Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Background

The consumption of coffee as a beverage and honey as a sweetener is prevalent worldwide, with each having potential health implications. However, studies on the combined effect of coffee and honey on blood pressure, heart rate, and blood glucose level are lacking.

Objectives

The objective of this study is to determine whether a three-day consumption of honey-sweetened coffee will significantly alter the systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), and fasting blood glucose (BG) levels in young, healthy female adults.

Methods

Thirty participants studying at the University of Uyo, aged 18 to 26 years, were randomly assigned to three groups: control, coffee, and honey-sweetened coffee groups with 10 subjects each. The control group was given 250 mL of warm water, the coffee group was given 2.25 g of coffee dissolved in 250 mL of hot water, and the honey-sweetened coffee group was given 2.25 g of coffee with 20 mL of honey dissolved in 250 mL of hot water for three consecutive days. Before the start of the experiment, the subjects were asked to rest by sitting comfortably for 15 minutes. Baseline measurements of blood pressure, heart rate, and blood glucose were taken and recorded before the consumption of the assigned beverage. Follow-up measurements were taken at 15, 30, 45, and 60 minutes after consumption for blood pressure and heart rate and 30 and 60 minutes for blood glucose level. This procedure was repeated for three days.

Results

The results showed no significant changes in systolic blood pressure, diastolic blood pressure, mean arterial pressure, heart rate, and blood glucose level in the coffee and honey-sweetened coffee groups compared to the control group.

Conclusion

The findings of this study revealed that honey-sweetened coffee has no acute effect on blood pressure, heart rate, and blood glucose level in healthy female individuals. It can, therefore, be concluded that honey-sweetened coffee has a neutral effect on these physiological parameters, but a more elaborate study is highly recommended.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X348787241217103918
2024-12-27
2025-09-01
Loading full text...

Full text loading...

References

  1. AlfawazH.A. KhanN. YakoutS.M. KhattakM.N.K. AlsaikhanA.A. AlmousaA.A. AlsuwailemT.A. AlmjladT.M. AlamriN.A. AlshammariS.G. Al-DaghriN.M. Prevalence, predictors, and awareness of coffee consumption and its trend among saudi female students.Int. J. Environ. Res. Publ. Heal.20201719702010.3390/ijerph1719702032992846
    [Google Scholar]
  2. SarnoJ.D.D. SarnoJ.M.D. Caffeine consumption and its effects towards young adults’ short-ter memory recall.Int. J. New Econo. Soci. Sci.2022115267288
    [Google Scholar]
  3. LoneA. AlnawahA.K. HadadiA.S. AlturkieF.M. AldreweeshY.A. AlhedhodA.T. Coffee consumption behavior in young adults: Exploring motivations, frequencies, and reporting adverse effects and withdrawal symptoms.Psychol. Res. Behav. Manag.20231639253937
    [Google Scholar]
  4. dePaulaJ. FarahA. Caffeine consumption through coffee: Content in the beverage, metabolism, health benefits and risks.Beverages2019523710.3390/beverages5020037
    [Google Scholar]
  5. BarreaL. PuglieseG. Frias-ToralE. El GhochM. CastellucciB. ChapelaS.P. CarignanoM.A. LaudisioD. SavastanoS. ColaoA. MuscogiuriG. Coffee consumption, health benefits and side effects: A narrative review and update for dietitians and nutritionists.Crit. Rev. Food Sci. Nutr.20236391238126110.1080/10408398.2021.196320734455881
