Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Erythrocytes constitute the main cell type of the blood, contain the majority of the iron in the body, and have a high turnover rate. Erythrocyte death and subsequent degradation lead to ferroptosis. In this context, modifications of the erythrocyte plasma membrane lipidome are instrumental to the phenomenon. Thus, phospholipase A2, phospholipase D, lysophospholipase D, sphingomyelinase, ceramidase, and sphingosine kinase acting together orchestrate a major membrane structural rearrangement, leading to phosphatidylserine exposure, reduced deformability, and band 3 clustering. Band 3 clustering may lead to antibody and complement opsonization, CD47 conformational change, and phosphatidylserine exposure. Meanwhile, arginine, glutamine, and adenosine metabolism modulate the anti-oxidant capacity of erythrocytes, thus impacting phosphatidylserine exposure and chemokine release. Metabolism-induced augmented erythrophagocytosis accompanied by insufficient upregulation of heme oxygenase-1 and iron retention due to inflammatory signals lead to iron-dependent lipid peroxidation. Neudesin, interleukin 33, interleukin 18, TNF-α, interleukin 6, prostaglandins, epinephrin, itaconate, and hepcidin influence the capacity of the macrophage to manipulate iron. BACH1, NRF2, and SPIC are the main transcription factors implicated in the regulation of the expression of heme oxygenase-1 and ferroportin. Insufficient adaptation of the metabolism of the cell to neutralize lipid peroxides leads to iron-dependent programmed lytic death, called ferroptosis. As a result of ferroptosis, damage-associated molecular patterns and lipid peroxides are released, activating the neighboring immune cells and triggering inflammation. Erythrophagocytosis-induced ferroptosis has been recognized as a main mechanism eliciting the metabolism dysfunction associated with steatohepatitis, atherosclerosis, uremia, and other pathogenic states. A better understanding of the molecular mechanisms implicated in the process could bring forward potential novel therapeutic targets. In this mini-review, the current literature is summarized with regard to the immunometabolic mechanisms that mediate erythrophagocytosis-induced ferroptosis and inflammation.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X370553250322095430
2025-04-14
2025-09-18
Loading full text...

Full text loading...

References

  1. TheurlI. HilgendorfI. NairzM. TymoszukP. HaschkaD. AsshoffM. HeS. GerhardtL.M.S. HolderriedT.A.W. SeifertM. SopperS. FennA.M. AnzaiA. RattikS. McAlpineC. TheurlM. WieghoferP. IwamotoY. WeberG.F. HarderN.K. ChoustermanB.G. ArvedsonT.L. McKeeM. WangF. LutzO.M.D. RezoagliE. BabittJ.L. BerraL. PrinzM. NahrendorfM. WeissG. WeisslederR. LinH.Y. SwirskiF.K. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver.Nat. Med.201622894595110.1038/nm.414627428900
    [Google Scholar]
  2. LoegeringD.J. RaleyM.J. RehoT.A. EatonJ.W. Macrophage dysfunction following the phagocytosis of IgG-coated erythrocytes: Production of lipid peroxidation products.J. Leukoc. Biol.199659335736210.1002/jlb.59.3.3578604013
    [Google Scholar]
  3. RichardC.A.H. WilcoxB.D. LoegeringD.J. IgG-coated erythrocytes augment LPS-stimulated TNF-α secretion, TNF-α mRNA Levels, and TNF-α mRNA stability in macrophages.Biochem. Biophys. Res. Commun.20002711707410.1006/bbrc.2000.259410777683
