Skip to content
2000
image of Mitigating Diabetic Cardiomyopathy: The Therapeutic Potential of a Poly Herbal Combination in Modulating ICAM-1, VCAM-1, and NF-κB Expression in Rat Model

Abstract

Background

Diabetic Cardiomyopathy (DCM) remains a significant health concern, necessitating innovative therapeutic approaches. This study explores the potential of a polyherbal combination (PHC) in mitigating DCM and delves into the underlying molecular mechanisms.

Methods

Rat models with induced diabetes and cardiomyopathy were administered the polyherbal combination. Molecular analyses included the assessment of ICAM-1, VCAM-1, and NF-κB expression in cardiac tissue. Histopathological and functional evaluations of cardiac health were performed.

Results

The polyherbal-treated group showed a significant reduction in blood glucose levels and improved cardiac function, as indicated by increased ejection fraction and cardiac output. Cardiac injury markers, CK-MB and hs-CRP, were significantly reduced by 66.6% and 50% respectively. Lipid profile improvements included lower total cholesterol and triglycerides by 28.5% and 31.1%, respectively. TGF-β levels were markedly reduced, suggesting an anti-fibrotic effect. Additionally, NF-κB, ICAM-1, and VCAM-1 expression were significantly downregulated, confirming the polyherbal formulation's anti-inflammatory potential. These findings highlight its cardioprotective effects, making it a promising therapeutic approach for mitigating diabetic cardiomyopathy.

Conclusion

The study unveils a promising therapeutic strategy for DCM, characterized by the PHC's ability to modulate ICAM-1, VCAM-1, and NF-κB expression. This molecular insight underscores the potential for innovative interventions in managing DCM and offers hope for improved cardiac health in individuals with diabetes.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X374139250629193251
2025-07-09
2025-09-25
Loading full text...

Full text loading...