    [Google Scholar]
  6. PatockaJ. NavratilovaZ. KrejcarO. KucaK. Coffee, Caffeine and Cognition: A Benefit or Disadvantage?Lett. Drug Des. Discov.201916101146115610.2174/1570180816666190620142158
    [Google Scholar]
  7. Riera-SampolA. RodasL. MartínezS. MoirH.J. TaulerP. Caffeine intake among undergraduate students: Sex differences, sources, motivations, and associations with smoking status and self-reported sleep quality.Nutrients2022148166110.3390/nu1408166135458223
    [Google Scholar]
  8. ParrasP. MartíneztoméM. JiménezA. MurciaM. Antioxidant capacity of coffees of several origins brewed following three different procedures.Food Chem.2007102358259210.1016/j.foodchem.2006.05.037
    [Google Scholar]
  9. MussattoS.I. MachadoE.M.S. MartinsS. TeixeiraJ.A. Production, composition, and application of coffee and its industrial residues.Food Bioprocess Technol.20114566167210.1007/s11947‑011‑0565‑z
    [Google Scholar]
  10. VignoliJ.A. ViegasM.C. BassoliD.G. BenassiM.T. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees.Food Res. Int.20146127928510.1016/j.foodres.2013.06.006
    [Google Scholar]
  11. EsquivelP. JiménezV.M. Functional properties of coffee and coffee by-products.Food Res. Int.201246248849510.1016/j.foodres.2011.05.028
    [Google Scholar]
  12. ChambersD. PhanU. ChanadangS. MaughanC. SanchezK. Di DonfrancescoB. GomezD. HigaF. LiH. ChambersE. EsenE. Motivations for food consumption during specific eating occasions in turkey.Foods2016523910.3390/foods502003928231134
    [Google Scholar]
  13. SamoggiaA. RiedelB. Consumers’ perceptions of coffee health benefits and motives for coffee consumption and purchasing.Nutrients201911365310.3390/nu1103065330889887
    [Google Scholar]
  14. PuaA. GohR.M.V. HuangY. TangV.C.Y. EeK.H. CornuzM. LiuS.Q. LassabliereB. YuB. Recent advances in analytical strategies for coffee volatile studies: Opportunities and challenges.Food Chem.202238813297110.1016/j.foodchem.2022.13297135462220
    [Google Scholar]
  15. SenindeD.R. ChambersE.IV Coffee flavor: A review.Beverages2020634410.3390/beverages6030044
    [Google Scholar]
  16. FebriantoN.A. ZhuF. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties.Food Chem.202341213548910.1016/j.foodchem.2023.13548936716620
    [Google Scholar]
  17. UmanE. Colonna-DashwoodM. Colonna-DashwoodL. PergerM. KlattC. LeightonS. MillerB. ButlerK.T. MelotB.C. SpeirsR.W. HendonC.H. The effect of bean origin and temperature on grinding roasted coffee.Sci. Rep.2016612448310.1038/srep2448327086837
    [Google Scholar]
  18. VáradyM. TauchenJ. FraňkováA. KloučekP. PopelkaP. Effect of method of processing specialty coffee beans (natural, washed, honey, fermentation, maceration) on bioactive and volatile compounds.Lebensm. Wiss. Technol.202217211424510.1016/j.lwt.2022.114245
    [Google Scholar]
  19. SpillerM.A. The chemical components of coffee.Caffeine. SpillerG.A. CRC Press; Boca RatonNewYork, NY, USA199897161
    [Google Scholar]
  20. SaudS. SalamatullahA.M. Relationship between the chemical composition and the biological functions of coffee.Molecules20212624763410.3390/molecules2624763434946716
    [Google Scholar]
  21. ChauguleA. PatilH. PagariyaS. IngleP. Extraction of caffeine.Int. J. Adv. Res. Chem. Sci.2019691119
    [Google Scholar]
  22. EvansJ. RichardsJ.R. BattistiA.S. Caffeine.StatPearls.Treasure Island, FLStatPearls Publishing202430137774
