Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Introduction/Objective

“Immunological non-responders” (INRs) are individuals living with HIV who are undergoing Highly Active Antiretroviral Therapy (HAART) but fail to restore their CD4+ T-cells count despite effective viral control. The incomplete immune restoration in INRs is often associated with the low-productive proliferation of memory CD4+ T lymphocytes. The ability of CD4+ T cells to divide is critically dependent on the glycolytic pathway, which supplies the necessary energy and building blocks for cell division. We hypothesize that impaired glycolytic activity in the memory CD4+ T cells of INRs contributes to their ineffective proliferation, ultimately limiting immune restoration.

Methods

This study involved two groups of HIV-infected HAART-treated subjects: INR and Immunological Responders (IR). A third group consisted of healthy controls, comprising uninfected volunteers. To identify the metabolic factors contributing to immunological non-response to therapy, glucose uptake, and lactate production were measured in the memory CD4+ T cells from all three groups.

Results

INR had the highest activation level in memory CD4+ T cells and the greatest glucose uptake. However, both groups of HIV-infected patients had significantly reduced lactate production compared to the healthy donors. Short-term phytohemagglutinin stimulation provoked an increase in lactate production in memory CD4+ T lymphocytes. Nevertheless, we found significantly reduced lactate production levels in activated memory CD4+ Т cells of INR an IR.

Conclusion

In INRs, there is a discrepancy between the highly activated phenotype of memory CD4+ T lymphocytes and their glycolytic activity. This reduced glycolysis may explain the low-productive proliferation of memory CD4+ T lymphocytes in INRs.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X361238250421120542
2025-05-06
2025-11-08
Loading full text...

Full text loading...

