Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

Human Immunodeficiency Virus (HIV) damages or interferes with immune cell function and remains a serious worldwide public health concern. Many researchers have studied the virus since its discovery in an effort to better understand its immunopathogenesis and neuropathogenesis. For those who have access to efficient HIV prevention, diagnosis, treatment, and care, HIV infection has now evolved into a chronic illness that can be controlled. Despite a decrease in HIV prevalence in the general population, certain subpopulations continue to exhibit higher-risk behaviors. This work aims to uncover research gaps in HIV gene expression studies, which is crucial in finding a cure. For instance, blood samples are used for most of the gene expression experiments for HIV. However, since there are very few HIV latent reservoir cells in the blood, it can be difficult to identify and quantify them. Furthermore, blood cell populations might not accurately represent the features of reservoir cells found throughout the body. Using HIV reservoir cells from distinct tissue types in gene expression research projects could help us pinpoint the main cause of the latent HIV resilience. Gene expression studies using potential repurposed drug candidates, as well as alternative experimental setups with combinations of antiretroviral therapies, can be utilized in future studies as well. Additionally, large-sample research designs that specifically investigate intestinal disruption in individuals with HIV and associated comorbidities may help us better understand the processes behind HIV.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X361179250204061607
2025-02-06
2025-09-28
Loading full text...

Full text loading...

References

  1. SiripurapuR. OtaY. Human immunodeficiency virus.Neuroimaging Clin. N. Am.202333114716510.1016/j.nic.2022.07.01436404041
    [Google Scholar]
  2. CumminsN.W. BadleyA.D. Can HIV be cured and should we try?Mayo Clin. Proc.201590670570910.1016/j.mayocp.2015.03.00825944260
    [Google Scholar]
  3. GalloR.C. SalahuddinS.Z. PopovicM. ShearerG.M. KaplanM. HaynesB.F. PalkerT.J. RedfieldR. OleskeJ. SafaiB. WhiteG. FosterP. MarkhamP.D. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS.Science1984224464850010.1126/science.6200936.
    [Google Scholar]
  4. Barré-SinoussiF. HIV: A discovery opening the road to novel scientific knowledge and global health improvement.Virology2010397225525910.1016/j.virol.2009.08.03320152475
    [Google Scholar]
  5. Barré-SinoussiF. ChermannJ.C. ReyF. NugeyreM.T. ChamaretS. GruestJ. DauguetC. Axler-BlinC. Vézinet-BrunF. RouziouxC. RozenbaumW. MontagnierL. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).Science 1983220459986810.1126/science.6189183
    [Google Scholar]
  6. ClavelF. GuétardD. Brun-VézinetF. ChamaretS. ReyM.A. Santos-FerreiraM.O. LaurentA.G. DauguetC. KatlamaC. RouziouxC. KlatzmannD. ChampalimaudJ.L. MontagnierL. Isolation of a new human retrovirus from West African patients with AIDS.Science1986233476134310.1126/science.2425430
    [Google Scholar]
  7. WilliamsA. MenonS. CroweM. AgarwalN. BicclerJ. BbosaN. SsemwangaD. AdungoF. MoecklinghoffC. MacartneyM. Oriol-MathieuV. Geographic and population distributions of human immunodeficiency virus (HIV)–1 and HIV-2 circulating subtypes: A systematic literature review and meta-analysis (2010–2021).J. Infect. Dis.2023228111583159110.1093/infdis/jiad32737592824
    [Google Scholar]
  8. SeitzR. German Advisory Committee Blood (Arbeitskreis Blut), Subgroup Human immunodeficiency virus (HIV).Transfus. Med. Hemotherapy2016433203
    [Google Scholar]
  9. ElaloufA. In-silico structural modeling of human immunodeficiency virus proteins.Biomed. Eng. Comput. Biol.2023141179597223115440210.1177/1179597223115440236819710
    [Google Scholar]
  10. TripathiA. MitraA. DasguptaA. MitraD. Post-transcriptional regulation of HIV-1 gene expression: Role of viral and host factors. In: Post-transcriptional Gene Regulation in Human Disease.Academic Press202226929410.1016/B978‑0‑323‑91305‑8.00004‑1
    [Google Scholar]
  11. TaziJ. BakkourN. MarchandV. AyadiL. AboufirassiA. BranlantC. Alternative splicing: Regulation of HIV‐1 multiplication as a target for therapeutic action.FEBS J.2010277486787610.1111/j.1742‑4658.2009.07522.x
    [Google Scholar]
  12. ChenJ. ZhouT. ZhangY. LuoS. ChenH. ChenD. LiC. LiW. The reservoir of latent HIV.Front. Cell. Infect. Microbiol.20221294595610.3389/fcimb.2022.94595635967854
    [Google Scholar]
  13. SeelamgariA. MaddukuriA. BerroR. de la FuenteC. KehnK. DengL. DadgarS. BottazziM.E. GhedinE. PumferyA. KashanchiF. Role of viral regulatory and accessory proteins in HIV-1 replication.Front Biosci.200492388241310.2741/1403.