    [Google Scholar]
  23. DalyJ.W. ShiD. NikodijevicO. JacobsonK.A. The role of adenosine receptors in the central action of caffeine.Pharmacopsychoecologia19947220121325821357
    [Google Scholar]
  24. RibeiroJ.A. SebastiãoA.M. Caffeine and adenosine.J. Alzheimers Dis.201020s1Suppl. 1S3S1510.3233/JAD‑2010‑137920164566
    [Google Scholar]
  25. AguiarA.S.Jr SpeckA.E. CanasP.M. CunhaR.A. Neuronal adenosine A2A receptors signal ergogenic effects of caffeine.Sci. Rep.20201011341410.1038/s41598‑020‑69660‑132770138
    [Google Scholar]
  26. YeagerS.E. BataliM.E. GuinardJ.X. RistenpartW.D. Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition.Crit. Rev. Food Sci. Nutr.20236381010103610.1080/10408398.2021.195776734553656
    [Google Scholar]
  27. RuneC. J. B. GiacaloneD. SteenI. DuelundL. MünchowM. ClausenM. P. Acids in brewed coffees: Chemical composition and sensory threshold.Curr. Res. Food Sci.2023610048510.1016/j.crfs.2023.10048537033739
    [Google Scholar]
  28. OosterveldA. VoragenA.G.J. ScholsH.A. Effect of roasting on the carbohydrate composition of Coffea arabica beans.Carbohydr. Polym.200354218319210.1016/S0144‑8617(03)00164‑4
    [Google Scholar]
  29. AryaM. RaoL.J.M. An impression of coffee carbohydrates.Crit. Rev. Food Sci. Nutr.2007471516710.1080/1040839060055031517364695
    [Google Scholar]
  30. PortilloO.R. ArévaloA.C. Coffee’s carbohydrates. A critical review of scientific literature.Bionatura20227311210.21931/RB/2022.07.03.11
    [Google Scholar]
  31. AngeloniS. MustafaA.M. AboueleneinD. AlessandroniL. AcquaticciL. NzekoueF.K. PetrelliR. SagratiniG. VittoriS. TorregianiE. CaprioliG. Characterization of the Aroma Profile and Main Key Odorants of Espresso Coffee.Molecules20212613385610.3390/molecules2613385634202706
    [Google Scholar]
  32. WangX. WangY. HuG. HongD. GuoT. LiJ. LiZ. QiuM. Review on factors affecting coffee volatiles: From seed to cup.J. Sci. Food Agric.202210241341135210.1002/jsfa.1164734778973
    [Google Scholar]
  33. JandaK. JakubczykK. Baranowska-BosiackaI. KapczukP. KochmanJ. Rębacz-MaronE. GutowskaI. Mineral composition and antioxidant potential of coffee beverages depending on the brewing method.Foods20209212110.3390/foods902012131979386
    [Google Scholar]
  34. GilliesM.E. BirkbeckJ.A. Tea and coffee as sources of some minerals in the New Zealand diet.Am. J. Clin. Nutr.198338693694210.1093/ajcn/38.6.9366650450
    [Google Scholar]
  35. Zuhair Mohd ZainM. ShoriA.B. BabaA.S. Composition and health properties of coffee bean.Euro. J. Clini. Biomedi. Sci.2017359710010.11648/j.ejcbs.20170305.13
    [Google Scholar]
  36. OlechnoE. Puścion-JakubikA. SochaK. ZujkoM.E. Coffee brews: Are they a source of macroelements in human nutrition?Foods2021106132810.3390/foods1006132834207680
    [Google Scholar]
  37. CoryH. PassarelliS. SzetoJ. TamezM. MatteiJ. The role of polyphenols in human health and food systems: A mini-review.Front. Nutr.201858710.3389/fnut.2018.0008730298133
    [Google Scholar]
  38. RudrapalM. KhairnarS.J. KhanJ. DukhyilA.B. AnsariM.A. AlomaryM.N. AlshabrmiF.M. PalaiS. DebP.K. DeviR. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action.Front. Pharmacol.20221380647010.3389/fphar.2022.80647035237163
    [Google Scholar]
  39. LIczbińskiP. BukowskaB. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations.Ind. Crops Prod.202217511426510.1016/j.indcrop.2021.11426534815622
    [Google Scholar]
