Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Introduction

Acute lymphoblastic leukemia (ALL), a hematopoietic cancer of T or B lymphoblasts, is the most prevalent cancer in children. Ongoing research aims to better understand the factors contributing to ALL and create more successful treatment options. Therefore, the current study presented cytogenetic, genetic, and hematologic features from 318 ALL patients under eighteen years of age who were referred to Ali Asghar Hospital of Tehran, Iran, from 2013 to 2023.

Methods

This study was designed as a retrospective cross-sectional analysis, focusing on 318 children in Tehran, Iran, who had been newly diagnosed with ALL. All data were extracted from the patient case files that included additional information, such as clinical data, and demographic information. The Flow cytometry technique was employed to perform immunophenotyping for various markers. Moreover, the standardized protocol was carried out for conventional cytogenetic analysis.

Results and Discussion

Out of 318, 179 (56.3%) and 139 (43.7%) were males and females, respectively. The most common subtype of ALL was Common B Cell ALL, accounting for 182 cases (57.23%), followed by Pre B cell ALL with 74 cases (23.27%) and T cell ALL with 27 cases (8.49%). Out of 222 patients, 17 (7.7%) had genetic abnormalities, with the highest incidence of abnormalities being associated with Runx 1 (four cases). Additionally, out of 228 patients, 143 (62.7%) were identified as having cytogenetic abnormalities, with the most prevalent abnormalities being hyperdiploidy (54 cases) and t (12;21) (28 cases).

Conclusion

Our findings showed that some cytogenetic abnormalities, such as t (9;22) and hyperdiploidy, were consistent with previous studies. These results offer valuable foundational insights that can help direct future research on ALL patients and inform potential treatment strategies.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X372625250606123726
2025-06-19
2025-12-08
Loading full text...

Full text loading...