    [Google Scholar]
  14. WalletC. RohrO. SchwartzC. Evolution of a concept: From accessory protein to key virulence factor, the case of HIV-1 Vpr.Biochem. Pharmacol.202018011412810.1016/j.bcp.2020.11412832619426
    [Google Scholar]
  15. CafaroA. SchietromaI. SernicolaL. BelliR. CampagnaM. ManciniF. FarcomeniS. Pavone-CossutM.R. BorsettiA. MoniniP. EnsoliB. Role of HIV-1 Tat protein interactions with host receptors in HIV infection and pathogenesis.Int. J. Mol. Sci.2024253170410.3390/ijms2503170438338977
    [Google Scholar]
  16. JayaramanB. FernandesJ.D. YangS. SmithC. FrankelA.D. Highly mutable linker regions regulate HIV-1 rev function and stability.Sci. Rep.201991513910.1038/s41598‑019‑41582‑730914719
    [Google Scholar]
  17. PaiS. MudgalJ. KamathB.V. PaiK.S.R. An insight on promising strategies hoping to cure HIV-1 infection by targeting Rev protein—short review.Pharmacol. Rep.20217351265127210.1007/s43440‑021‑00257‑933840054
    [Google Scholar]
  18. RichterS.N. FrassonI. PalùG. Strategies for inhibiting function of HIV-1 accessory proteins: a necessary route to AIDS therapy?Curr. Med. Chem.20091632678619149577
    [Google Scholar]
  19. van HeuvelY. SchatzS. RosengartenJ.F. StitzJ. Infectious RNA: Human immunodeficiency virus (HIV) biology, therapeutic intervention, and the quest for a vaccine.Toxins202214213810.3390/toxins1402013835202165
    [Google Scholar]
  20. AiamkitsumritB. DampierW. AntellG. RiveraN. Martin-GarciaJ. PirroneV. NonnemacherM. WigdahlB. Bioinformatic analysis of HIV-1 entry and pathogenesis.Curr. HIV Res.201412213216110.2174/1570162X1266614052612174624862329
    [Google Scholar]
  21. KeeleB.F. GiorgiE.E. Salazar-GonzalezJ.F. DeckerJ.M. PhamK.T. SalazarM.G. SunC. GraysonT. WangS. LiH. WeiX. JiangC. KirchherrJ.L. GaoF. AndersonJ.A. PingL.H. SwanstromR. TomarasG.D. BlattnerW.A. GoepfertP.A. KilbyJ.M. SaagM.S. DelwartE.L. BuschM.P. CohenM.S. MontefioriD.C. HaynesB.F. GaschenB. AthreyaG.S. LeeH.Y. WoodN. SeoigheC. PerelsonA.S. BhattacharyaT. KorberB.T. HahnB.H. ShawG.M. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection.Proc. Natl. Acad. Sci. USA2008105217552755710.1073/pnas.080220310518490657
    [Google Scholar]
  22. JonesL.D. MoodyM.A. ThompsonA.B. Innovations in HIV-1 vaccine design.Clin. Ther.202042349951410.1016/j.clinthera.2020.01.00932035643
    [Google Scholar]
