Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Coronavirus Disease 2019 (COVID-19), caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 in Wuhan, China. Designated as an epidemic by the World Health Organization (WHO) on January 30, 2020, the virus quickly escalated to a global emergency, officially declared a pandemic in March 2020. With over 6 million recorded deaths and more than 200 identified symptoms in diverse individuals, the impact of COVID-19 is substantial. COVID-19 poses a greater risk to individuals with advanced HIV, while those with well-managed HIV are not at increased risk. Although COVID-19 vaccines are generally effective for people with HIV, some may experience reduced vaccine effectiveness and breakthrough infections due to suboptimal immune responses. Long COVID, affecting at least 65 million individuals, adds a layer of complexity. The virus's rapid mutation has led to diverse symptomatology, prompting adjustments in treatment guidelines. This review comprehensively examines repurposed antiviral drug candidates against COVID-19, explores immune responses across different age groups, delves into the mechanisms of COVID-19 vaccines, and discusses potential immunosuppressants. Additionally, the focus extends to Intravenous Immunoglobulin (IVIG), steroids, and anti-cytokine therapy as promising avenues to address cytokine release syndrome (CRS), a critical condition in COVID-19 patients.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X338375250414114957
2025-04-28
2025-11-08
Loading full text...

Full text loading...

References

  1. WangD. HuB. HuC. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China.JAMA2020323111061106910.1001/jama.2020.1585 32031570
    [Google Scholar]
  2. DavisH.E. AssafG.S. McCorkellL. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact.EClinicalMedicine20213810101910.1016/j.eclinm.2021.101019 34308300
    [Google Scholar]
  3. WeissS.R. LeibowitzJ.L. Coronavirus pathogenesis.Adv. Virus Res.2011818516410.1016/B978‑0‑12‑385885‑6.00009‑2 22094080
    [Google Scholar]
  4. LiF. Structure, function, and evolution of coronavirus spike proteins.Annu. Rev. Virol.20163123726110.1146/annurev‑virology‑110615‑042301 27578435
    [Google Scholar]
  5. TangQ. SongY. ShiM. ChengY. ZhangW. XiaX.Q. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition.Sci. Rep.2015511715510.1038/srep17155 26607834
    [Google Scholar]
  6. SuS. WongG. ShiW. Epidemiology, genetic recombination, and pathogenesis of coronaviruses.Trends Microbiol.201624649050210.1016/j.tim.2016.03.003 27012512
    [Google Scholar]
  7. MalikY.S. SircarS. BhatS. Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments.Vet. Q.2020401687610.1080/01652176.2020.1727993 32036774
    [Google Scholar]
  8. HuB. GuoH. ZhouP. ShiZ.L. Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol.202119314115410.1038/s41579‑020‑00459‑7 33024307
    [Google Scholar]
  9. BeyerstedtS. CasaroE.B. RangelÉ.B. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection.Eur. J. Clin. Microbiol. Infect. Dis.202140590591910.1007/s10096‑020‑04138‑6 33389262
    [Google Scholar]
  10. HeS. WaheedA.A. HetrickB. PSGL-1 inhibits the incorporation of SARS-CoV and SARS-CoV-2 spike glycoproteins into pseudovirions and impairs pseudovirus attachment and infectivity.Viruses20201314610.3390/v13010046 33396594
    [Google Scholar]