References

  1. Filardi T. Ghinassi B. Di Baldassarre A. Tanzilli G. Morano S. Lenzi A. Basili S. Crescioli C. Cardiomyopathy associated with diabetes: The central role of the cardiomyocyte. Int. J. Mol. Sci. 2019 20 13 3299 10.3390/ijms20133299 31284374
    [Google Scholar]
  2. Einarson T.R. Acs A. Ludwig C. Panton U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018 17 1 83 10.1186/s12933‑018‑0728‑6 29884191
    [Google Scholar]
  3. Bouthoorn S. Valstar G.B. Gohar A. den Ruijter H.M. Reitsma H.B. Hoes A.W. Rutten F.H. The prevalence of left ventricular diastolic dysfunction and heart failure with preserved ejection fraction in men and women with type 2 diabetes: A systematic review and meta-analysis. Diab. Vasc. Dis. Res. 2018 15 6 477 493 10.1177/1479164118787415 30037278
    [Google Scholar]
  4. Jia G. Hill M.A. Sowers J.R. Diabetic cardiomyopathy. Circ. Res. 2018 122 4 624 638 10.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  5. Unnikrishnan AG Sahay RK Phadke U Sharma SK Shah P Shukla R Cardiovascular risk in newly diagnosed type 2 diabetes patients in India. PLoS One 2022 17 3 e0263619 10.1371/journal.pone.0263619
    [Google Scholar]
  6. Hu N. Zhang Y. TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-κB/JNK-dependent activation of autophagy. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 8 2001 2011 10.1016/j.bbadis.2017.01.010 28108421
    [Google Scholar]
  7. Tan Y. Zhang Z. Zheng C. Wintergerst K.A. Keller B.B. Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat. Rev. Cardiol. 2020 17 9 585 607 10.1038/s41569‑020‑0339‑2 32080423
    [Google Scholar]
  8. Willis M. Homeister J.W. Stone J.R. Cellular and molecular pathobiology of cardiovascular disease. Academic Press 2013
    [Google Scholar]
  9. Habas K. Shang L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell 2018 54 139 143 10.1016/j.tice.2018.09.002 30309503
    [Google Scholar]
  10. Cheng W. Cui C. Liu G. Ye C. Shao F. Bagchi A.K. Mehta J.L. Wang X. NF-κB, A potential therapeutic target in cardiovascular diseases. Cardiovasc. Drugs Ther. 2023 37 3 571 584 10.1007/s10557‑022‑07362‑8 35796905
    [Google Scholar]
  11. Tian J. Zhao Y. Liu Y. Liu Y. Chen K. Lyu S. Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: Current status and perspective. Oxid. Med. Cell. Longev. 2017 2017 1 8214541 10.1155/2017/8214541 29204251
    [Google Scholar]
  12. Shah K. Jalgaonkar M. Vyas A. Doshi G. Kulkarni Y.A. Singh A.D. Oza M.J. A herbal approach to diabetic cardiomyopathy: Moringa, ginger, and garlic unveiled. Arch. Physiol. Biochem. 2025 ••• 1 10 10.1080/13813455.2025.2459871 39888842
    [Google Scholar]
  13. Ritu; Verma, R.; Kaushik, S.; Kaur, P.; Mathur, P.; Velpandian, T.; Goyal, R.K. Hesperetin-supplemented soybean and ginger hydroalcoholic extracts alleviate diabetic cardiomyopathy in streptozotocin induced diabetic rats by modulating NF-κB/MMP-9/TIMPs pathway. S. Afr. J. Bot. 2025 179 11 21 10.1016/j.sajb.2025.01.040
    [Google Scholar]
  14. Nizami H.L. Katare P. Prabhakar P. Kumar Y. Arava S.K. Chakraborty P. Maulik S.K. Banerjee S.K. Vitamin D deficiency in rats causes cardiac dysfunction by inducing myocardial insulin resistance. Mol. Nutr. Food Res. 2019 63 17 1900109 10.1002/mnfr.201900109 31095894
    [Google Scholar]
  15. Vishwakarma V.K. Goyal A. Gupta J.K. Upadhyay P.K. Yadav H.N. Involvement of atrial natriuretic peptide in abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart. Hum. Exp. Toxicol. 2018 37 7 704 713 10.1177/0960327117730878 28920462
    [Google Scholar]
  16. Charan K. Goyal A. Gupta J.K. Yadav H.N. Role of atrial natriuretic peptide in ischemic preconditioning–induced cardioprotection in the diabetic rat heart. J. Surg. Res. 2016 201 2 272 278 10.1016/j.jss.2015.10.045 27020807
    [Google Scholar]
  17. Goyal A. Semwal B.C. Yadav H.N. Abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart. Hum. Exp. Toxicol. 2016 35 6 644 653 10.1177/0960327115597980 26264742
    [Google Scholar]
  18. Varga Z.V. Giricz Z. Liaudet L. Haskó G. Ferdinandy P. Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 2 232 242 10.1016/j.bbadis.2014.06.030 24997452
    [Google Scholar]
  19. Leone A. Spada A. Battezzati A. Schiraldi A. Aristil J. Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015 16 6 12791 12835 10.3390/ijms160612791 26057747
    [Google Scholar]
  20. Kaur P. Sharma K. Goyal R.K. Moringa oleifera extract ameliorates diabetic retinopathy via NF-κB and VCAM-1 pathway in streptozotocin induced diabetic rats. S. Afr. J. Bot. 2023 162 519 530 10.1016/j.sajb.2023.09.040
    [Google Scholar]
  21. Kim S.K. Jung J. Jung J.H. Yoon N. Kang S.S. Roh G.S. Hahm J.R. Hypoglycemic efficacy and safety of Momordica charantia (bitter melon) in patients with type 2 diabetes mellitus. Complement. Ther. Med. 2020 52 102524 10.1016/j.ctim.2020.102524 32951763
    [Google Scholar]
  22. Wang H.Y. Kan W.C. Cheng T.J. Yu S.H. Chang L.H. Chuu J.J. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem. Toxicol. 2014 69 347 356 10.1016/j.fct.2014.04.008 24751968
    [Google Scholar]
  23. Choudhary D. Bhattacharyya S. Bose S. Efficacy and safety of Ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J. Diet. Suppl. 2017 14 6 599 612 10.1080/19390211.2017.1284970 28471731
    [Google Scholar]
  24. Amalraj A. Gopi S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med. 2017 7 1 65 78 10.1016/j.jtcme.2016.02.003 28053890
    [Google Scholar]
  25. Gupta S. Bishnoi J.P. Kumar N. Kumar H. Nidheesh T. Terminalia arjuna (Roxb.) Wight & Arn.: Competent source of bioactive components in functional food and drugs. J. Pharm. Innov. 2018 7 3 223 231
    [Google Scholar]
  26. Zhou Y. Suo W. Zhang X. Liang J. Zhao W. Wang Y. Li H. Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed. Pharmacother. 2023 168 115669 10.1016/j.biopha.2023.115669 37820568
    [Google Scholar]
  27. Dos Santos L. Mello A.F.S. Antonio E.L. Tucci P.J.F. Determination of myocardial infarction size in rats by echocardiography and tetrazolium staining: Correlation, agreements, and simplifications. Braz. J. Med. Biol. Res. 2008 41 3 199 201 10.1590/S0100‑879X2008005000007 18246281
    [Google Scholar]
  28. Mostarda C. Rodrigues B. Vane M. Moreira E.D. Rosa K. Moraes-Silva I.C. Lacchini S. Casarini D.E. De Angelis K. Irigoyen M.C. Autonomic impairment after myocardial infarction: Role in cardiac remodelling and mortality. Clin. Exp. Pharmacol. Physiol. 2010 37 4 447 452 10.1111/j.1440‑1681.2009.05327.x 19878213
    [Google Scholar]
  29. Thupakula S. Nimmala S.S.R. Ravula H. Chekuri S. Padiya R. Emerging biomarkers for the detection of cardiovascular diseases. Egypt. Heart J. 2022 74 1 77 10.1186/s43044‑022‑00317‑2 36264449
    [Google Scholar]
  30. Dorcely B. Katz K. Jagannathan R. Chiang S.S. Oluwadare B. Goldberg I.J. Bergman M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes. 2017 10 345 361 10.2147/DMSO.S100074 28860833
    [Google Scholar]
  31. Edet E.E. Akpanabiatu M.I. Eno A.E. Umoh I.B. Itam E.H. Effect of Gongronema latifolium crude leaf extract on some cardiac enzymes of alloxan-induced diabetic rats. Afr. J. Biochem. Res. 2009 3 11 366 369
    [Google Scholar]
  32. Frangogiannis N.G. Transforming growth factor-β in myocardial disease. Nat. Rev. Cardiol. 2022 19 7 435 455 10.1038/s41569‑021‑00646‑w 34983937
    [Google Scholar]
  33. Singh V. Kaur R. Kumari P. Pasricha C. Singh R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin. Chim. Acta 2023 548 117487 10.1016/j.cca.2023.117487 37442359
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X374139250629193251
Loading
/content/journals/chddt/10.2174/011871529X374139250629193251
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Type 1 diabetes ; diabetic cardiomyopathy ; immunohistochemistry ; ICAM-1 ; VCAM-1 ; NF-kB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test