    [Google Scholar]
  4. ThiagarajanP. ParkerC.J. PrchalJ.T. How do red blood cells die?Front. Physiol.20211265539310.3389/fphys.2021.65539333790808
    [Google Scholar]
  5. WuB. WuY. TangW. Heme catabolic pathway in inflammation and immune disorders.Front. Pharmacol.20191082510.3389/fphar.2019.0082531396090
    [Google Scholar]
  6. SunY. ChenP. ZhaiB. ZhangM. XiangY. FangJ. XuS. GaoY. ChenX. SuiX. LiG. The emerging role of ferroptosis in inflammation.Biomed. Pharmacother.202012711010810.1016/j.biopha.2020.11010832234642
    [Google Scholar]
  7. OtogawaK. KinoshitaK. FujiiH. SakabeM. ShigaR. NakataniK. IkedaK. NakajimaY. IkuraY. UedaM. ArakawaT. HatoF. KawadaN. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: Implications for the pathogenesis of human nonalcoholic steatohepatitis.Am. J. Pathol.2007170396798010.2353/ajpath.2007.06044117322381
    [Google Scholar]
  8. ParkJ.B. KoK. BaekY.H. KwonW.Y. SuhS. HanS.H. KimY.H. KimH.Y. YooY.H. Pharmacological prevention of ectopic erythrophagocytosis by cilostazol mitigates ferroptosis in NASH.Int. J. Mol. Sci.202324161286210.3390/ijms24161286237629045
    [Google Scholar]
  9. PuylaertP. RothL. PraetV.M. PintelonI. DumitrascuC. NuijsV.A. KlejborowskaG. GunsP.J. BergheT.V. AugustynsK. MeyerD.G.R.Y. MartinetW. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques.Angiogenesis202326450552210.1007/s10456‑023‑09877‑637120604
    [Google Scholar]
  10. LiuW. ÖstbergN. YalcinkayaM. DouH. Endo-UmedaK. TangY. HouX. XiaoT. FidlerT.P. AbramowiczS. YangY.G. SoehnleinO. TallA.R. WangN. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis.J. Clin. Invest.202213213e15572410.1172/JCI15572435587375
    [Google Scholar]
  11. WangW. LiuW. FidlerT. WangY. TangY. WoodsB. WelchC. CaiB. Silvestre-RoigC. AiD. YangY.G. HidalgoA. SoehnleinO. TabasI. LevineR.L. TallA.R. WangN. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2V617F mice.Circ. Res.201812311e35e4710.1161/CIRCRESAHA.118.31328330571460
    [Google Scholar]
  12. YoussefL.A. RebbaaA. PampouS. WeisbergS.P. StockwellB.R. HodE.A. SpitalnikS.L. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion.Blood2018131232581259310.1182/blood‑2017‑12‑82261929666112
    [Google Scholar]
  13. AnY XuM YanM Erythrophagocytosis-induced ferroptosis contributes to pulmonary microvascular thrombosis and thrombotic vascular remodeling in pulmonary arterial hypertension.J. Thromb. Haemost.202523115817010.1016/j.jtha.2024.09.011
    [Google Scholar]
  14. QinZ. BäckM. Franco-CerecedaA. PawelzikS.C. Increased calcification by erythrophagocytosis in aortic valvular interstitial cells.ESC Heart Fail.2024ehf2.1513210.1002/ehf2.1513239462174
    [Google Scholar]
  15. MenonA.V. LiuJ. TsaiH.P. ZengL. YangS. AsnaniA. KimJ. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease.Blood2022139693694110.1182/blood.202000845534388243
    [Google Scholar]
  16. PfefferléM. IngogliaG. SchaerC.A. YalamanogluA. BuzziR. DubachI.L. TanG. López-CanoE.Y. SchulthessN. HansenK. HumarR. SchaerD.J. VallelianF. Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes.J. Clin. Invest.2020130105576559010.1172/JCI13728232663195
    [Google Scholar]
  17. DaiY. CaiY. WangX. ZhuJ. LiuX. LiuH. LiL. ZhangY. LiuS. WenZ. FengC.G. ChenX. TangX. Autoantibody-mediated erythrophagocytosis increases tuberculosis susceptibility in HIV patients.MBio2020111e03246-1910.1128/mBio.03246‑1932098821
    [Google Scholar]