  40. MakisoM.U. TolaY.B. OgahO. EndaleF.L. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review.Food Sci. Nutr.202412273476410.1002/fsn3.384838370073
    [Google Scholar]
  41. ZakidouP. PlatiF. MatsakidouA. VarkaE.M. BlekasG. ParaskevopoulouA. Single origin coffee aroma: From optimized flavor protocols and coffee customization to instrumental volatile characterization and chemometrics.Molecules20212615460910.3390/molecules2615460934361765
    [Google Scholar]
  42. PhamM.C. DinhN.Y. PhuH.L. Coffee volatile compounds.Int. J. Food Sci. Nutr.2023835057
    [Google Scholar]
  43. ButtM.S. SultanM.T. Coffee and its consumption: Benefits and risks.Crit. Rev. Food Sci. Nutr.201151436337310.1080/1040839090358641221432699
    [Google Scholar]
  44. BidelS. TuomilehtoJ. The emerging health benefits of coffee with an emphasis on type 2 diabetes and cardiovascular disease.Eur. Endocrinol.2013929910629922362
    [Google Scholar]
  45. PooleR. KennedyO.J. RoderickP. FallowfieldJ.A. HayesP.C. ParkesJ. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes.BMJ2017359j502410.1136/bmj.j502429167102
    [Google Scholar]
  46. SafeS. KothariJ. HailemariamA. UpadhyayS. DavidsonL.A. ChapkinR.S. Health benefits of coffee consumption for cancer and other diseases and mechanisms of action.Int. J. Mol. Sci.2023243270610.3390/ijms2403270636769029
    [Google Scholar]
  47. YuX. BaoZ. ZouJ. DongJ. Coffee consumption and risk of cancers: A meta-analysis of cohort studies.BMC Cancer20111119610.1186/1471‑2407‑11‑9621406107
    [Google Scholar]
  48. SaabS. MallamD. CoxG.A.II TongM.J. Impact of coffee on liver diseases: A systematic review.Liver Int.201434449550410.1111/liv.1230424102757
    [Google Scholar]
  49. TamuraT. HishidaA. WakaiK. Coffee consumption and liver cancer risk in Japan: A meta-analysis of six prospective cohort studies.Nagoya J. Med. Sci.201981114315030962663
    [Google Scholar]
  50. RuxtonC.H.S. The impact of caffeine on mood, cognitive function, performance and hydration: A review of benefits and risks.Nutr. Bull.2008331152510.1111/j.1467‑3010.2007.00665.x
    [Google Scholar]
  51. LazarusM. ShenH.Y. CherasseY. QuW.M. HuangZ.L. BassC.E. Winsky-SommererR. SembaK. FredholmB.B. BoisonD. HayaishiO. UradeY. ChenJ.F. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens.J. Neurosci.20113127100671007510.1523/JNEUROSCI.6730‑10.201121734299
    [Google Scholar]
  52. FianiB. ZhuL. MuschB.L. BricenoS. AndelR. SadeqN. AnsariA.Z. The neurophysiology of caffeine as a central nervous system stimulant and the resultant effects on cognitive function.Cureus2021135e1503210.7759/cureus.1503234150383
    [Google Scholar]
  53. SantosC. CostaJ. SantosJ. Vaz-CarneiroA. LunetN. Caffeine intake and dementia: Systematic review and meta-analysis.J. Alzheimers Dis.201020s1Suppl. 1S187S20410.3233/JAD‑2010‑09138720182026
    [Google Scholar]
  54. CamfieldD.A. StoughC. FarrimondJ. ScholeyA.B. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: A systematic review and meta-analysis.Nutr. Rev.201472850752210.1111/nure.1212024946991
    [Google Scholar]
  55. WoodS. SageJ.R. ShumanT. AnagnostarasS.G. Psychostimulants and cognition: A continuum of behavioral and cognitive activation.Pharmacol. Rev.201466119322110.1124/pr.112.00705424344115
    [Google Scholar]
  56. GrahamT.E. Caffeine and exercise.Sports Med.2001311178580710.2165/00007256‑200131110‑0000211583104
    [Google Scholar]