  11. KokicG. HillenH.S. TegunovD. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir.Nat. Commun.202112127910.1038/s41467‑020‑20542‑0 33436624
    [Google Scholar]
  12. MetwallyK. Abo-DyaN.E. AlahmdiM.I. The unusual architecture of RNA-dependent RNA Polymerase (RdRp)’s catalytic chamber provides a potential strategy for combination therapy against COVID-19.Molecules2023286280610.3390/molecules28062806 36985777
    [Google Scholar]
  13. WuZ. McGooganJ.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China.JAMA2020323131239124210.1001/jama.2020.2648 32091533
    [Google Scholar]
  14. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  15. GuanW. NiZ. HuY. Clinical characteristics of coronavirus disease 2019 in China.N. Engl. J. Med.2020382181708172010.1056/NEJMoa2002032 32109013
    [Google Scholar]
  16. LuX. ZhangL. DuH. SARS-CoV-2 infection in children.N. Engl. J. Med.2020382171663166510.1056/NEJMc2005073 32187458
    [Google Scholar]
  17. ChenN. ZhouM. DongX. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑7 32007143
    [Google Scholar]
  18. BrodinP. Immune determinants of COVID-19 disease presentation and severity.Nat. Med.2021271283310.1038/s41591‑020‑01202‑8 33442016
    [Google Scholar]
  19. PelusoM.J. DeeksS.G. Mechanisms of long COVID and the path toward therapeutics.Cell2024187205500552910.1016/j.cell.2024.07.054 39326415
    [Google Scholar]
  20. PunekarM. KshirsagarM. TellapragadaC. PatilK. Repurposing of antiviral drugs for COVID-19 and impact of repurposed drugs on the nervous system.Microb. Pathog.202216810560810.1016/j.micpath.2022.105608 35654381
    [Google Scholar]
  21. YinW. MaoC. LuanX. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir.Science202036864981499150410.1126/science.abc1560 32358203
    [Google Scholar]
  22. HashemianS.M. FarhadiT. VelayatiA.A. A review on favipiravir: The properties, function, and usefulness to treat COVID-19.Expert Rev. Anti Infect. Ther.20211981029103710.1080/14787210.2021.1866545 33372567
    [Google Scholar]
  23. VansantG. ChenH.C. ZoritaE. The chromatin landscape at the HIV-1 provirus integration site determines viral expression.Nucleic Acids Res.202048147801781710.1093/nar/gkaa536 32597987
    [Google Scholar]
  24. UpretiS. SamantM. A review on immunological responses to SARS-CoV-2 and various COVID-19 vaccine regimens.Pharm. Res.20223992119213410.1007/s11095‑022‑03323‑w 35773445
    [Google Scholar]
  25. BajajV. GadiN. SpihlmanA.P. WuS.C. ChoiC.H. MoultonV.R. Aging, immunity, and COVID-19: How age influences the host immune response to coronavirus infections?Front. Physiol.20211157141610.3389/fphys.2020.571416 33510644
    [Google Scholar]
  26. DabbaghD. HeS. HetrickB. ChilinL. AndalibiA. WuY. Identification of the SHREK family of proteins as broad-spectrum host antiviral factors.Viruses202113583210.3390/v13050832 34064525
    [Google Scholar]
  27. HöftM.A. BurgersW.A. RiouC. The immune response to SARS-CoV-2 in people with HIV.Cell. Mol. Immunol.202321218419610.1038/s41423‑023‑01087‑w 37821620
    [Google Scholar]
  28. PurohitD. SainiM. PathakN. COVID-19 ‘the pandemic’: An update on the present status of the outbreak and possible treatment options.Biomed. Pharmacol. J.20201341791180710.13005/bpj/2054
    [Google Scholar]
  29. JiangY. YinW. XuH.E. RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19.Biochem. Biophys. Res. Commun.2021538475310.1016/j.bbrc.2020.08.116 32943188