  23. QiuX. SokollL. Duong LyT. CoignardC. EshlemanS.H. MohrP. HuizengaC. SwansonP. ClohertyG. HackettJ.Jr An improved HIV antigen/antibody prototype assay for earlier detection of acute HIV infection.J. Clin. Virol.202114510502210.1016/j.jcv.2021.10502234739837
    [Google Scholar]
  24. UrioL.J. MohamedM.A. MghambaJ. AbadeA. AboudS. Evaluation of HIV antigen /antibody combination ELISA’s for diagnosis of HIV infection in Dar Es Salaam, Tanzania.Pan Afr. Med. J.20152019610.11604/pamj.2015.20.196.493426113927
    [Google Scholar]
  25. GulickR.M. FlexnerC. Long-acting HIV drugs for treatment and prevention.Annu. Rev. Med.201970113715010.1146/annurev‑med‑041217‑01371730355266
    [Google Scholar]
  26. CharpentierC. Le HingratQ. FerréV.M. DamondF. DescampsD. Future of antiretroviral drugs and evolution of HIV-1 drug resistance.Viruses202315254010.3390/v1502054036851754
    [Google Scholar]
  27. ThompsonC.G. RosenE.P. PrinceH.M.A. WhiteN. SykesC. de la CruzG. MathewsM. DeleageC. EstesJ.D. CharlinsP. MulderL.R. KovarovaM. AdamsonL. AroraS. DellonE.S. PeeryA.F. ShaheenN.J. GayC. MuddimanD.C. AkkinaR. Victor GarciaJ. LuciwP. KashubaA.D.M. Heterogeneous antiretroviral drug distribution and HIV/SHIV detection in the gut of three species.Sci. Transl. Med.201911499eaap875810.1126/scitranslmed.aap875831270274
    [Google Scholar]
  28. ArtsE.J. HazudaD.J. HIV-1 antiretroviral drug therapy.Cold Spring Harb. Perspect. Med.201224a00716110.1101/cshperspect.a00716122474613
    [Google Scholar]
  29. PruddenH. TatoudR. SlackC. ShattockR. AnklesariaP. BekkerL.G. BuchbinderS. Experimental medicine for HIV vaccine research and development.Vaccines202311597010.3390/vaccines1105097037243074
    [Google Scholar]
  30. KimJ. VasanS. KimJ.H. AkeJ.A. Current approaches to HIV vaccine development: A narrative review.J. Int. AIDS Soc.202124S7)(Suppl. 7e2579310.1002/jia2.2579334806296
    [Google Scholar]
  31. HigaD.H. CrepazN. McDonaldC.M. Adegbite-JohnsonA. DeLucaJ.B. KamitaniE. SipeT.A. Prevention Research Synthesis (PRS) Project HIV Prevention research on men who have sex with men: a scoping review of systematic reviews, 1988–2017.AIDS Educ. Prev.20203211S710.1521/aeap.2020.32.1.132073309
    [Google Scholar]
  32. Lake YimerB. HIV/AIDS risk-reduction options as predictor of female sex workers’ sexual behaviour.Womens Health (Lond)2022181745505722111816710.1177/17455057221118167.
