Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Background

High blood glucose levels are a hallmark of Diabetes Mellitus (DM), which is classified as a metabolic disease. DM is closely associated with various Cardiovascular Disease (CVD) risk factors, and poor glycemic control is known to elevate the risk of developing CVD. Ranolazine, a novel anti-anginal medication, has demonstrated cardioprotective effects, making it an important agent in the management of heart-related complications in diabetic patients. The mechanism underlying the anti-ischemic effect of ranolazine primarily involves the blockade of the cardiac isoform of voltage-gated Sodium Channels (NaChs), specifically Nav1.5. By inhibiting the late Sodium Current (INa, late), ranolazine helps stabilize cardiac function and reduce ischemic episodes. Recent large Randomized Controlled Trials (RCTs) have shown that ranolazine significantly reduces levels of glycosylated hemoglobin (HbA1c), which is a critical marker for glycemic control. This dual action of ranolazine in improving both cardiac performance and glycemic control positions it as a valuable therapeutic option in the management of patients with DM and cardiovascular risk.

Objectives

This review aims to provide a comprehensive overview of the preclinical and clinical research concerning ranolazine's potential as an antidiabetic agent. By examining existing studies, we explore the drug's mechanisms of action, its impact on glycemic control, and its role in managing DM-related cardiovascular complications. Through the available data, we highlight the emerging evidence supporting ranolazine's use beyond its traditional role as an anti-anginal medication, as well as its promising implications for DM management.

Methods

Using the terms ranolazine, DM, beta-cells, alpha cells, and preclinical and clinical trials, an EMBASE search for English language articles was conducted from 1979 to 2024.

Results

Ranolazine has demonstrated a well-tolerated glucometabolic action and positively regulates glucose levels in individuals with DM. A meta-analysis has revealed that ranolazine effectively improves HbA1c levels without increasing the risk of hypoglycemia, offering significant advantages for patients with type 2 Diabetes Mellitus (T2DM) and stable angina. In addition to its effects on glycemic control, ranolazine has been shown to lower both baseline and postprandial glucagon levels in preclinical trials. This reduction in glucagon is associated with a decrease in hyperglycemia, suggesting that the blockade of Sodium Channels (NaChs) is integral to the glucose-lowering effects of ranolazine. Overall, these findings support the potential of ranolazine as a beneficial treatment option for managing glucose levels in diabetic patients, particularly those with concurrent cardiovascular conditions.

Conclusion

A novel approach for treating T2DM could involve selective Nav1.3 blockers, as ranolazine's unique mechanism of action distinguishes it from other approved antidiabetic medications. Targeting Nav1.3 channels may offer similar glycemic control benefits while minimizing side effects. This strategy could lead to innovative treatments that address both DM management and cardiovascular protection. Further research is needed to evaluate the efficacy and safety of these selective blockers in diabetic patients.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X356362250324080014
2025-04-30
2025-09-26
Loading full text...

Full text loading...