  57. GuestN.S. VanDusseldorpT.A. NelsonM.T. GrgicJ. SchoenfeldB.J. JenkinsN.D.M. ArentS.M. AntonioJ. StoutJ.R. TrexlerE.T. Smith-RyanA.E. GoldsteinE.R. KalmanD.S. CampbellB.I. International society of sports nutrition position stand: Caffeine and exercise performance.J. Int. Soc. Sports Nutr.2021181110.1186/s12970‑020‑00383‑433388079
    [Google Scholar]
  58. NehligA. DavalJ.L. DebryG. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects.Brain Res. Brain Res. Rev.199217213917010.1016/0165‑0173(92)90012‑B1356551
    [Google Scholar]
  59. ReddyV.S. ShivaS. ManikantanS. RamakrishnaS. Pharmacology of caffeine and its effects on the human body.Europ. J. Med. Chem. Rep.20241010013810.1016/j.ejmcr.2024.100138
    [Google Scholar]
  60. WangL. ShenX. WuY. ZhangD. Coffee and caffeine consumption and depression: A meta-analysis of observational studies.Aust. N. Z. J. Psychiatry201650322824210.1177/000486741560313126339067
    [Google Scholar]
  61. GrossoG. MicekA. CastellanoS. PajakA. GalvanoF. Coffee, tea, caffeine and risk of depression: A systematic review and dose–response meta-analysis of observational studies.Mol. Nutr. Food Res.201660122323410.1002/mnfr.20150062026518745
    [Google Scholar]
  62. LucasM. MirzaeiF. PanA. OkerekeO.I. WillettW.C. O’ReillyÉ.J. KoenenK. AscherioA. Coffee, caffeine, and risk of depression among women.Arch. Intern. Med.2011171171571157810.1001/archinternmed.2011.39321949167
    [Google Scholar]
  63. FarahA. de Paula LimaJ. Consumption of chlorogenic acids through coffee and health implications.Beverages2019511110.3390/beverages5010011
    [Google Scholar]
  64. MohamedA.I. ErukainureO.L. SalauV.F. IslamM.S. Impact of coffee and its bioactive compounds on the risks of type 2 diabetes and its complications: A comprehensive review.Diabetes Metab. Syndr.202418710307510.1016/j.dsx.2024.10307539067326
    [Google Scholar]
  65. SchubertM.M. IrwinC. SeayR.F. ClarkeH.E. AllegroD. DesbrowB. Caffeine, coffee, and appetite control: A review.Int. J. Food Sci. Nutr.201768890191210.1080/09637486.2017.132053728446037
    [Google Scholar]
  66. TabriziR. SaneeiP. LankaraniK.B. AkbariM. KolahdoozF. EsmaillzadehA. Nadi-RavandiS. MazoochiM. AsemiZ. The effects of caffeine intake on weight loss: A systematic review and dos-response meta-analysis of randomized controlled trials.Crit. Rev. Food Sci. Nutr.201959162688269610.1080/10408398.2018.150799630335479
    [Google Scholar]
  67. ShangF. LiX. JiangX. Coffee consumption and risk of the metabolic syndrome: A meta-analysis.Diabetes Metab.2016422808710.1016/j.diabet.2015.09.00126431818
    [Google Scholar]
  68. Corbi-Cobo-LoseyM.J. Martinez-GonzalezM.Á. GribbleA.K. Fernandez-MonteroA. NavarroA.M. DomínguezL.J. Bes-RastrolloM. ToledoE. Coffee consumption and the risk of metabolic syndrome in the ‘seguimiento universidad de navarra’ project.Antioxidants202312368610.3390/antiox1203068636978934
    [Google Scholar]
  69. AlshahraniS.H. AtiaY.A. BadirR.A. AlmalkiS.G. TayyibN.A. ShahabS. Romero-ParraR.M. AbidM.K. HussienB.M. RamaiahP. Dietary caffeine intake is associated with favorable metabolic profile among apparently healthy overweight and obese individuals.BMC Endocr. Disord.202323122710.1186/s12902‑023‑01477‑137864190
    [Google Scholar]
  70. RodakK. KokotI. KratzE.M. Caffeine as a factor influencing the functioning of the human body—friend or foe?Nutrients2021139308810.3390/nu1309308834578966
    [Google Scholar]