    [Google Scholar]
  30. JorgensenS.C.J. KebriaeiR. DresserL.D. Remdesivir: Review of pharmacology, pre‐clinical data, and emerging clinical experience for COVID‐19.Pharmacotherapy202040765967110.1002/phar.2429 32446287
    [Google Scholar]
  31. WangY. ZhangD. DuG. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial.Lancet2020395102361569157810.1016/S0140‑6736(20)31022‑9 32423584
    [Google Scholar]
  32. GandhiS. KleinJ. RobertsonA.J. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: A case report.Nat. Commun.2022131154710.1038/s41467‑022‑29104‑y 35301314
    [Google Scholar]
  33. PengQ. PengR. YuanB. Structural basis of SARS-CoV-2 polymerase inhibition by Favipiravir.Innovation20212110008010.1016/j.xinn.2021.100080 33521757
    [Google Scholar]
  34. FurutaY. KomenoT. NakamuraT. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201793744946310.2183/pjab.93.027 28769016
    [Google Scholar]
  35. Ghasemnejad-BerenjiM. PashapourS. Favipiravir and COVID-19: A simplified summary.Drug Res. (Stuttg.)202171316617010.1055/a‑1296‑7935 33176367
    [Google Scholar]
  36. SadaM. SarayaT. IshiiH. Detailed molecular interactions of Favipiravir with SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza virus polymerases in silico.Microorganisms2020810161010.3390/microorganisms8101610 33092045
    [Google Scholar]
  37. BatihaG.E.S. AlexiouA. MoubarakM. Favipiravir in SARS-CoV-2 infection: Is it worth it?Comb. Chem. High Throughput Screen.202225142413242810.2174/1386207325666220414111840 35430987
    [Google Scholar]
  38. Verdugo-PaivaF. IzcovichA. RagusaM. RadaG. Lopinavir/ritonavir for COVID-19: A living systematic review.Medwave2020206e796610.5867/medwave.2020.06.7966 32678815
    [Google Scholar]
  39. AmaniB. KhanijahaniA. AmaniB. HashemiP. Lopinavir/Ritonavir for COVID-19: A systematic review and meta-analysis.J. Pharm. Pharm. Sci.20212424625710.18433/jpps31668 34048671
    [Google Scholar]
  40. HorbyP.W. MafhamM. BellJ.L. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (recovery): A randomised, controlled, open-label, platform trial.Lancet2020396102591345135210.1016/S0140‑6736(20)32013‑4 33031764
    [Google Scholar]
  41. CortegianiA. IngogliaG. IppolitoM. GiarratanoA. EinavS. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19.J. Crit. Care20205727928310.1016/j.jcrc.2020.03.005 32173110
    [Google Scholar]
  42. YaoX. YeF. ZhangM. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Clin. Infect. Dis.2020711573273910.1093/cid/ciaa237 32150618
    [Google Scholar]
  43. BoulwareD.R. PullenM.F. BangdiwalaA.S. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19.N. Engl. J. Med.2020383651752510.1056/NEJMoa2016638 32492293
    [Google Scholar]
  44. WangX. CaoR. ZhangH. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro .Cell Discov.2020612810.1038/s41421‑020‑0169‑8 32373347
    [Google Scholar]
  45. BlaisingJ. PolyakS.J. PécheurE.I. Arbidol as a broad-spectrum antiviral: An update.Antiviral Res.2014107849410.1016/j.antiviral.2014.04.006 24769245
    [Google Scholar]
  46. LenevaI. KartashovaN. PoromovA. Antiviral activity of umifenovir in vitro against a broad spectrum of coronaviruses, including the novel SARS-CoV-2 virus.Viruses2021138166510.3390/v13081665 34452529
    [Google Scholar]