References

  1. ProtasovK.V. EniseevaE.S. PlotnikovaY.K. Myocardial infarction in patients with HIV infection: Incidence, risk factors, pathogenesis, clinical performance and treatment.Russ J Cardiol2024291S567010.15829/1560‑4071‑2024‑5670
    [Google Scholar]
  2. Serrano-VillarS. SainzT. LeeS.A. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality.PLoS Pathog.2014105e100407810.1371/journal.ppat.1004078 24831517
    [Google Scholar]
  3. BekkerL.G. BeyrerC. MgodiN. HIV infection.Nat. Rev. Dis. Primers2023914210.1038/s41572‑023‑00452‑3 37591865
    [Google Scholar]
  4. Barré-SinoussiF. HIV as the cause of AIDS.Lancet19963489019313510.1016/S0140‑6736(96)09058‑7 8691930
    [Google Scholar]
  5. YangX. SuB. ZhangX. LiuY. WuH. ZhangT. Incomplete immune reconstitution in HIV/AIDS patients on antiretroviral therapy: Challenges of immunological non-responders.J. Leukoc. Biol.2020107459761210.1002/JLB.4MR1019‑189R 31965635
    [Google Scholar]
  6. LouieM. MarkowitzM. Goals and milestones during treatment of HIV-1 infection with antiretroviral therapy: A pathogenesis-based perspective.Antiviral Res.2002551152510.1016/S0166‑3542(02)00022‑0 12076748
    [Google Scholar]
  7. KemnicT.R. GulickP.G. HIV preexposure prophylaxis: A review.JAMA2024319121261126810.1001/jama.2018.1917 29584848
    [Google Scholar]
  8. CollierA.C. CoombsR.W. SchoenfeldD.A. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine.N. Engl. J. Med.1996334161011101810.1056/NEJM199604183341602 8598838
    [Google Scholar]
  9. FokaF.E.T. MufhanduH.T. Current ARTs, virologic failure, and implications for aids management: A systematic review.Viruses2023158173210.3390/v15081732 37632074
    [Google Scholar]
  10. AutranB. CarcelaintG. LiT.S. Restoration of the immune system with anti-retroviral therapy.Immunol. Lett.1999661-320721110.1016/S0165‑2478(98)00159‑X 10203056
    [Google Scholar]
  11. PikettyC. CastielP. BelecL. Discrepant responses to triple combination antiretroviral therapy in advanced HIV disease.AIDS199812774575010.1097/00002030‑199807000‑00011 9619806
    [Google Scholar]
  12. KelleyC.F. KitchenC.M.R. HuntP.W. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment.Clin. Infect. Dis.200948678779410.1086/597093 19193107
    [Google Scholar]
  13. SheteA. DhayarkarS. SangaleS. Incomplete functional T-cell reconstitution in immunological non-responders at one year after initiation of antiretroviral therapy possibly predisposes them to infectious diseases.Int. J. Infect. Dis.20198111412210.1016/j.ijid.2019.01.017 30658168
    [Google Scholar]
  14. PikettyC. WeissL. ThomasF. MohamedA.S. BelecL. KazatchkineM.D. Long-term clinical outcome of human immunodeficiency virus-infected patients with discordant immunologic and virologic responses to a protease inhibitor-containing regimen.J. Infect. Dis.200118391328133510.1086/319861 11294663
    [Google Scholar]
  15. GazzolaL. TincatiC. BellistreG.M. d’Arminio MonforteA. MarchettiG. The absence of CD4+ T cell count recovery despite receipt of virologically suppressive highly active antiretroviral therapy: Clinical risk, immunological gaps, and therapeutic options.Clin. Infect. Dis.200948332833710.1086/695852 19123868
    [Google Scholar]
  16. LedermanM.M. CalabreseL. FunderburgN.T. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells.J. Infect. Dis.201120481217122610.1093/infdis/jir507 21917895
    [Google Scholar]
  17. AzzamS. SchlatzerD. MaxwellS. Proteome and protein network analyses of memory T cells find altered translation and cell stress signaling in treated human immunodeficiency virus patients exhibiting poor CD4 recovery.Open Forum Infect. Dis.201632ofw03710.1093/ofid/ofw037 28293663
    [Google Scholar]
  18. MarchettiG. GoriA. CasabiancaA. Comparative analysis of T-cell turnover and homeostatic parameters in HIV-infected patients with discordant immune-virological responses to HAART.AIDS200620131727173610.1097/01.aids.0000242819.72839.db 16931937
    [Google Scholar]
  19. YounesS.A. TallaA. Pereira RibeiroS. Cycling CD4+ T cells in HIV-infected immune nonresponders have mitochondrial dysfunction.J. Clin. Invest.2018128115083509410.1172/JCI120245 30320604
    [Google Scholar]
  20. SaidakovaE. KorolevskayaL. ShmagelK. Memory CD4+ T-cells in HIV-infected immunological nonresponders are prone to apoptosis when cycling. In: Science and Global Challenges of the 21st Century – Innovations and Technologies in Interdisciplinary Applications.ChamSpringer202343744310.1007/978‑3‑031‑28086‑3_37
    [Google Scholar]
  21. SaidakovaE.V. ShmagelK.V. KorolevskayaL.B. CD4+ T-cell cycling in HIV-infected patients with the discordant immunologic response to the antiretroviral therapy.Cell Tissue Biol.2019131556310.1134/S1990519X19010097
    [Google Scholar]
  22. WangR. GreenD.R. Metabolic checkpoints in activated T cells.Nat. Immunol.2012131090791510.1038/ni.2386 22990888
    [Google Scholar]
  23. NguyenH.D. ChatterjeeS. HaarbergK.M.K. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation.J. Clin. Invest.201612641337135210.1172/JCI82587 26950421
    [Google Scholar]
  24. WangR. DillonC.P. ShiL.Z. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation.Immunity201135687188210.1016/j.immuni.2011.09.021 22195744
    [Google Scholar]
  25. PatelD. SalloumD. SaqcenaM. A late G1 lipid checkpoint that is dysregulated in clear cell renal carcinoma cells.J. Biol. Chem.2017292393694410.1074/jbc.M116.757864 27956548
    [Google Scholar]
  26. PelletierJ. Riaño-CanaliasF. AlmacellasE. Nucleotide depletion reveals the impaired ribosome biogenesis checkpoint as a barrier against DNA damage.EMBO J.20203913e10383810.15252/embj.2019103838 32484960
    [Google Scholar]