    [Google Scholar]
  33. HoS.S. StenhouseR. HollowayA. Understanding HIV‐positive drug users’ experiences of taking highly active antiretroviral treatment: Identity–Values–Conscious engagement model.J. Clin. Nurs.2020299-101561157510.1111/jocn.1522832096574
    [Google Scholar]
  34. LorencA. AnanthavarathanP. LoriganJ. BanarseeR. JowataM. BrookG. The prevalence of comorbidities among people living with HIV in Brent: A diverse London Borough.London J. Prim. Care (Abingdon)201464849010.1080/17571472.2014.1149342225949722
    [Google Scholar]
  35. YangS.L. PontiR.D. WanY. HuberR.G. Computational and experimental approaches to study the RNA secondary structures of RNA viruses.Viruses2022148179510.3390/v1408179536016417
    [Google Scholar]
  36. SevimogluT. TuranliB. BereketogluC. ArgaK.Y. KaradagA.S. Systems biomarkers in psoriasis: Integrative evaluation of computational and experimental data at transcript and protein levels.Gene201864715716310.1016/j.gene.2018.01.03329329927
    [Google Scholar]
  37. SevimogluT. In silico analysis of autism spectrum disorder through the integration of DNA methylation and gene expression data for biomarker search.Minerva Biotechnol Biomol Res20233523510.23736/S2724‑542X.23.02956‑5
    [Google Scholar]
  38. SevimogluT. Biomarker candidates identified in behcet’s disease using integrative analysis.Konya J. Eng. Sci202192479
    [Google Scholar]
  39. LevintovL. VashisthH. Structural and computational studies of HIV-1 RNA.RNA Biol.202421113210.1080/15476286.2023.228970938100535
    [Google Scholar]
  40. SchenaM. ShalonD. DavisR.W. BrownP.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science1995270523546747010.1126/science.270.5235.467
    [Google Scholar]
  41. ClewleyJ.P. A role for arrays in clinical virology: Fact or fiction?J. Clin. Virol.200429121210.1016/j.jcv.2003.08.00214675863
    [Google Scholar]
  42. DahuiQ. Next-generation sequencing and its clinical application.Cancer Biol. Med.201916141010.20892/j.issn.2095‑3941.2018.005531119042
    [Google Scholar]
  43. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: Archive for functional genomics data sets--update.Nucleic Acids Res.201341Database issueD991D99523193258
    [Google Scholar]
  44. SevimogluT. Bioinformatics of brain diseases.Bioinformatics of the Brain. ErciyesK. SevimogluT. Boca RatonCRC Press202419822310.1201/9781003461906‑8
    [Google Scholar]
  45. MainaE.K. MureithiH. AdanA.A. MuriukiJ. LwembeR.M. BukusiE.A. Incidences and factors associated with viral suppression or rebound among HIV patients on combination antiretroviral therapy from three counties in Kenya.Int. J. Infect. Dis.20209715115810.1016/j.ijid.2020.05.09732497804
    [Google Scholar]
  46. OpokuS. SakyiS.A. Ayisi-BoatengN.K. EnimilA.K. SenuE. AnsahR.O. AningB.D. OjuangD.A. WekesaD.N. AhmedF.O. OkekeC.B. SarfoA.D. Factors associated with viral suppression and rebound among adult HIV patients on treatment: A retrospective study in Ghana.AIDS Res. Ther.20221912110.1186/s12981‑022‑00447‑235614510
    [Google Scholar]
  47. HaasA.D. LienhardR. DiddenC. CornellM. FolbN. BoshomaneT.M.G. Salazar-VizcayaL. RuffieuxY. NyakatoP. WettsteinA.E. TlaliM. DaviesM.A. von GrooteP. WainbergM. EggerM. MaartensG. JoskaJ.A. Mental health, ART adherence, and viral suppression among adolescents and adults living with HIV in South Africa: A cohort study.AIDS Behav.20232761849186110.1007/s10461‑022‑03916‑x36592251
    [Google Scholar]
  48. ZhangJ. OlatosiB. YangX. WeissmanS. LiZ. HuJ. LiX. Studying patterns and predictors of HIV viral suppression using a big data approach: A research protocol.BMC Infect. Dis.202222112210.1186/s12879‑022‑07047‑535120435