  18. OlonisakinTF SuberT Gonzalez-FerrerS Stressed erythrophagocytosis induces immunosuppression during sepsis through heme-mediated STAT1 dysregulation.J. Clin. Invest.20211311e13746810.1172/JCI137468
    [Google Scholar]
  19. FöllerM. LangF. Ion transport in eryptosis, the suicidal death of erythrocytes.Front. Cell Dev. Biol.2020859710.3389/fcell.2020.0059732733893
    [Google Scholar]
  20. Phospholipase D activity is essential for pkc-mediated phosphatidylserine exposureAvailable from: https://www.sciencedirect.com/science/article/pii/S0006497119879636
  21. NohJ.Y. LimK.M. BaeO.N. ChungS.M. LeeS.W. JooK.M. LeeS.D. ChungJ.H. Procoagulant and prothrombotic activation of human erythrocytes by phosphatidic acid.Am. J. Physiol. Heart Circ. Physiol.20102992H347H35510.1152/ajpheart.01144.200920495145
    [Google Scholar]
  22. ChungS.M. BaeO.N. LimK.M. NohJ.Y. LeeM.Y. JungY.S. ChungJ.H. Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes.Arterioscler. Thromb. Vasc. Biol.200727241442110.1161/01.ATV.0000252898.48084.6a17110600
    [Google Scholar]
  23. NeidlingerN.A. LarkinS.K. BhagatA. VictorinoG.P. KuypersF.A. Hydrolysis of phosphatidylserine-exposing red blood cells by secretory phospholipase A2 generates lysophosphatidic acid and results in vascular dysfunction.J. Biol. Chem.2006281277578110.1074/jbc.M50579020016278219
    [Google Scholar]
  24. ÖhlingerT. MüllnerE.W. FritzM. SauerT. WerningM. BaronD.M. SalzerU. Lysophosphatidic acid-induced pro-thrombotic phosphatidylserine exposure and ionophore-induced microvesiculation is mediated by the scramblase TMEM16F in erythrocytes.Blood Cells Mol. Dis.20208310242610.1016/j.bcmd.2020.10242632222693
    [Google Scholar]
  25. AokiJ. TairaA. TakanezawaY. KishiY. HamaK. KishimotoT. MizunoK. SakuK. TaguchiR. AraiH. Serum lysophosphatidic acid is produced through diverse phospholipase pathways.J. Biol. Chem.200227750487374874410.1074/jbc.M20681220012354767
    [Google Scholar]
  26. XuR. SunW. JinJ. ObeidL.M. MaoC. Role of alkaline ceramidases in the generation of sphingosine and its phosphate in erythrocytes.FASEB J.20102472507251510.1096/fj.09‑15363520207939
    [Google Scholar]
  27. PapadopoulosC. SpouritaE. MimidisK. KoliosG. TentesL. AnagnostopoulosK. Nonalcoholic fatty liver disease patients exhibit reduced cd47 and increased sphingosine, cholesterol, and monocyte chemoattractant protein-1 levels in the erythrocyte membranes.Metab. Syndr. Relat. Disord.202220737738310.1089/met.2022.000635532955
    [Google Scholar]
  28. QadriS.M. BauerJ. ZelenakC. MahmudH. KucherenkoY. LeeS.H. FerlinzK. LangF. Sphingosine but not sphingosine-1-phosphate stimulates suicidal erythrocyte death.Cell. Physiol. Biochem.201128233934610.1159/00033175021865742
    [Google Scholar]
  29. DupuisL. ChauvetM. BourdelierE. DussiotM. BelmatougN. Le Van KimC. ChêneA. FrancoM. Phagocytosis of erythrocytes from gaucher patients induces phenotypic modifications in macrophages, driving them toward gaucher cells.Int. J. Mol. Sci.20222314764010.3390/ijms2314764035886988
    [Google Scholar]
  30. HortleE. NijagalB. BauerD.C. JensenL.M. AhnS.B. CockburnI.A. LampkinS. TullD. McConvilleM.J. McMorranB.J. FooteS.J. BurgioG. Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-life and provides malaria resistance in mice.Blood201612891290130110.1182/blood‑2015‑09‑66683427465915
    [Google Scholar]