  71. JeeS. H. HeJ. WheltonP. K. SuhI. KlagM. J. The effect of chronic coffee drinking on blood pressure: A meta-analysis of controlled clinical trials.Hypertension.199933264765210.1161/01.HYP.33.2.64710024321
    [Google Scholar]
  72. NurminenM-L. NiittynenL. KorpelaR. VapaataloH. Coffee, caffeine and blood pressure: A critical review.Eur. J. Clin. Nutr.1999531183183910.1038/sj.ejcn.160089910556993
    [Google Scholar]
  73. Abbas-HashemiS.A. HosseininasabD. RastgooS. ShirasebF. AsbaghiO. The effects of caffeine supplementation on blood pressure in adults: A systematic review and dose-response meta-analysis.Clin. Nutr. ESPEN20235816517710.1016/j.clnesp.2023.09.92338057002
    [Google Scholar]
  74. MesasA.E. Leon-MuñozL.M. Rodriguez-ArtalejoF. Lopez-GarciaE. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: A systematic review and meta-analysis.Am. J. Clin. Nutr.20119441113112610.3945/ajcn.111.01666721880846
    [Google Scholar]
  75. HartleyT. R. SungB. H. PincombG. A. WhitsettT. L. WilsonM. F. LovalloW. R. Hypertension risk status and effect of caffeine on blood pressure.Hypertension.200036113714110.1161/01.HYP.36.1.13710904026
    [Google Scholar]
  76. TuasikalM.I. FelaniM.R. FathoniM.Y. SabaraS.M.A. 74. The effect of caffeinated coffee on blood pressure: A systematic review.J. Hypertens.202139Suppl. 2e19e2010.1097/01.hjh.0000752644.80309.6e
    [Google Scholar]
  77. PapadelisC. Kourtidou-PapadeliC. VlachogiannisE. SkepastianosP. BamidisP. MaglaverasN. PappasK. Effects of mental workload and caffeine on catecholamines and blood pressure compared to performance variations.Brain Cogn.200351114315410.1016/S0278‑2626(02)00530‑412633594
    [Google Scholar]
  78. BarcelosR.P. LimaF.D. CarvalhoN.R. BrescianiG. RoyesL.F.F. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance.Nutr. Res.20208011710.1016/j.nutres.2020.05.00532589582
    [Google Scholar]
  79. ZhangY. CocaA. CasaD.J. AntonioJ. GreenJ.M. BishopP.A. Caffeine and diuresis during rest and exercise: A meta-analysis.J. Sci. Med. Sport201518556957410.1016/j.jsams.2014.07.01725154702
    [Google Scholar]
  80. MarxB. ScuvéeÉ. Scuvée-MoreauJ. SeutinV. JouretF. Mechanisms of caffeine-induced diuresis.Med. Sci.201632548549010.1051/medsci/2016320501527225921
    [Google Scholar]
  81. BorghiC. Coffee and blood pressure: Exciting news!Blood Press.202231128428710.1080/08037051.2022.213662136316990
    [Google Scholar]
  82. KujawskaA. KujawskiS. HajecW. SkierkowskaN. KwiatkowskaM. HusejkoJ. NewtonJ.L. SimoesJ.A. ZalewskiP. Kędziora-KornatowskaK. Coffee Consumption and blood pressure: Results of the second wave of the cognition of older people, education, recreational activities, nutrition, comorbidities, and functional capacity studies (Copernicus).Nutrients20211310337210.3390/nu1310337234684373
    [Google Scholar]
  83. TandionoE.J. BudiyantiE. The effect of coffee consumption on acute increased blood pressure in normotensive teens.J. Urb. Heal. Res.202312798410.25170/juhr.v1i2.4297
    [Google Scholar]
  84. CiceroA.F.G. FogacciF. D’AddatoS. GrandiE. RizzoliE. BorghiC. Self-reported coffee consumption and central and peripheral blood pressure in the cohort of the brisighella heart study.Nutrients202315231210.3390/nu1502031236678184
    [Google Scholar]
  85. Lima de CastroF.B.A. CastroF.G. da CunhaM.R. PachecoS. Freitas-SilvaO. NevesM.F. KleinM.R.S.T. Acute effects of coffee consumption on blood pressure and endothelial function in individuals with hypertension on antihypertensive drug treatment: A randomized crossover trial.High Blood Press. Cardiovasc. Prev.2024311657610.1007/s40292‑024‑00622‑838308805