    [Google Scholar]
  49. OchodoE.A. OlwandaE.E. DeeksJ.J. MallettS. Point-of-care viral load tests to detect high HIV viral load in people living with HIV/AIDS attending health facilities.Cochrane Database Syst Rev. 202233CD013208
    [Google Scholar]
  50. BrookG. StepchenkovaT. AliI.M. ChipukaS. GoelN. LeeH. Study to evaluate the performance of a point-of-care whole-blood HIV viral load test (SAMBA II HIV-1 Semi-Q Whole Blood).J. Clin. Microbiol.2021593e02555-2010.1128/JCM.02555‑2033361338
    [Google Scholar]
  51. MoarP. PremeauxT.A. AtkinsA. NdhlovuL.C. The latent HIV reservoir: Current advances in genetic sequencing approaches.MBio2023145e01344-2310.1128/mbio.01344‑2337811964
    [Google Scholar]
  52. RouxH. ChomontN. Measuring human immunodeficiency virus reservoirs: Do we need to choose between quantity and quality?J. Infect. Dis.2024229363564310.1093/infdis/jiad38137665978
    [Google Scholar]
  53. MatsudaK. MaedaK. HIV reservoirs and treatment strategies toward curing HIV infection.Int. J. Mol. Sci.2024255262110.3390/ijms2505262138473868
    [Google Scholar]
  54. TrémeauxP. RouziouxC. Avettand-FènoëlV. Cell and tissue reservoirs of HIV-1: Dynamics during infection.Virologie201923421122831414659
    [Google Scholar]
  55. WongJ.K. YuklS.A. Tissue reservoirs of HIV.Curr. Opin. HIV AIDS201611436237010.1097/COH.000000000000029327259045
    [Google Scholar]
  56. Busman-SahayK. StarkeC.E. NekorchukM.D. EstesJ.D. Eliminating HIV reservoirs for a cure: The issue is in the tissue.Curr. Opin. HIV AIDS202116420020810.1097/COH.000000000000068834039843
    [Google Scholar]
  57. TrivediJ. MohanM. ByrareddyS.N. Drug repurposing approaches to combating viral infections.J. Clin. Med.2020911377710.3390/jcm911377733238464
    [Google Scholar]
  58. ClouserC.L. PattersonS.E. ManskyL.M. Exploiting drug repositioning for discovery of a novel HIV combination therapy.J. Virol.201084189301930910.1128/JVI.01006‑1020610712
    [Google Scholar]
  59. HaC.H.X. LeeN.K. RahmanT. HwangS.S. YamW.K. CheeX.W. Repurposing FDA-approved drugs as HIV-1 integrase inhibitors: An in silico investigation.J. Biomol. Struct. Dyn.20234162146215910.1080/07391102.2022.202867735067186
    [Google Scholar]
  60. OkaforS.N. MeyerA. GadsdenJ. AhmedF. GuzmánL. AhmedH. RomeroJ.A.F. AngsantikulP. Drug reprofiling to identify potential HIV-1 protease inhibitors.Molecules20232817633010.3390/molecules2817633037687159
    [Google Scholar]
  61. PanZ. WuN. JinC. Intestinal microbiota dysbiosis promotes mucosal barrier damage and immune injury in HIV-Infected patients.Can J Infect Dis Med20232023308096910.1155/2023/3080969
    [Google Scholar]
  62. SimJ.H. MukerjiS.S. RussoS.C. LoJ. Gastrointestinal dysfunction and HIV comorbidities.Curr. HIV/AIDS Rep.2021181576210.1007/s11904‑020‑00537‑833469815
    [Google Scholar]
  63. Vujkovic-CvijinI. DunhamR.M. IwaiS. MaherM.C. AlbrightR.G. BroadhurstM.J. HernandezR.D. LedermanM.M. HuangY. SomsoukM. DeeksS.G. HuntP.W. LynchS.V. McCuneJ.M. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism.Sci. Transl. Med.20135193193ra9110.1126/scitranslmed.300643823843452
    [Google Scholar]
  64. XieY. SunJ. WeiL. JiangH. HuC. YangJ. HuangY. RuanB. ZhuB. Altered gut microbiota correlate with different immune responses to HAART in HIV-infected individuals.BMC Microbiol.20212111110.1186/s12866‑020‑02074‑133407128
    [Google Scholar]
/content/journals/chr/10.2174/011570162X361179250204061607
Loading
/content/journals/chr/10.2174/011570162X361179250204061607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test