References

  1. American Diabetes AssociationDiagnosis and classification of diabetes mellitus.Diabetes Care.2009331S6210.2337/dc10‑S062 20042775
    [Google Scholar]
  2. KhanR. ChuaZ. TanJ. YangY. LiaoZ. ZhaoY. From pre-diabetes to diabetes: Diagnosis, treatments and translational research.Medicina (Kaunas)201955954610.3390/medicina55090546 31470636
    [Google Scholar]
  3. KingH. AubertR.E. HermanW.H. Global burden of diabetes, 1995–2025: Prevalence, numerical estimates, and projections.Diabetes Care19982191414143110.2337/diacare.21.9.1414 9727886
    [Google Scholar]
  4. StoffersD.A. The development of beta-cell mass: Recent progress and potential role of GLP-1.Horm. Metab. Res.20043611/1281182110.1055/s‑2004‑826168 15655713
    [Google Scholar]
  5. MarchettiP. Del GuerraS. MarselliL. LupiR. Masini,] M.; Pollera, M.; Bugliani, M.; Boggi, U.; Vistoli, F.; Mosca,] F.; Del Prato, S. Pancreatic islets from type 2 diabetic patients] have functional defects and increased apoptosis that are ameliorated by metformin.J. Clin. Endocrinol. Metab.200489115535554110.1210/jc.2004‑0150 15531508
    [Google Scholar]
  6. WuY. DingY. TanakaY. ZhangW. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention.Int. J. Med. Sci.201411111185120010.7150/ijms.10001 25249787
    [Google Scholar]
  7. KhadraA. SchnellS. Development, growth and maintenance of β-cell mass: Models are also part of the story.Mol. Aspects Med.201542789010.1016/j.mam.2015.01.005 25720614
    [Google Scholar]
  8. KaradimosM.J. KapoorA. El KhattabiI. SharmaA. β-cell preservation and regeneration for diabetes treatment: Where are we now?Diabetes Manag. (Lond.)20122321322210.2217/dmt.12.21 23049620
    [Google Scholar]
  9. SaishoY. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes.World J. Diabetes20156110912410.4239/wjd.v6.i1.109 25685282
    [Google Scholar]
  10. SelvinE. CoreshJ. GoldenS.H. BolandL.L. BrancatiF.L. SteffesM.W. Glycemic control, atherosclerosis, and risk factors for cardiovascular disease in individuals with diabetes: The atherosclerosis risk in communities study.Diabetes Care20052881965197310.2337/diacare.28.8.1965 16043740
    [Google Scholar]
  11. KannelW.B. McGeeD.L. Diabetes and cardiovascular disease. The Framingham study.JAMA1979241192035203810.1001/jama.1979.03290450033020 430798
    [Google Scholar]
  12. ConawayD.G. O’KeefeJ.H. ReidK.J. SpertusJ. Frequency of undiagnosed diabetes mellitus in patients with acute coronary syndrome.Am. J. Cardiol.200596336336510.1016/j.amjcard.2005.03.076 16054458
    [Google Scholar]
  13. LeonB.M. MaddoxT.M. Diabetes and cardiovascular] disease: Epidemiology, biological mechanisms, treatment recommendations and future research.World J. Diabetes20156131246125810.4239/wjd.v6.i13.1246 26468341
    [Google Scholar]
  14. Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report.Circulation2002106253143342110.1161/circ.106.25.3143 12485966
    [Google Scholar]
  15. Prevalence of self-reported cardiovascular disease among] persons aged > or =35 years with diabetes-United States,] 1997-2005.MMWR Morb. Mortal. Wkly. Rep.2007564311291132 17975525
    [Google Scholar]
