.12263 23551889
    [Google Scholar]
  22. BoeskeA. SchwartenM. MaP. Direct binding to GABARAP family members is essential for HIV-1 Nef plasma membrane localization.Sci. Rep.201771597910.1038/s41598‑017‑06319‑4 28729737
    [Google Scholar]
  23. LiW. PangY. WangY. Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer’s disease.BMC Med.202321122310.1186/s12916‑023‑02930‑7 37365538
    [Google Scholar]
  24. McNamaraR.P. CostantiniL.M. MyersT.A. Nef secretion into extracellular vesicles or exosomes is conserved across human and simian immunodeficiency viruses.MBio201891e02344e1710.1128/mBio.02344‑17 29437924
    [Google Scholar]
  25. EnsoliB. MorettiS. BorsettiA. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target.Arch. Virol.2021166112955297410.1007/s00705‑021‑05158‑z 34390393
    [Google Scholar]
  26. HillB.T. SkowronskiJ. Human N-myristoyltransferases form stable complexes with lentiviral nef and other viral and cellular substrate proteins.J. Virol.20057921133114110.1128/JVI.79.2.1133‑1141.2005 15613341
    [Google Scholar]
  27. LiuB. YangZ. LiuQ. Computational prediction of allergenic proteins based on multi-feature fusion.Front. Genet.202314129415910.3389/fgene.2023.1294159 37928245
    [Google Scholar]
  28. FleriW. PaulS. DhandaS.K. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design.Front. Immunol.2017827810.3389/fimmu.2017.00278 28352270
    [Google Scholar]
  29. XieY. ZhengY. LiH. GPS-Lipid: A robust tool for the prediction of multiple lipid modification sites.Sci. Rep.2016612824910.1038/srep28249 27306108
    [Google Scholar]
  30. SheyR.A. GhogomuS.M. EsohK.K. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases.Sci. Rep.201991440910.1038/s41598‑019‑40833‑x 30867498
    [Google Scholar]
  31. ChiuJ. HoggP.J. Allosteric disulfides: Sophisticated molecular structures enabling flexible protein regulation.J. Biol. Chem.201929482949590810.1074/jbc.REV118.005604 30635401
    [Google Scholar]
  32. MontgomerieS CruzJA ShrivastavaS ArndtD BerjanskiiM WishartDS PROTEUS2: A web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acids Res200836Web Server W202910.1093/nar/gkn25518483082
    [Google Scholar]
  33. RapinN. LundO. CastiglioneF. Immune system simulation online.Bioinformatics201127142013201410.1093/bioinformatics/btr335 21685045
    [Google Scholar]
  34. SivalingamG.N. ShepherdA.J. An analysis of B-cell epitope discontinuity.Mol. Immunol.2012513-430430910.1016/j.molimm.2012.03.030 22520973
    [Google Scholar]
  35. PonomarenkoJ. BuiH.H. LiW. ElliPro: A new structure-based tool for the prediction of antibody epitopes.BMC Bioinformatics20089151410.1186/1471‑2105‑9‑514 19055730
    [Google Scholar]
  36. JorgensenW.L. MaduraJ.D. Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water.J. Am. Chem. Soc.198310561407141310.1021/ja00344a001
    [Google Scholar]
  37. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.2408420 17212484
    [Google Scholar]
  38. AliM. PandeyR.K. KhatoonN. NarulaA. MishraA. PrajapatiV.K. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection.Sci. Rep.201771923210.1038/s41598‑017‑09199‑w 28835708
    [Google Scholar]
  39. MustufaM.M. ChandraS. WajidS. Homology modeling and molecular docking analysis of human RAC-alpha serine/threonine protein kinase.Int. J. Pharma Bio Sci.2014510331042
    [Google Scholar]
  40. IkaiA. Thermostability and aliphatic index of globular proteins.J. Biochem.198088618951898 7462208
    [Google Scholar]
  41. DiasM.V.S. CostaC.S. daSilvaL.L.P. The ambiguous roles of extracellular vesicles in HIV replication and pathogenesis.Front. Microbiol.20189241110.3389/fmicb.2018.02411 30364166
    [Google Scholar]
  42. da Silva-JanuárioM.E. da CostaC.S. TavaresL.A. HIV-1 Nef changes the proteome of T cells extracellular vesicles depleting IFITMs and other antiviral factors.Mol. Cell. Proteomics2023221210067610.1016/j.mcpro.2023.100676 37940003
    [Google Scholar]
  43. LiuC. SuC. Design strategies and application progress of therapeutic exosomes.Theranostics2019941015102810.7150/thno.30853 30867813
    [Google Scholar]
  44. AnticoliS. ManfrediF. ChiozziniC. An exosome-based vaccine platform imparts cytotoxic T lymphocyte immunity against viral antigens.Biotechnol. J.2018134170044310.1002/biot.201700443 29274250
    [Google Scholar]
  45. SerranoL. NeiraJ.L. SanchoJ. FershtA.R. Effect of alanine versus glycine in α-helices on protein stability.Nature1992356636845345510.1038/356453a0 1557131
    [Google Scholar]