    [Google Scholar]
  86. NurvitaS. RizkaprilisaW. Coffee and blood pressure.Coff. Sci.202419e192193
    [Google Scholar]
  87. PizziolA. TikhonoffV. PaleariC.D. RussoE. MazzaA. GinocchioG. OnestoC. PavanL. CasigliaE. PessinaA.C. Effects of caffeine on glucose tolerance: A placebo-controlled study.Eur. J. Clin. Nutr.1998521184684910.1038/sj.ejcn.16006579846599
    [Google Scholar]
  88. GreerF. HudsonR. RossR. GrahamT. Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans.Diabetes200150102349235410.2337/diabetes.50.10.234911574419
    [Google Scholar]
  89. KeijzersG.B. De GalanB.E. TackC.J. SmitsP. Caffeine can decrease insulin sensitivity in humans.Diabetes Care200225236436910.2337/diacare.25.2.36411815511
    [Google Scholar]
  90. van DamR.M. FeskensE.J.M. Coffee consumption and risk of type 2 diabetes mellitus.Lancet200236093441477147810.1016/S0140‑6736(02)11436‑X12433517
    [Google Scholar]
  91. ArnlövJ. VessbyB. RisérusU. Coffee consumption and insulin sensitivity.JAMA2004291101199-a120110.1001/jama.291.10.1199‑b15010440
    [Google Scholar]
  92. RosengrenA. DotevallA. WilhelmsenL. ThelleD. JohanssonS. Coffee and incidence of diabetes in Swedish women: A prospective 18-year follow-up study.J. Intern. Med.20042551899510.1046/j.1365‑2796.2003.01260.x14687243
    [Google Scholar]
  93. DingP. YueW. WangX. ZhangY. LiuY. GuoX. Effects of sugary drinks, coffee, tea and fruit juice on incidence rate, mortality and cardiovascular complications of type2 diabetes patients: A systematic review and meta-analysis.J. Diabetes Metab. Disord.20242311113112310.1007/s40200‑024‑01396‑538932853
    [Google Scholar]
  94. Rezaei TaviraniM. FarahaniM. Rezaei TaviraniM. RazzaghiZ. ArjmandB. KhodadoostM. Introducing coffee as a complementary agent beside metformin against type 2 diabetes.Res. J. Pharmacog.20241133140
    [Google Scholar]
  95. CucuA.A. BaciG.M. MoiseA.R. DezsiŞ. MarcB.D. StângaciuŞ. DezmireanD.S. Towards a better understanding of nutritional and therapeutic effects of honey and their applications in apitherapy.Appl. Sci.2021119419010.3390/app11094190
    [Google Scholar]
  96. OteroM.C.B. BernoloL. Honey as Functional Food and Prospects in Natural Honey Production.Functional Foods and Nutraceuticals. EgbunaC. Dable TupasG. ChamSpringer202010.1007/978‑3‑030‑42319‑3_11
    [Google Scholar]
  97. AdgabaN. Al-GhamdiA. TadesseY. GetachewA. AwadA.M. AnsariM.J. OwayssA.A. MohammedS.E.A. AlqarniA.S. Nectar secretion dynamics and honey production potentials of some major honey plants in Saudi Arabia.Saudi J. Biol. Sci.201724118019110.1016/j.sjbs.2016.05.00228053589
    [Google Scholar]
  98. HooverS.E. OvingeL.P. Pollen collection, honey production, and pollination services: Managing honey bees in an agricultural setting.J. Econ. Entomol.201811141509151610.1093/jee/toy12529746645
    [Google Scholar]
  99. da SilvaP.M. GaucheC. GonzagaL.V. CostaA.C.O. FettR. Honey: Chemical composition, stability and authenticity.Food Chem.201619630932310.1016/j.foodchem.2015.09.05126593496
    [Google Scholar]
  100. KhanS.U. AnjumS.I. RahmanK. AnsariM.J. KhanW.U. KamalS. KhattakB. MuhammadA. KhanH.U. Honey: Single food stuff comprises many drugs.Saudi J. Biol. Sci.201825232032510.1016/j.sjbs.2017.08.00429472785
    [Google Scholar]
  101. GündoğduE. ÇakmakçıS. Şatİ.G. An overview of honey: Its composition, nutritional and functional properties.J. Food Sci. Eng.201991014