  16. RogerV.L. GoA.S. Lloyd-JonesD.M. AdamsR.J. BerryJ.D. BrownT.M. CarnethonM.R. DaiS. de SimoneG. FordE.S. FoxC.S. FullertonH.J. GillespieC. GreenlundK.J. HailpernS.M. HeitJ.A. HoP.M. HowardV.J. KisselaB.M. KittnerS.J. LacklandD.T. LichtmanJ.H. LisabethL.D. MakucD.M. MarcusG.M. MarelliA. MatcharD.B. McDermottM.M. MeigsJ.B. MoyC.S. MozaffarianD. MussolinoM.E. NicholG. PaynterN.P. RosamondW.D. SorlieP.D. StaffordR.S. TuranT.N. TurnerM.B. WongN.D. Wylie-RosettJ. Heart disease and stroke statistics--2011 update: A report from the American Heart Association.Circulation20111234e18e20910.1161/CIR.0b013e3182009701 21160056
    [Google Scholar]
  17. FanW. Epidemiology in diabetes mellitus and cardiovascular disease.Cardiovasc. Endocrinol.20176181610.1097/XCE.0000000000000116 31646113
    [Google Scholar]
  18. LisiD. AndrewsE. ParryC. HillC. OmbengiD. LingH. The effect of ranolazine on glycemic control: A narrative review to define the target population.Cardiovasc. Drugs Ther.201933675576110.1007/s10557‑019‑06917‑6 31802311
    [Google Scholar]
  19. BelardinelliL. ShryockJ.C. FraserH. Inhibition of the late] sodium current as a potential cardioprotective principle: Effects] of the late sodium current inhibitor ranolazine.Heart200646iv6iv1410.1136/hrt.2005.078790
    [Google Scholar]
  20. ChaitmanB.R. PepineC.J. ParkerJ.O. SkopalJ. ChumakovaG. KuchJ. WangW. SkettinoS.L. WolffA.A. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: A randomized controlled trial.JAMA2004291330931610.1001/jama.291.3.309 14734593
    [Google Scholar]
  21. AldakkakM. StoweD.F. CamaraA.K.S. Safety and efficacy of ranolazine for the treatment of chronic Angina Pectoris.Clin. Med. Insights Ther.201355CMT.S782410.4137/CMT.S7824 24574825
    [Google Scholar]
  22. ChaitmanB.R. SkettinoS.L. ParkerJ.O. HanleyP. MeluzinJ. KuchJ. PepineC.J. WangW. NelsonJ.J. HebertD.A. WolffA.A. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina.J. Am. Coll. Cardiol.20044381375138210.1016/j.jacc.2003.11.045 15093870
    [Google Scholar]
  23. AslamS. GrayD. Ranolazine (Ranexa®) in the treatment of chronic stable angina.Adv. Ther.201027419320110.1007/s12325‑010‑0018‑5 20449698
    [Google Scholar]
  24. SalazarC.A. Basilio FloresJ.E. Veramendi EspinozaL.E. Mejia DoloresJ.W. Rey RodriguezD.E. Loza MunárrizC. Ranolazine for stable angina pectoris.Cochrane Database Syst. Rev.201722CD011747 28178363
    [Google Scholar]
  25. SossallaS. MaierL.S. Role of ranolazine in angina, heart failure, arrhythmias, and diabetes.Pharmacol. Ther.2012133331132310.1016/j.pharmthera.2011.11.003 22133843
    [Google Scholar]
  26. MarciniakT.A. SerebruanyV. Ranolazine, ACE inhibitors, and angiotensin receptor blockers.Am. J. Med.201913212e844e84510.1016/j.amjmed.2019.02.032 30871921
    [Google Scholar]
  27. GutierrezJ.A. Karwatowska-ProkopczukE. MurphyS.A. BelardinelliL. Farzaneh-FarR. WalkerG. MorrowD.A. SciricaB.M. Effects of Ranolazine in patients with chronic angina in patients with and without percutaneous coronary intervention for acute coronary syndrome: Observations from the MERLIN‐TIMI 36 trial.Clin. Cardiol.201538846947510.1002/clc.22425 26059896
    [Google Scholar]
  28. GreinerL. HurrenK. BrennerM. Ranolazine and its effects on hemoglobin A1C.Ann. Pharmacother.201650541041510.1177/1060028016631757 26917816
    [Google Scholar]
  29. MobasseriM. ShirmohammadiM. AmiriT. VahedN. Hosseini FardH. GhojazadehM. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis.Health Promot. Perspect.20201029811510.34172/hpp.2020.18 32296622
    [Google Scholar]
  30. RoepB.O. ThomaidouS. van TienhovenR. ZaldumbideA. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?).Nat. Rev. Endocrinol.202117315016110.1038/s41574‑020‑00443‑4 33293704
    [Google Scholar]