  27. PardeeA.B. A restriction point for control of normal animal cell proliferation.Proc. Natl. Acad. Sci. USA19747141286129010.1073/pnas.71.4.1286 4524638
    [Google Scholar]
  28. YenA. PardeeA.B. Arrested states produced by isoleucine deprivation and their relationship to the low serum produced arrested state in Swiss 3T3 cells*1.Exp. Cell Res.1978114238939510.1016/0014‑4827(78)90497‑4 679990
    [Google Scholar]
  29. LiX. GuJ. ZhouQ. Review of aerobic glycolysis and its key enzymes – new targets for lung cancer therapy.Thorac. Cancer201561172410.1111/1759‑7714.12148 26273330
    [Google Scholar]
  30. CzibikG. SteeplesV. YavariA. AshrafianH. Citric acid cycle intermediates in cardioprotection.Circ. Cardiovasc. Genet.20147571171910.1161/CIRCGENETICS.114.000220 25518044
    [Google Scholar]
  31. GeT. YangJ. ZhouS. WangY. LiY. TongX. The role of the pentose phosphate pathway in diabetes and cancer.Front. Endocrinol. (Lausanne)20201136510.3389/fendo.2020.00365 32582032
    [Google Scholar]
  32. ReidM.A. AllenA.E. LiuS. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism.Nat. Commun.201891544210.1038/s41467‑018‑07868‑6 30575741
    [Google Scholar]
  33. LeeJ. RidgwayN.D. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids.Biochim. Biophys. Acta Mol. Cell Biol. Lip20201865115843810.1016/j.bbalip.2019.03.010 30959116
    [Google Scholar]
  34. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.1160809 19460998
    [Google Scholar]
  35. MartinsC.P. NewL.A. O’ConnorE.C. Glycolysis inhibition induces functional and metabolic exhaustion of CD4+ T cells in type 1 diabetes.Front. Immunol.20211266945610.3389/fimmu.2021.669456 34163475
    [Google Scholar]
  36. Rb-SilvaR. GoiosA. KellyC. Definition of immunological nonresponse to antiretroviral therapy: A systematic review.J. Acquir. Immune Defic. Syndr.201982545246110.1097/QAI.0000000000002157 31592836
    [Google Scholar]
  37. PalmerC.S. OstrowskiM. GouillouM. Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection.AIDS201428329730910.1097/QAD.0000000000000128 24335483
    [Google Scholar]
  38. MassonJ.J.R. MurphyA.J. LeeM.K.S. OstrowskiM. CroweS.M. PalmerC.S. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy.PLoS One2017128e018393110.1371/journal.pone.0183931 28854263
    [Google Scholar]
  39. HegedusA. Kavanagh WilliamsonM. HuthoffH. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells.Retrovirology20141119810.1186/s12977‑014‑0098‑4 25421745
    [Google Scholar]
  40. ChenZ. WangT. DengK. Glucose metabolism and human immunodeficiency virus type 1 infection.Infect. Dis. Immun.20222424224710.1097/ID9.0000000000000071
    [Google Scholar]
  41. HamadaK. MaedaY. MizutaniA. OkadaS. The phosphatidylinositol 3-Kinase p110α/PTEN signaling pathway is crucial for HIV-1 entry.Biol. Pharm. Bull.201942113013810.1248/bpb.b18‑00801 30606984
    [Google Scholar]
  42. KumarA. AbbasW. ColinL. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line.Sci. Rep.2016612409010.1038/srep24090 27076174
    [Google Scholar]
  43. DeshmaneS.L. MukerjeeR. FanS. Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression.J. Biol. Chem.200928417113641137310.1074/jbc.M809266200 19204000
    [Google Scholar]
  44. KorolevskayaL.B. SaidakovaE.V. VlasovaV.V. ShmagelK.V. Glucose uptake by CD4+ T cell subsets in HIV-infected patients receiving highly active antiretroviral therapy (haart).Russ. J. Immunol.202124231131610.46235/1028‑7221‑1006‑GUP
    [Google Scholar]
  45. Adeva-AndanyM. López-OjénM. Funcasta-CalderónR. Comprehensive review on lactate metabolism in human health.Mitochondrion2014177610010.1016/j.mito.2014.05.007 24929216
    [Google Scholar]
  46. LibertiM.V. LocasaleJ.W. The warburg effect: How does it benefit cancer cells?Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.001 26778478
    [Google Scholar]
  47. DeBerardinisR.J. LumJ.J. HatzivassiliouG. ThompsonC.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation.Cell Metab.200871112010.1016/j.cmet.2007.10.002 18177721
    [Google Scholar]
  48. VlasovaV.V. ShmagelK.V. T lymphocyte metabolic features and techniques to modulate them.Biochemistry (Mosc.)202388111857187310.1134/S0006297923110159 38105204
    [Google Scholar]
  49. VlasovaV.V. SaidakovaE.V. KorolevskayaL.B. ShmagelN.G. ChereshnevV.A. ShmagelK.V. Metabolic features of activated memory CD4+ T-cells derived from HIV-infected immunological non-responders to highly active antiretroviral therapy.Dokl. Biol. Sci.2021501120620910.1134/S0012496621060090 34962608
    [Google Scholar]
  50. GumberD. WangL.D. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion.EBioMedicine20227710394110.1016/j.ebiom.2022.103941 35301179
    [Google Scholar]
  51. ShiveC.L. FreemanM.L. YounesS.A. Markers of T cell exhaustion and senescence and their relationship to plasma TGF-β levels in treated HIV+ immune non-responders.Front. Immunol.20211263801010.3389/fimmu.2021.638010 33868264
    [Google Scholar]
  52. YangZ. FujiiH. MohanS.V. GoronzyJ.J. WeyandC.M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells.J. Exp. Med.2013210102119213410.1084/jem.20130252 24043759
    [Google Scholar]
  53. La RoccaC. CarboneF. De RosaV. Immunometabolic profiling of T cells from patients with relapsing-remitting multiple sclerosis reveals an impairment in glycolysis and mitochondrial respiration.Metabolism201777394610.1016/j.metabol.2017.08.011 29132538
    [Google Scholar]
/content/journals/chr/10.2174/011570162X361238250421120542
Loading
/content/journals/chr/10.2174/011570162X361238250421120542
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CD4+ T Cells; glucose; HAART; HIV-infection; immunological non-responders; metabolism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test