References

  1. HeJ. MunirF. CatuenoS. ConnorsJ.S. GibsonA. RobustoL. McCallD. NunezC. RothM. TewariP. GarcesS. CuglievanB. GarciaM.B. Biological markers of high-risk childhood acute lymphoblastic leukemia.Cancers202416585810.3390/cancers16050858 38473221
    [Google Scholar]
  2. TebbiC.K. Etiology of acute leukemia: A review.Cancers20211392256 34066700
    [Google Scholar]
  3. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  4. PatelA.A. ThomasJ. RojekA.E. StockW. Biology and treatment paradigms in T cell acute lymphoblastic leukemia in older adolescents and adults.Curr. Treat. Options Oncol.20202175710.1007/s11864‑020‑00757‑5 32468488
    [Google Scholar]
  5. GreavesM.F. MaiaA.T. WiemelsJ.L. FordA.M. Leukemia in twins: Lessons in natural history.Blood200310272321233310.1182/blood‑2002‑12‑3817 12791663
    [Google Scholar]
  6. ClarksonB. BoyseE. Possible explanation of the high concoddance for acute leukaemia in monozygotic twins.Lancet1971297770169970110.1016/S0140‑6736(71)92705‑X 4101637
    [Google Scholar]
  7. StieglitzE. LohM.L. Genetic predispositions to childhood leukemia.Ther. Adv. Hematol.20134427029010.1177/2040620713498161 23926459
    [Google Scholar]
  8. AndersenM.K. ChristiansenD.H. JensenB.A. ErnstP. HaugeG. Pedersen-BjergaardJ. Therapy‐related acute lymphoblastic leukaemia with MLL rearrangements following DNA topoisomerase II inhibitors, an increasing problem: Report on two new cases and review of the literature since 1992.Br. J. Haematol.2001114353954310.1046/j.1365‑2141.2001.03000.x 11552977
    [Google Scholar]
  9. PuiC.H. NicholsK.E. YangJ.J. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia.Nat. Rev. Clin. Oncol.201916422724010.1038/s41571‑018‑0136‑6 30546053
    [Google Scholar]
  10. LiX. LiJ. HuY. XieW. DuW. LiuW. LiX. ChenX. LiH. WangJ. ZhangL. HuangS. A comprehensive cytogenetic classification of 1466 Chinese patients with de novo acute lymphoblastic leukemia.Leuk. Res.201236672072610.1016/j.leukres.2011.12.016 22264634
    [Google Scholar]
  11. BehjatiF AkbariMT Chromosomal abnormalities in leukemia in Iran: A pilot study.2001
    [Google Scholar]
  12. Pérez-VeraP. Mújica-SánchezM. CarnevaleA. Rivera-LunaR. ParedesR. MartínezA. FríasS. Cytogenetics in acute lymphoblastic leukemia in Mexican children: An institutional experience.Arch. Med. Res.200132320220710.1016/S0188‑4409(01)00260‑0 11395185
    [Google Scholar]
  13. SafaeiA. ShahryariJ. FarzanehM.R. TabibiN. HosseiniM. Cytogenetic findings of patients with acute lymphoblastic leukemia in fars province.Iran. J. Med. Sci.2013384301307 24293783
    [Google Scholar]
  14. ReddyP. ShankarR. KoshyT. RadhakrishnanV. GanesanP. JayachandranP.K. DhanushkodiM. MehraN. KrupashankarS. ManasaP. NagareR.P. SwaminathanR. KannanK. SagarT.G. GanesanT.S. Evaluation of cytogenetic abnormalities in patients with acute lymphoblastic leukemia.Indian J. Hematol. Blood Transfus.201935464064810.1007/s12288‑019‑01123‑8 31741615
    [Google Scholar]
  15. ParidarM. GhalesardiO.K. SeghatoleslamiM. AhmadzadehA. KhosraviA. SakiN. Cytogenetic and molecular basis of BCR-ABL myelodysplastic syndrome: Diagnosis and prognostic approach.J. Cancer Metastasis Treat.201732384410.20517/2394‑4722.2016.61
    [Google Scholar]
  16. AkkariY.M.N. BaughnL.B. DubucA.M. SmithA.C. MalloM. Dal CinP. Diez CampeloM. GallegoM.S. Granada FontI. HaaseD.T. SchlegelbergerB. SlavutskyI. MecucciC. LevineR.L. HasserjianR.P. SoléF. LevyB. XuX. Guiding the global evolution of cytogenetic testing for hematologic malignancies.Blood2022139152273228410.1182/blood.2021014309 35167654
    [Google Scholar]
  17. ParidarM. ZibaraK. AhmadiS.E. KhosraviA. SoleymaniM. AziziE. GhalesardiO.K. Clinico-Hematological and cytogenetic spectrum of adult myelodysplastic syndrome: The first retrospective cross-sectional study in Iranian patients.Mol. Cytogenet.20211412410.1186/s13039‑021‑00548‑z 33964952
    [Google Scholar]
  18. Rahimi PordanjaniS. KavousiA. MirbagheriB. ShahsavaniA. EtemadK. Geographical pathology of acute lymphoblastic leukemia in Iran with evaluation of incidence trends of this disease using Joinpoint regression analysis.Arch. Iran Med.202124322423210.34172/aim.2021.34 33878881
    [Google Scholar]