  47. VegivintiC.T.R. PedersonJ.M. SaravuK. Efficacy of convalescent plasma therapy for COVID‐19: A systematic review and meta‐analysis.J. Clin. Apher.202136347048210.1002/jca.21881 33544910
    [Google Scholar]
  48. LiuR. MangalR. SteadT.S. BarberaA.R. GantiL. Use of Casirivimab and Imdevimab for the treatment of COVID-19.Cureus2022148e2776610.7759/cureus.27766 36106219
    [Google Scholar]
  49. GuptaA. Gonzalez-RojasY. JuarezE. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody Sotrovimab.N. Engl. J. Med.2021385211941195010.1056/NEJMoa2107934 34706189
    [Google Scholar]
  50. NguyenY. FlahaultA. ChavarotN. MelenotteC. CheminantM. DeschampsP. Pre-exposure prophylaxis with Tixagevimab and Cilgavimab (Evusheld) for COVID-19 among 1112 severely immunocompromised patients.Clin. Microbiol. Infect.20222810.1016/j.cmi.2022.07.015
    [Google Scholar]
  51. ChewK.W. MoserC. DaarE.S. Antiviral and clinical activity of bamlanivimab in a randomized trial of non-hospitalized adults with COVID-19.Nat. Commun.2022131493110.1038/s41467‑022‑32551‑2 35995785
    [Google Scholar]
  52. HannulaL. KuivanenS. LashamJ. Nanobody engineering for SARS-CoV-2 neutralization and detection.Microbiol. Spectr.2024124e04199e2210.1128/spectrum.04199‑22 38363137
    [Google Scholar]
  53. PatelV.K. ShirbhateE. PatelP. VeerasamyR. SharmaP.C. RajakH. Corticosteroids for treatment of COVID-19: Effect, evidence, expectation and extent.Beni. Suef Univ. J. Basic Appl. Sci.20211017810.1186/s43088‑021‑00165‑0 34751250
    [Google Scholar]
  54. HorbyP. LimW.S. EmbersonJ.R. Dexamethasone in hospitalized patients with COVID-19.N. Engl. J. Med.2021384869370410.1056/NEJMoa2021436 32678530
    [Google Scholar]
  55. MarconiV.C. RamananA.V. de BonoS. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial.Lancet Respir. Med.20219121407141810.1016/S2213‑2600(21)00331‑3 34480861
    [Google Scholar]
  56. SivapalasingamS. LedererD.J. BhoreR. Efficacy and safety of sarilumab in hospitalized patients with coronavirus disease 2019: A randomized clinical trial.Clin. Infect. Dis.2022751e380e38810.1093/cid/ciac153 35219277
    [Google Scholar]
  57. FanloP. Gracia-TelloB.C. Fonseca AizpuruE. Efficacy and safety of Anakinra plus standard of care for patients with severe COVID-19.JAMA Netw. Open202364e23724310.1001/jamanetworkopen.2023.7243 37027155
    [Google Scholar]
  58. RazumikhinM. SmolyanovaT. NikolaevaA. Development and characterization of anti-SARS-CoV-2 intravenous immunoglobulin from COVID-19 convalescent plasma.Immunotherapy202214141133114710.2217/imt‑2022‑0015 35892311
    [Google Scholar]
  59. HouX. TianL. ZhouL. Intravenous immunoglobulin-based adjuvant therapy for severe COVID-19: A single-center retrospective cohort study.Virol. J.202118110110.1186/s12985‑021‑01575‑3 34020680
    [Google Scholar]
  60. OliverM.A. DavisX.D. BohannonJ.K. TGFβ macrophage reprogramming: A new dimension of macrophage plasticity.J. Leukoc. Biol.2024115341141410.1093/jleuko/qiae001 38197509
    [Google Scholar]
  61. ShuL. NiuC. LiR. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells.Stem Cell Res. Ther.202011136110.1186/s13287‑020‑01875‑5 32811531
    [Google Scholar]
  62. LanzoniG. LinetskyE. CorreaD. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial.Stem Cells Transl. Med.202110566067310.1002/sctm.20‑0472 33400390
    [Google Scholar]