  31. SabinaR.L. WanderseeN.J. HilleryC.A. Ca 2+ ‐CaM activation of AMP deaminase contributes to adenine nucleotide dysregulation and phosphatidylserine externalization in human sickle erythrocytes.Br. J. Haematol.2009144343444510.1111/j.1365‑2141.2008.07473.x19036100
    [Google Scholar]
  32. ReiszJ.A. SlaughterA.L. Culp-HillR. MooreE.E. SillimanC.C. FragosoM. PeltzE.D. HansenK.C. BanerjeeA. D’AlessandroA. Red blood cells in hemorrhagic shock: A critical role for glutaminolysis in fueling alanine transamination in rats.Blood Adv.20171171296130510.1182/bloodadvances.201700718729296771
    [Google Scholar]
  33. ZhouZ. MahdiA. TratsiakovichY. ZahoránS. KövameesO. NordinF. GonzalezU.A.E. AlvarssonM. ÖstensonC.G. AnderssonD.C. HedinU. HermeszE. LundbergJ.O. YangJ. PernowJ. Erythrocytes from patients with type 2 diabetes induce endothelial dysfunction via arginase I.J. Am. Coll. Cardiol.201872776978010.1016/j.jacc.2018.05.05230092954
    [Google Scholar]
  34. FurrerR. JauchA.J. RaoN.T. DilbazS. RheinP. SteurerS.A. RecherM. SkodaR.C. HandschinC. Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia.Sci. Adv.2021737eabi485210.1126/sciadv.abi485234516881
    [Google Scholar]
  35. CockramT.O.J. DundeeJ.M. PopescuA.S. BrownG.C. The phagocytic code regulating phagocytosis of mammalian cells.Front. Immunol.20211262997910.3389/fimmu.2021.62997934177884
    [Google Scholar]
  36. KoshkaryevA. LivshitsL. Pajic-LijakovicI. GuralA. BarshteinG. YedgarS. Non-oxidative band-3 clustering agents cause the externalization of phosphatidylserine on erythrocyte surfaces by a calcium-independent mechanism.Biochim. Biophys. Acta Biomembr.20201862618323110.1016/j.bbamem.2020.18323132119860
    [Google Scholar]
  37. DinklaS. WesselsK. VerdurmenW.P.R. TomelleriC. CluitmansJ.C.A. FransenJ. FuchsB. SchillerJ. JoostenI. BrockR. BosmanG.J.C.G.M. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.Cell Death Dis.2012310e41010.1038/cddis.2012.14323076218
    [Google Scholar]
  38. HornigR. LutzH.U. Band 3 protein clustering on human erythrocytes promotes binding of naturally occurring anti-band 3 and anti-spectrin antibodies.Exp. Gerontol.20003581025104410.1016/S0531‑5565(00)00126‑111121688
    [Google Scholar]
  39. TokumasuF. NardoneG.A. OsteraG.R. FairhurstR.M. BeaudryS.D. HayakawaE. DvorakJ.A. Altered membrane structure and surface potential in homozygous hemoglobin C erythrocytes.PLoS One200946e582810.1371/journal.pone.000582819503809
    [Google Scholar]
  40. BurgerP. Hilarius-StokmanP. KorteD.D. BergD.V.T.K. BruggenV.R. CD47 functions as a molecular switch for erythrocyte phagocytosis.Blood2012119235512552110.1182/blood‑2011‑10‑38680522427202
    [Google Scholar]
  41. WangF. LiuY.H. ZhangT. GaoJ. XuY. XieG.Y. ZhaoW.J. WangH. YangY.G. Aging‐associated changes in CD47 arrangement and interaction with thrombospondin‐1 on red blood cells visualized by super‐resolution imaging.Aging Cell20201910e1322410.1111/acel.1322432866348
    [Google Scholar]
  42. DumaswalaU.J. ZhuoL. MahajanS. NairP.N.M. ShertzerH.G. DibelloP. JacobsenD.W. Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs.Am. J. Physiol. Cell Physiol.20012804C867C87310.1152/ajpcell.2001.280.4.C86711245604
    [Google Scholar]
  43. LamL.K.M. MurphyS. KokkinakiD. VenosaA. Sherrill-MixS. CasuC. RivellaS. WeinerA. ParkJ. ShinS. VaughanA.E. HahnB.H. JohnO.A.R. MeyerN.J. HunterC.A. WorthenG.S. MangalmurtiN.S. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia.Sci. Transl. Med.202113616eabj100810.1126/scitranslmed.abj100834669439