  31. Rodrigues OliveiraS.M. RebochoA. AhmadpourE. NissapatornV. de Lourdes PereiraM. Type 1 Diabetes Mellitus: A review on advances and challenges in creating insulin producing devices.Micromachines202314115110.3390/mi14010151 36677212
    [Google Scholar]
  32. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  33. SamiW. AnsariT. ButtN.S. HamidM.R.A. Effect of diet on type 2 diabetes mellitus: A review.Int. J. Health Sci. (Qassim)20171126571 28539866
    [Google Scholar]
  34. CerfM.E. Beta cell dysfunction and insulin resistance.Front. Endocrinol. (Lausanne)201343710.3389/fendo.2013.00037 23542897
    [Google Scholar]
  35. DludlaP.V. MabhidaS.E. ZiqubuK. NkambuleB.B. Mazibuko-MbejeS.E. HanserS. BassonA.K. PheifferC. KengneA.P. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress.World J. Diabetes202314313014610.4239/wjd.v14.i3.130 37035220
    [Google Scholar]
  36. WajchenbergB.L. β-cell failure in diabetes and preservation by clinical treatment.Endocr. Rev.200728218721810.1210/10.1210/er.2006‑0038 17353295
    [Google Scholar]
  37. ChenC. CohrsC.M. StertmannJ. BozsakR. SpeierS. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis.Mol. Metab.20176994395710.1016/j.molmet.2017.06.019 28951820
    [Google Scholar]
  38. InaishiJ. SaishoY. Beta-cell mass in obesity and type 2 diabetes, and its relation to pancreas fat: A mini-review.Nutrients20201212384610.3390/nu12123846 33339276
    [Google Scholar]
  39. AckermannA.M. GannonM. Molecular regulation of pancreatic β-cell mass development, maintenance, and expansion.J. Mol. Endocrinol.200738219320610.1677/JME‑06‑0053 17293440
    [Google Scholar]
  40. TomitaT. Apoptosis in pancreatic β-islet cells in Type 2 diabetes.Bosn. J. Basic Med. Sci.201616316217910.17305/bjbms.2016.919 27209071
    [Google Scholar]
  41. NingY. ZhenW. FuZ. JiangJ. LiuD. BelardinelliL. DhallaA.K. Ranolazine increases β-cell survival and improves glucose homeostasis in low-dose streptozotocin-induced diabetes in mice.J. Pharmacol. Exp. Ther.20113371505810.1124/jpet.110.176396 21228065
    [Google Scholar]
  42. FuZ. ZhaoL. ChaiW. DongZ. CaoW. LiuZ. Ranolazine recruits muscle microvasculature and enhances insulin action in rats.J. Physiol.2013591205235524910.1113/jphysiol.2013.257246 23798495
    [Google Scholar]
  43. DhallaA.K. YangM. NingY. KahligK.M. KrauseM. RajamaniS. BelardinelliL. Blockade of Na+ channels in pancreatic α-cells has antidiabetic effects.Diabetes201463103545355610.2337/db13‑1562 24812428
    [Google Scholar]
  44. CassanoV. LeoA. TallaricoM. NesciV. CimellaroA. FiorentinoT.V. CitraroR. HribalM.L. De SarroG. PerticoneF. SestiG. RussoE. SciacquaA. Metabolic and cognitive effects of ranolazine in type 2 diabetes mellitus: Data from an in vivo Model.Nutrients202012238210.3390/nu12020382 32023991
    [Google Scholar]
  45. MelloniC. NewbyL.K. Metabolic efficiency with ranolazine for less ischemia in non-ST elevation acute coronary syndromes (MERLIN TIMI-36) study.Expert Rev. Cardiovasc. Ther.20086191610.1586/14779072.6.1.9 18095903
    [Google Scholar]
  46. SendónJ.L. LeeS. ChengM.L. Ben-YehudaO. Effects of ranolazine on exercise tolerance and angina frequency in patients with severe chronic angina receiving maximally-tolerated background therapy: Analysis from the Combination Assessment of Ranolazine In Stable Angina (CARISA) randomized trial.Eur. J. Prev. Cardiol.201219595295910.1177/2047487312450133 22689417
    [Google Scholar]