  63. Reino-GelardoS. Palop-CerveraM. Aparisi-ValeroN. Effect of an immune-boosting, antioxidant and anti-inflammatory food supplement in hospitalized COVID-19 patients: A prospective randomized pilot study.Nutrients2023157173610.3390/nu15071736 37049576
    [Google Scholar]
  64. Villasis-KeeverM.A. López-AlarcónM.G. Miranda-NovalesG. Efficacy and safety of vitamin D supplementation to prevent COVID-19 in frontline healthcare workers. A randomized clinical trial.Arch. Med. Res.202253442343010.1016/j.arcmed.2022.04.003 35487792
    [Google Scholar]
  65. StambouliN. DrissA. GargouriF. COVID-19 prophylaxis with doxycycline and zinc in health care workers: A prospective, randomized, double-blind clinical trial.Int. J. Infect. Dis.202212255355810.1016/j.ijid.2022.06.016 35724828
    [Google Scholar]
  66. DeleheddeC. EvenL. MidouxP. PichonC. PercheF. Intracellular routing and recognition of lipid-based mRNA nanoparticles.Pharmaceutics202113794510.3390/pharmaceutics13070945 34202584
    [Google Scholar]
  67. MulliganM.J. LykeK.E. KitchinN. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults.Nature2020586783058959310.1038/s41586‑020‑2639‑4 32785213
    [Google Scholar]
  68. JacksonL.A. AndersonE.J. RouphaelN.G. An mRNA vaccine against SARS-CoV-2: Preliminary report.N. Engl. J. Med.2020383201920193110.1056/NEJMoa2022483 32663912
    [Google Scholar]
  69. PardiN. HoganM.J. PorterF.W. WeissmanD. mRNA vaccines: A new era in vaccinology.Nat. Rev. Drug Discov.201817426127910.1038/nrd.2017.243 29326426
    [Google Scholar]
  70. SandbrinkJ.B. ShattockR.J. RNA vaccines: A suitable platform for tackling emerging pandemics?Front. Immunol.20201160846010.3389/fimmu.2020.608460 33414790
    [Google Scholar]
  71. DolginE. LedfordH. mRNA COVID vaccines saved lives and won a nobel: What’s next for the technology?Nature2023Epub ahead of print.10.1038/d41586‑023‑03119‑x
    [Google Scholar]
  72. ChaudharyN. WeissmanD. WhiteheadK.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation.Nat. Rev. Drug Discov.2021201181783810.1038/s41573‑021‑00283‑5 34433919
    [Google Scholar]
  73. MulliganM.J. LykeK.E. KitchinN. Publisher correction: Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults.Nature20215907844E2610.1038/s41586‑020‑03098‑3 33469216
    [Google Scholar]
  74. KimJ. EygerisY. GuptaM. SahayG. Self-assembled mRNA vaccines.Adv. Drug Deliv. Rev.20211708311210.1016/j.addr.2020.12.014 33400957
    [Google Scholar]
  75. WangY. ZhangZ. LuoJ. HanX. WeiY. WeiX. mRNA vaccine: A potential therapeutic strategy.Mol. Cancer20212013310.1186/s12943‑021‑01311‑z 33593376
    [Google Scholar]
  76. BlumJ.S. WearschP.A. CresswellP. Pathways of antigen processing.Annu. Rev. Immunol.201331144347310.1146/annurev‑immunol‑032712‑095910 23298205
    [Google Scholar]
  77. SahinU. MuikA. DerhovanessianE. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses.Nature2020586783059459910.1038/s41586‑020‑2814‑7 32998157
    [Google Scholar]
  78. SainzB.Jr MosselE.C. PetersC.J. GarryR.F. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV).Virology20043291111710.1016/j.virol.2004.08.011 15476870
    [Google Scholar]
  79. ChenS. GuanF. CandottiF. The role of B cells in COVID-19 infection and vaccination.Front. Immunol.20221398853610.3389/fimmu.2022.988536 36110861
    [Google Scholar]
  80. BaiJ. ChibaA. MurayamaG. Early CD4+ T cell responses induced by the BNT162b2 SARS-CoV-2 mRNA vaccine predict immunological memory.Sci. Rep.20221212037610.1038/s41598‑022‑24938‑4 36437407