    [Google Scholar]
  44. Garcia-MartinezI. SantoroN. ChenY. HoqueR. OuyangX. CaprioS. ShlomchikM.J. CoffmanR.L. CandiaA. MehalW.Z. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9.J. Clin. Invest.2016126385986410.1172/JCI8388526808498
    [Google Scholar]
  45. CaoH. AntonopoulosA. HendersonS. WassallH. BrewinJ. MassonA. ShepherdJ. KoniecznyG. PatelB. WilliamsM.L. DavieA. ForresterM.A. HallL. MinterB. TampakisD. MossM. LennonC. PickfordW. ErwigL. RobertsonB. DellA. BrownG.D. WilsonH.M. ReesD.C. HaslamS.M. RoweA.J. BarkerR.N. VickersM.A. Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance.Nat. Commun.2021121179210.1038/s41467‑021‑21814‑z33741926
    [Google Scholar]
  46. UnruhD. SrinivasanR. BensonT. HaighS. CoyleD. BatraN. KeilR. SturmR. BlancoV. PalascakM. FrancoR.S. TongW. ChatterjeeT. HuiD.Y. DavidsonW.S. AronowB.J. KalfaT. MankaD. PeairsA. BlomkalnsA. FultonD.J. BrittainJ.E. WeintraubN.L. BogdanovV.Y. Red blood cell dysfunction induced by high-fat diet.Circulation2015132201898190810.1161/CIRCULATIONAHA.115.01731326467254
    [Google Scholar]
  47. PanD. WuW. ZuoG. XieX. LiH. RenX. KongC. ZhouW. ZhangZ. WaterfallM. ChenS. Sphingosine 1-phosphate receptor 2 promotes erythrocyte clearance by vascular smooth muscle cells in intraplaque hemorrhage through MFG-E8 production.Cell. Signal.20229811041910.1016/j.cellsig.2022.11041935905868
    [Google Scholar]
  48. PapadopoulosC. MimidisK. PapazoglouD. KoliosG. TentesI. AnagnostopoulosK. Red blood cell-conditioned media from non-alcoholic fatty liver disease patients contain increased MCP1 and induce TNF-α release.Rep. Biochem. Mol. Biol.2022111546210.52547/rbmb.11.1.5435765536
    [Google Scholar]
  49. KleiT. DalimotJ.J. NotaB. VeldthuisM. MulE. RademakersT. HoogenboezemM. NagelkerkeS.Q. IJckenV.W.F.J. OoleE. SvendsenP. MoestrupS. AlphenV.F. MeijerA.B. KuijpersT.W. ZwietenR. BruggenV.R. Hemolysis in the spleen drives erythrocyte turnover.Blood202013614blood.202000535110.1182/blood.202000535132777816
    [Google Scholar]
  50. SantarinoI.B. VieiraO.V. Maturation of phagosomes containing different erythrophagocytic particles in primary macrophages.FEBS Open Bio.2017791281129010.1002/2211‑5463.1226228904858
    [Google Scholar]
  51. DelabyC. RondeauC. PouzetC. WillemetzA. PilardN. DesjardinsM. Canonne-HergauxF. Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis.PLoS One201277e4219910.1371/journal.pone.004219922860081
    [Google Scholar]
  52. GemsaD. WooC.H. WebbD. FudenbergH.H. SchmidR. Erythrophagocytosis by macrophages: Suppression of heme oxygenase by cyclic AMP.Cell. Immunol.1975151213610.1016/0008‑8749(75)90161‑6162778
    [Google Scholar]
  53. KovtunovychG. EckhausM.A. GhoshM.C. Ollivierre-WilsonH. RouaultT.A. Dysfunction of the heme recycling system in heme oxygenase 1–deficient mice: Effects on macrophage viability and tissue iron distribution.Blood2010116266054606210.1182/blood‑2010‑03‑27213820844238
    [Google Scholar]
  54. CambosM. ScorzaT. Robust erythrophagocytosis leads to macrophage apoptosis via a hemin-mediated redox imbalance: Role in hemolytic disorders.J. Leukoc. Biol.201089115917110.1189/jlb.051024920884648
    [Google Scholar]
  55. GanzT. NemethE. Hepcidin and iron homeostasis.Biochim. Biophys. Acta Mol. Cell Res.2012182391434144310.1016/j.bbamcr.2012.01.01422306005
    [Google Scholar]