  19. Tlacuilo-ParraA. Garibaldi-CovarrubiasR. Romo-RubioH. Soto-SumuanoL. Ruiz-ChávezC.F. Suárez-ArredondoM. Sánchez-ZubietaF. Gallegos-CastorenaS. Geographical distribution and cluster detection of childhood leukemia in the metropolitan area of Guadalajara, Mexico.Rev. Invest. Clin.201769315916510.24875/RIC.17002131 28613286
    [Google Scholar]
  20. BahoushG. NojoomiM. Frequency of cytogenetic findings and its effect on the outcome of pediatric acute lymphoblastic leukemia.Med. Arh.201973531131510.5455/medarh.2019.73.311‑315 31819303
    [Google Scholar]
  21. Lustosa de SousaD.W. de Almeida FerreiraF.V. Cavalcante FélixF.H. de Oliveira LopesM.V. Acute lymphoblastic leukemia in children and adolescents: Prognostic factors and analysis of survival.Rev. Bras. Hematol. Hemoter.201537422322910.1016/j.bjhh.2015.03.009 26190424
    [Google Scholar]
  22. MehrvarA. FaranoushM. AslA.A.H. TashvighiM. FazeliM.A. MehrvarN. Epidemiological features of childhood acute leukemia at MAHAK’s Pediatric Cancer Treatment and Research Center (MPCTRC), Tehran, Iran.201571915
    [Google Scholar]
  23. DastgiriS. FozounkhahS. ShokrgozarS. TaghaviniaM. Asvadi KermaniA. Incidence of leukemia in the northwest of iran.Health Promot. Perspect.201111505310.5681/hpp.2011.004 24688899
    [Google Scholar]
  24. GuZ. ChurchmanM.L. RobertsK.G. MooreI. ZhouX. NakitandweJ. HagiwaraK. PelletierS. GingrasS. BernsH. Payne-TurnerD. HillA. IacobucciI. ShiL. PoundsS. ChengC. PeiD. QuC. NewmanS. DevidasM. DaiY. ReshmiS.C. Gastier-FosterJ. RaetzE.A. BorowitzM.J. WoodB.L. CarrollW.L. Zweidler-McKayP.A. RabinK.R. MattanoL.A. MaloneyK.W. RambaldiA. SpinelliO. RadichJ.P. MindenM.D. RoweJ.M. LugerS. LitzowM.R. TallmanM.S. RacevskisJ. ZhangY. BhatiaR. KohlschmidtJ. MrózekK. BloomfieldC.D. StockW. KornblauS. KantarjianH.M. KonoplevaM. EvansW.E. JehaS. PuiC.H. YangJ. PaiettaE. DowningJ.R. RellingM.V. ZhangJ. LohM.L. HungerS.P. MullighanC.G. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia.Nat. Genet.201951229630710.1038/s41588‑018‑0315‑5 30643249
    [Google Scholar]
  25. Raboso-GallegoJ. Casado-GarcíaA. Isidro-HernándezM. Vicente-DueñasC. Epigenetic priming in childhood acute lymphoblastic leukemia.Front. Cell Dev. Biol.2019713710.3389/fcell.2019.00137 31380372
    [Google Scholar]
  26. PuiC.H. CarrollW.L. MeshinchiS. ArceciR.J. Biology, risk stratification, and therapy of pediatric acute leukemias: An update.J. Clin. Oncol.201129555156510.1200/JCO.2010.30.7405 21220611
    [Google Scholar]
  27. DastugueN. SuciuS. PlatG. SpelemanF. CavéH. GirardS. BakkusM. PagèsM.P. YakoubenK. NelkenB. UyttebroeckA. GervaisC. LutzP. TeixeiraM.R. HeimannP. FersterA. RohrlichP. CollongeM.A. MunzerM. LuquetI. BoutardP. SirventN. KarraschM. BertrandY. BenoitY. Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results.Blood2013121132415242310.1182/blood‑2012‑06‑437681 23321258
    [Google Scholar]
  28. AmareP.S.K. JainH. KabreS. DeshpandeY. PawarP. BanavaliS. MenonH. SengarM. AroraB. KhattryN. NarulaG. SarangD. KaskarS. BagalB. JainH. DangiU. SubramanianP.G. GujralS. Cytogenetic profile in 7209 Indian patients with de novo acute leukemia: A single centre study from India.J. Cancer Ther.20167753054410.4236/jct.2016.77056
    [Google Scholar]
  29. Jabber Al-ObaidiM.S. MartineauM. BennettC.F. FranklinI.M. GoldstoneA.H. HarewoodL. JalaliG.R. PrenticeH.G. RichardsS.M. RobertsK. HarrisonC.J. ETV6/AML1 fusion by FISH in adult acute lymphoblastic leukemia.Leukemia200216466967410.1038/sj.leu.2402435 11960348
    [Google Scholar]
  30. GrossmannV. KernW. HarbichS. AlpermannT. JerominS. SchnittgerS. HaferlachC. HaferlachT. KohlmannA. Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia.Haematologica201196121874187710.3324/haematol.2011.043919 21828118
    [Google Scholar]
  31. ItoY. Oncogenic potential of the RUNX gene family: ‘Overview’.Oncogene200423244198420810.1038/sj.onc.1207755 15156173
    [Google Scholar]
  32. WongW.F. KohuK. ChibaT. SatoT. SatakeM. Interplay of transcription factors in T-cell differentiation and function: The role of Runx.Immunology2011132215716410.1111/j.1365‑2567.2010.03381.x 21091910
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X372625250606123726
Loading
/content/journals/chddt/10.2174/011871529X372625250606123726
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test