    [Google Scholar]
  81. PapeK.A. DileepanT. KabageA.J. High-affinity memory B cells induced by SARS-CoV-2 infection produce more plasmablasts and atypical memory B cells than those primed by mRNA vaccines.Cell Rep.202137210982310.1016/j.celrep.2021.109823 34610291
    [Google Scholar]
  82. XieC. YaoR. XiaX. The advances of adjuvants in mRNA vaccines.NPJ Vaccines20238116210.1038/s41541‑023‑00760‑5 37884526
    [Google Scholar]
  83. PulendranB,S. ArunachalamP. O’HaganD.T. Emerging concepts in the science of vaccine adjuvants.Nat. Rev. Drug Discov.202120645447510.1038/s41573‑021‑00163‑y 33824489
    [Google Scholar]
  84. KobiyamaK. IshiiK.J. Making innate sense of mRNA vaccine adjuvanticity.Nat. Immunol.202223447447610.1038/s41590‑022‑01168‑4 35354958
    [Google Scholar]
  85. AlamehM.G. TombáczI. BettiniE. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses.Immunity2021541228772892.e710.1016/j.immuni.2021.11.001 34852217
    [Google Scholar]
  86. KarikóK. BucksteinM. NiH. WeissmanD. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA.Immunity200523216517510.1016/j.immuni.2005.06.008 16111635
    [Google Scholar]
  87. MendonçaS.A. LorinczR. BoucherP. CurielD.T. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic.NPJ Vaccines2021619710.1038/s41541‑021‑00356‑x 34354082
    [Google Scholar]
  88. MilosevicI. Revisiting the role of clathrin-mediated endoytosis in synaptic vesicle recycling.Front. Cell. Neurosci.2018122710.3389/fncel.2018.00027 29467622
    [Google Scholar]
  89. ChavdaV. BezbaruahR. ValuD. Adenoviral vector-based vaccine platform for COVID-19: Current status.Vaccines 202311243210.3390/vaccines11020432 36851309
    [Google Scholar]
  90. CoughlanL. KremerE.J. ShayakhmetovD.M. Adenovirus-based vaccines: A platform for pandemic preparedness against emerging viral pathogens.Mol. Ther.20223051822184910.1016/j.ymthe.2022.01.034 35092844
    [Google Scholar]
  91. AwateS. BabiukL.A. MutwiriG. Mechanisms of action of adjuvants.Front. Immunol.2013411410.3389/fimmu.2013.00114 23720661
    [Google Scholar]
  92. KeechC. AlbertG. ChoI. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine.N. Engl. J. Med.2020383242320233210.1056/NEJMoa2026920 32877576
    [Google Scholar]
  93. StertmanL. PalmA.K.E. ZarnegarB. The Matrix-M™ adjuvant: A critical component of vaccines for the 21st century.Hum. Vaccin. Immunother.2023191218988510.1080/21645515.2023.2189885 37113023
    [Google Scholar]
  94. BadenL.R. El SahlyH.M. EssinkB. Long-term safety and effectiveness of mRNA-1273 vaccine in adults: COVE trial open-label and booster phases.Nat. Commun.2024151746910.1038/s41467‑024‑50376‑z 39209823
    [Google Scholar]
  95. Mao HuA.S. FengY. PatriciaC. Safety of monovalent BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), and NVX-CoV2373 (Novavax) COVID-19 vaccines in US children aged 6 months to 17 years.Medrxiv2023
    [Google Scholar]
  96. ZengB. GaoL. ZhouQ. YuK. SunF. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: A systematic review and meta-analysis.BMC Med.202220120010.1186/s12916‑022‑02397‑y 35606843
    [Google Scholar]
  97. FirouzabadiN. GhasemiyehP. MoradishooliF. Mohammadi-SamaniS. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2.Int. Immunopharmacol.202311710996810.1016/j.intimp.2023.109968 37012880