  46. ChiozziniC. ManfrediF. ArenaccioC. FerrantelliF. LeoneP. FedericoM. N-terminal fatty acids of Nefmut are required for the CD8+ T-cell immunogenicity of in vivo engineered extracellular vesicles.Vaccines 20208224310.3390/vaccines8020243 32456079
    [Google Scholar]
  47. HudaM.N. NurunnabiM. Potential application of exosomes in vaccine development and delivery.Pharm. Res.202239112635267110.1007/s11095‑021‑03143‑4 35028802
    [Google Scholar]
  48. DyballL.E. SmalesC.M. Exosomes: Biogenesis, targeting, characterization and their potential as “Plug & Play” vaccine platforms.Biotechnol. J.20221711e2100646 35899790
    [Google Scholar]
  49. MitchellD.A. VasudevanA. LinderM.E. DeschenesR.J. Thematic review series: Lipid posttranslational modifications. Protein palmitoylation by a family of DHHC protein Sacyltransferases.J. Lipid Res.20064761118112710.1194/jlr.R600007‑JLR200 16582420
    [Google Scholar]
  50. GreavesJ. ChamberlainL.H. DHHC palmitoyl transferases: Substrate interactions and (patho)physiology.Trends Biochem. Sci.201136524525310.1016/j.tibs.2011.01.003 21388813
    [Google Scholar]
  51. ReddyK.D. MalipeddiJ. DeForteS. Physicochemical sequence characteristics that influence S-palmitoylation propensity.J. Biomol. Struct. Dyn.201735112337235010.1080/07391102.2016.1217275 27498722
    [Google Scholar]
  52. KhanalN. PejaverV. LiZ. RadivojacP. ClemmerD.E. MukhopadhyayS. Position of proline mediates the reactivity of S-palmitoylation.ACS Chem. Biol.201510112529253610.1021/acschembio.5b00429 26255674
    [Google Scholar]
  53. WangB. DaiT. SunW. Protein N-myristoylation: Functions and mechanisms in control of innate immunity.Cell. Mol. Immunol.202118487888810.1038/s41423‑021‑00663‑2 33731917
    [Google Scholar]
  54. ReshM.D. Regulation of cellular signalling by fatty acid acylation and prenylation of signal transduction proteins.Cell. Signal.19968640341210.1016/s0898‑6568(96)00088‑5 8958442
    [Google Scholar]
  55. TanK.P. SinghK. HazraA. MadhusudhanM.S. Peptide bond planarity constrains hydrogen bond geometry and influences secondary structure conformations.Curr. Res. Struct. Biol.202031810.1016/j.crstbi.2020.11.002 34382009
    [Google Scholar]
  56. YuanY. LiP. LiJ. ZhaoQ. ChangY. HeX. Protein lipidation in health and disease: Molecular basis, physiological function and pathological implication.Signal Transduct. Target. Ther.2024916010.1038/s41392‑024‑01759‑7 38485938
    [Google Scholar]
  57. PereiraE.A. daSilvaL.L. HIV-1 Nef: Taking control of protein trafficking.Traffic201617997699610.1111/tra.12412 27161574
    [Google Scholar]
  58. StaudtR.P. AlvaradoJ.J. Emert-SedlakL.A. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes.J. Biol. Chem.202029544151581517110.1074/jbc.REV120.012317 32862141
    [Google Scholar]
  59. UdenwobeleD.I. SuR.C. GoodS.V. BallT.B. VarmaS.S. ShrivastavA. Myristoylation: An important protein modification in the immune response.Front. Immunol.2017875110.3389/fimmu.2017.00751 28713376
    [Google Scholar]
  60. ByrneP.O. McLellanJ.S. Principles and practical applications of structure-based vaccine design.Curr. Opin. Immunol.20227710220910.1016/j.coi.2022.102209 35598506
    [Google Scholar]
  61. CordeiroP.A.S. AssoneT. PratesG. TedeschiM.R.M. FonsecaL.A.M. CassebJ. The role of IFN-γ production during retroviral infections: An important cytokine involved in chronic inflammation and pathogenesis.Rev. Inst. Med. Trop. São Paulo202264e6410.1590/s1678‑9946202264064 36197425
    [Google Scholar]
  62. LeeA.J. AshkarA.A. The dual nature of type I and type II interferons.Front. Immunol.20189206110.3389/fimmu.2018.02061 30254639
    [Google Scholar]
  63. BrüggerB. KrautkrämerE. TibroniN. Human Immunodeficiency Virus Type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains.Retrovirology2007417010.1186/1742‑4690‑4‑70 17908312
    [Google Scholar]
  64. Fanales-BelasioE. RaimondoM. SuligoiB. ButtòS. HIV virology and pathogenetic mechanisms of infection: A brief overview.Ann. Ist. Super. Sanita201046151410.1590/S0021‑25712010000100002 20348614
    [Google Scholar]
  65. BenthamM. MazaleyratS. HarrisM. Role of myristoylation and N-terminal basic residues in membrane association of the human immunodeficiency virus type 1 Nef protein.J. Gen. Virol.200687356357110.1099/vir.0.81200‑0 16476977
    [Google Scholar]
  66. BuffaloC.Z. IwamotoY. HurleyJ.H. RenX. HowH.I.V. Nef proteins hijack membrane traffic to promote infection?J. Virol.20199324e01322e1910.1128/JVI.01322‑19 31578291
    [Google Scholar]
/content/journals/chr/10.2174/011570162X361821250512115612
Loading
/content/journals/chr/10.2174/011570162X361821250512115612
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test