  56. KnutsonM.D. OukkaM. KossL.M. AydemirF. Wessling-ResnickM. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin.Proc. Natl. Acad. Sci. USA200510251324132810.1073/pnas.040940910215665091
    [Google Scholar]
  57. NshimiyimanaR. LibrerosS. SimardM. ChiangN. RodriguezA.R. SpurB.W. HaeggströmJ.Z. SerhanC.N. Stereochemistry and functions of the new cysteinyl‐resolvin, 4S, 5R‐RCTR1, in efferocytosis and erythrophagocytosis of human senescent erythrocytes.Am. J. Hematol.20239871000101610.1002/ajh.2693237139907
    [Google Scholar]
  58. LuY. BasatemurG. ScottI.C. ChiarugiD. ClementM. HarrisonJ. JugdaohsinghR. YuX. NewlandS.A. JolinH.E. LiX. ChenX. SzymanskaM. HaraldsenG. PalmerG. FallonP.G. CohenE.S. McKenzieA.N.J. MallatZ. Interleukin-33 signaling controls the development of iron-recycling macrophages.Immunity2020525782793.e510.1016/j.immuni.2020.03.00632272082
    [Google Scholar]
  59. NakayamaY. MasudaY. MukaeT. MikamiT. ShimizuR. KondoN. KitagawaH. ItohN. KonishiM. A secretory protein neudesin regulates splenic red pulp macrophages in erythrophagocytosis and iron recycling.Commun. Biol.20247112910.1038/s42003‑024‑05802‑938272969
    [Google Scholar]
  60. XuR. ZhuD. GuoJ. WangC. IL-18 promotes erythrophagocytosis and erythrocyte degradation by m1 macrophages in a calcific microenvironment.Can. J. Cardiol.20213791460147110.1016/j.cjca.2021.04.00733984428
    [Google Scholar]
  61. MillsE.L. RyanD.G. PragH.A. DikovskayaD. MenonD. ZaslonaZ. JedrychowskiM.P. CostaA.S.H. HigginsM. HamsE. SzpytJ. RuntschM.C. KingM.S. McGouranJ.F. FischerR. KesslerB.M. McGettrickA.F. HughesM.M. CarrollR.G. BootyL.M. KnatkoE.V. MeakinP.J. AshfordM.L.J. ModisL.K. BrunoriG. SévinD.C. FallonP.G. CaldwellS.T. KunjiE.R.S. ChouchaniE.T. FrezzaC. Dinkova-KostovaA.T. HartleyR.C. MurphyM.P. O’NeillL.A. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.Nature2018556769911311710.1038/nature2598629590092
    [Google Scholar]
  62. PenglongT. SaensuwannaA. PholngamN. TansilaN. BuncherdH. SrinounK. BACH1 regulates erythrophagocytosis and iron‐recycling in β‐thalassemia.Genes Cells202328321122510.1111/gtc.1300436565308
    [Google Scholar]
  63. NishizawaH. YamanakaM. IgarashiK. Ferroptosis: Regulation by competition between NRF2 and BACH1 and propagation of the death signal.FEBS J.202329071688170410.1111/febs.1638235107212
    [Google Scholar]
  64. JiaM. LiQ. GuoJ. ShiW. ZhuL. HuangY. LiY. WangL. MaS. ZhuangT. WangX. PanQ. WeiX. QinY. LiX. JinJ. ZhiX. TangJ. JingQ. LiS. JiangL. QuL. OstoE. ZhangJ. WangX. YuB. MengD. Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation.Circ. Res.202213071038105510.1161/CIRCRESAHA.121.31954035196865
    [Google Scholar]
  65. FangX. ArdehaliH. MinJ. WangF. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease.Nat. Rev. Cardiol.202320172310.1038/s41569‑022‑00735‑435788564
    [Google Scholar]
  66. LiZ. YanM. WangZ. AnY. WeiX. LiT. XuM. XiaY. WangL. GaoC. Ferroptosis of endothelial cells triggered by erythrophagocytosis contributes to thrombogenesis in uremia.Thromb. Haemost.2023123121116112810.1055/a‑2117‑789037364609
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X370553250322095430
Loading
/content/journals/chddt/10.2174/011871529X370553250322095430
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): clustering; erythrocyte; Erythrophagocytosis; ferroptosis; immunometabolism; inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test