    [Google Scholar]
  98. ChenZ. ZhengW. WuQ. Global diversity of policy, coverage, and demand of COVID-19 vaccines: A descriptive study.BMC Med.202220113010.1186/s12916‑022‑02333‑0 35369871
    [Google Scholar]
  99. LiL. ZhangW. HuY. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19.JAMA2020324546047010.1001/jama.2020.10044 32492084
    [Google Scholar]
  100. EckhardtC.M. CummingsM.J. RajagopalanK.N. Evaluating the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in severely ill adults with COVID-19: A structured summary of a study protocol for a randomized controlled trial.Trials202021149910.1186/s13063‑020‑04422‑y 32513308
    [Google Scholar]
  101. LinQ. LiJ. WangY. ZangJ. Design, synthesis, and biological evaluation of novel ruxolitinib and baricitinib analogues for potential use against COVID‐19.Chem. Biol. Drug Des.2023101376077110.1111/cbdd.14179 36366971
    [Google Scholar]
  102. DallanB. ProiettoD. De LaurentisM. Age differentially impacts adaptive immune responses induced by adenoviral versus mRNA vaccines against COVID-19.Nature. Aging2024481121113610.1038/s43587‑024‑00644‑w 38918602
    [Google Scholar]
  103. CorbettK.S. EdwardsD.K. LeistS.R. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.Nature2020586783056757110.1038/s41586‑020‑2622‑0 32756549
    [Google Scholar]
  104. KyawM.H. SpinardiJ. ZhangL. OhH.M.L. SrivastavaA. Evidence synthesis and pooled analysis of vaccine effectiveness for COVID-19 mRNA vaccine BNT162b2 as a heterologous booster after inactivated SARS-CoV-2 virus vaccines.Hum. Vaccin. Immunother.2023191216585610.1080/21645515.2023.2165856 36727201
    [Google Scholar]
  105. RahimiF. DarvishiM. Bezmin AbadiA.T. ‘The end’ – Or is it? Emergence of SARS-CoV-2 EG.5 and BA.2.86 subvariants.Future Virol.2023181382382510.2217/fvl‑2023‑0150 37736262
    [Google Scholar]
  106. ZhangL. KempfA. NehlmeierI. Neutralisation sensitivity of SARS-CoV-2 lineages EG.5.1 and XBB.2.3.Lancet Infect. Dis.20232310e391e39210.1016/S1473‑3099(23)00547‑9 37716358
    [Google Scholar]
  107. YangS. YuY. XuY. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure.Lancet Infect. Dis.2024242e70e7210.1016/S1473‑3099(23)00744‑2 38109919
    [Google Scholar]
  108. VenturasJP HIV and COVID-19 disease. Semin Respir Crit Care Med 20234410354910.1055/s‑0042‑175885236646084
    [Google Scholar]
  109. KoS.H. RadeckiP. BelinkyF. Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection.Nat. Commun.2024151724010.1038/s41467‑024‑51539‑8 39174553
    [Google Scholar]
  110. KouhpayehH. AnsariH. HIV infection and increased risk of COVID-19 mortality: A meta-analysis.Eur. J. Transl. Myol.20213141010710.4081/ejtm.2021.10107 34962366
    [Google Scholar]
  111. KanagalaS.G. DholiyaH. JhajjP. Remdesivir-induced Bradycardia.South. Med. J.2023116331732010.14423/SMJ.0000000000001519 36863055
    [Google Scholar]
  112. Gunaydin-AkyildizA. AksoyN. BoranT. IlhanE.N. OzhanG. Favipiravir induces oxidative stress and genotoxicity in cardiac and skin cells.Toxicol. Lett.202237191610.1016/j.toxlet.2022.09.011 36152797
    [Google Scholar]
  113. ChouchanaL. BoujaafarS. GanaI. Plasma concentrations and safety of Lopinavir/Ritonavir in COVID-19 patients.Ther. Drug Monit.202143113113510.1097/FTD.0000000000000838 33230045
    [Google Scholar]