  47. EckelR.H. HenryR.R. YueP. DhallaA. WongP. JochelsonP. BelardinelliL. SkylerJ.S. Effect of ranolazine monotherapy on glycemic control in subjects with type 2 Diabetes.Diabetes Care20153871189119610.2337/dc14‑2629 26049552
    [Google Scholar]
  48. NuscaA. BernardiniF. MangiacapraF. MaddaloniE. MelfiR. RicottiniE. PiccirilloF. ManfriniS. UssiaG.P. GrigioniF. Ranolazine improves glycemic variability and endothelial function in patients with diabetes and chronic coronary syndromes: Results from an experimental study.J. Diabetes Res.202120211910.1155/2021/4952447 35005029
    [Google Scholar]
  49. ColemanC.I. FreemantleN. KohnC.G. Ranolazine for the treatment of chronic stable angina: A cost-effectiveness analysis from the UK perspective.BMJ Open2015511e00886110.1136/bmjopen‑2015‑008861 26546142
    [Google Scholar]
  50. KourlabaG. VlachopoulosC. ParissisJ. KanakakisJ. GourzoulidisG. ManiadakisN. Ranolazine for the symptomatic treatment of patients with chronic angina pectoris in Greece: A cost-utility study.BMC Health Serv. Res.201515156610.1186/s12913‑015‑1228‑y 26684327
    [Google Scholar]
  51. McCormackJ.G. StanleyW.C. WolffA.A. Ranolazine: A novel metabolic modulator for the treatment of angina.Gen. Pharmacol.199830563964510.1016/S0306‑3623(97)00301‑7 9559312
    [Google Scholar]
  52. ZengX. ZhangY. LinJ. ZhengH. PengJ. HuangW. Efficacy and safety of ranolazine in diabetic patients: A systematic review and meta-analysis.Ann. Pharmacother.201720171060028017747901 29231052
    [Google Scholar]
  53. Rayner-HartleyE. SedlakT. Ranolazine: A contemporary review.J. Am. Heart Assoc.201653e00319610.1161/JAHA.116.003196 26979079
    [Google Scholar]
  54. ArnoldS.V. McGuireD.K. SpertusJ.A. LiY. YueP. Ben-YehudaO. BelardinelliL. JonesP.G. OlmstedA. ChaitmanB.R. KosiborodM. Effectiveness of ranolazine in patients with type 2 diabetes mellitus and chronic stable angina according to baseline hemoglobin A1c.Am. Heart J.20141684457465.e210.1016/j.ahj.2014.06.020 25262254
    [Google Scholar]
  55. RouhanaS. VirsolvyA. FaresN. RichardS. ThireauJ. Ranolazine: An old drug with emerging potential; Lessons from pre-clinical and clinical investigations for possible repositioning.Pharmaceuticals20211513110.3390/ph15010031 35056088
    [Google Scholar]
  56. BrownJ.M. EverettB.M. Cardioprotective diabetes drugs: What cardiologists need to know.Cardiovasc. Endocrinol. Metab.2019849610510.1097/XCE.0000000000000181 31942550
    [Google Scholar]
  57. ScicchitanoP. CorteseF. RicciG. CarbonaraS. MoncelliM. IacovielloM. CecereA. GesualdoM. ZitoA. CaldarolaP. ScrutinioD. LagioiaR. RiccioniG. CicconeM.M. Ivabradine, coronary artery disease, and heart failure: Beyond rhythm control.Drug Des. Devel. Ther.20148689700 24940047
    [Google Scholar]
  58. BorerJ.S. TardifJ.C. Efficacy of ivabradine, a selective I(f) inhibitor, in patients with chronic stable angina pectoris and diabetes mellitus.Am. J. Cardiol.20101051293510.1016/j.amjcard.2009.08.642 20102886
    [Google Scholar]
  59. LiX. Ranolazine: A potential anti-diabetic drug.Thesis, Virginia Polytechnic Institute and State University2012
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X356362250324080014
Loading
/content/journals/chddt/10.2174/011871529X356362250324080014
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alpha-cells; beta-cells; clinical trials; diabetes mellitus; preclinical; Ranolazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test