  114. BatteuxB. BodeauS. Gras-ChampelV. Abnormal laboratory findings and plasma concentration monitoring of lopinavir and ritonavir in COVID‐19.Br. J. Clin. Pharmacol.20218731547155310.1111/bcp.14489 32692462
    [Google Scholar]
  115. DoynoC. SobierajD.M. BakerW.L. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose.Clin. Toxicol. (Phila.)2021591122310.1080/15563650.2020.1817479 32960100
    [Google Scholar]
  116. LawM.F. HoR. LawK.W.T. CheungC.K.M. Gastrointestinal and hepatic side effects of potential treatment for COVID-19 and vaccination in patients with chronic liver diseases.World J. Hepatol.202113121850187410.4254/wjh.v13.i12.1850 35069994
    [Google Scholar]
  117. AlmasiS. RashidiA. KachueeM.A. Effect of tofacitinib on clinical and laboratory findings in severe and resistant patients with COVID-19.Int. Immunopharmacol.202312211056510.1016/j.intimp.2023.110565 37454635
    [Google Scholar]
  118. ReidN.K. JoynerK.R. Lewis-WolfsonT.D. Baricitinib versus Tocilizumab for the treatment of moderate to severe COVID-19.Ann. Pharmacother.202357776977510.1177/10600280221133376 36314277
    [Google Scholar]
  119. KarolyiM. GrueblA. OmidS. Tocilizumab vs. baricitinib in hospitalized severe COVID-19 patients: Results from a real-world cohort.Infection202351485185810.1007/s15010‑022‑01915‑7 36083403
    [Google Scholar]
  120. VermeireS. DaneseS. ZhouW. Efficacy and safety of upadacitinib maintenance therapy for moderately to severely active ulcerative colitis in patients responding to 8 week induction therapy (U-ACHIEVE Maintenance): Overall results from the randomised, placebo-controlled, double-blind, phase 3 maintenance study.Lancet Gastroenterol. Hepatol.202381197698910.1016/S2468‑1253(23)00208‑X 37683686
    [Google Scholar]
  121. ReinL. CaleroK. ShahR. Randomized phase 3 trial of Ruxolitinib for COVID-19–Associated acute respiratory distress syndrome.Crit. Care Med.202250121701171310.1097/CCM.0000000000005682 36226977
    [Google Scholar]
  122. HermanG.A. O’BrienM.P. Forleo-NetoE. Efficacy and safety of a single dose of casirivimab and imdevimab for the prevention of COVID-19 over an 8-month period: A randomised, double-blind, placebo-controlled trial.Lancet Infect. Dis.202222101444145410.1016/S1473‑3099(22)00416‑9 35803290
    [Google Scholar]
  123. ZhaoY. WangH. ZhangQ. HuY. XuY. LiuW. Evaluation of adverse events of Bamlanivimab, Bamlanivimab/Etesevimab used for COVID-19 based on FAERS database.Expert Opin. Drug Saf.202322433133810.1080/14740338.2023.2130888 36178050
    [Google Scholar]
  124. GaoQ. YinX. TanB. Drug-induced liver injury following the use of tocilizumab or Sarilumab in patients with coronavirus disease 2019.BMC Infect. Dis.202222192910.1186/s12879‑022‑07896‑0 36503381
    [Google Scholar]
  125. KyriazopoulouE. PanagopoulosP. MetallidisS. An open label trial of anakinra to prevent respiratory failure in COVID-19.eLife202110e6612510.7554/eLife.66125 33682678
    [Google Scholar]
  126. GrundmannA. WuC.H. HardwickM. Fewer COVID‐19 neurological complications with Dexamethasone and Remdesivir.Ann. Neurol.20239318810210.1002/ana.26536 36261315
    [Google Scholar]
/content/journals/chr/10.2174/011570162X338375250414114957
Loading
/content/journals/chr/10.2174/011570162X338375250414114957
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antivirals; COVID-19; HIV; immunotherapies; mRNA vaccines; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test