    [Google Scholar]
  102. KhalilM.L. SulaimanS.A. The potential role of honey and its polyphenols in preventing heart disease: A review.Afr. J. Tradit. Complement. Altern. Med.20107431532110.4314/ajtcam.v7i4.5669321731163
    [Google Scholar]
  103. MandalM.D. MandalS. Honey: Its medicinal property and antibacterial activity.Asian Pac. J. Trop. Biomed.20111215416010.1016/S2221‑1691(11)60016‑623569748
    [Google Scholar]
  104. SimonA. TraynorK. SantosK. BlaserG. BodeU. MolanP. Medical honey for wound care-still the ‘latest resort’?Evid. Based Complement. Alternat. Med.20096216517310.1093/ecam/nem17518955301
    [Google Scholar]
  105. YaghoobiR. KazerouniA. kazerouniO. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory anti-oxidant and anti-viral agent: A review.Jundishapur J. Nat. Pharm. Prod.20138310010410.17795/jjnpp‑948724624197
    [Google Scholar]
  106. SamarghandianS. FarkhondehT. SaminiF. Honey and health: A review of recent clinical research.Pharmacognosy Res.20179212112728539734
    [Google Scholar]
  107. OlusolaA. OlubobokunT.H. BasseyI.E. AtangD.E. Comparative study of effect of honey on blood pressure and heart rate in healthy male and female subjects.Br. J. Med. Med. Res.2013342214222110.9734/BJMMR/2013/4152
    [Google Scholar]
  108. RasadH. DashtabiA. KhansariM. ChaboksavarF. PahlavaniN. MaghsoudiZ. EntezariM.H. The effect of honey consumption compared with sucrose on blood pressure and fasting blood glucose in healthy young subjects.J. Med. Food20144117121
    [Google Scholar]
  109. ZhangS. LuZ. TianC. ZhangQ. LiuL. MengG. YaoZ. WuH. XiaY. BaoX. GuY. SunS. WangX. ZhouM. JiaQ. SunZ. SongK. NiuK. Associations between honey consumption and prehypertension in adults aged 40 years and older.Clin. Exp. Hypertens.202042542042710.1080/10641963.2019.169358431760826
    [Google Scholar]
  110. HashimK.N. ChinK.Y. AhmadF. The mechanism of honey in reversing metabolic syndrome.Molecules202126480810.3390/molecules2604080833557218
    [Google Scholar]
  111. KumarR. KumarS. KanwarS.S. Pharmacological Properties of Honey.Biomedical Perspectives of Herbal Honey.SingaporeSpringer202410.1007/978‑981‑97‑1529‑9_2
    [Google Scholar]
  112. Al-WailiN. Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: Comparison with dextrose and sucrose.J. Med. Food2011141001100915117561
    [Google Scholar]
  113. AbdulrhmanM. El HefnawyM. AliR. Abdel HamidI. Abou El-GoudA. RefaiD. Effects of honey, sucrose and glucose on blood glucose and C-peptide in patients with type 1 diabetes mellitus.Complement. Ther. Clin. Pract.2013191151910.1016/j.ctcp.2012.08.00223337559
    [Google Scholar]
  114. MajidM. YounisM.A. NaveedA.K. ShahM.U. AzeemZ. TirmiziS.H. Effects of natural honey on blood glucose and lipid profile in young healthy Pakistani males.J. Ayub Med. Coll. Abbottabad2013253-4444725226738
    [Google Scholar]
  115. BobişO. DezmireanD.S. MoiseA.R. Honey and diabetes: The importance of natural simple sugars in diet for preventing and treating different type of diabetes.Oxid. Med. Cell. Longev.201820181475789310.1155/2018/475789329507651
    [Google Scholar]
  116. El-AaragB. ShehataS.B. El-GarawaniI.M. El-SeediH.R. NofalA.E. Regulation of oxidative stress and apoptosis in streptozotocin-induced diabetic rats by egyptian sidr honey.Chem. Biodivers.2024217e20240035110.1002/cbdv.20240035138717108
    [Google Scholar]
  117. JamwalN. JasrotiaR. BadyalN. HajamY.A. LangerS. Honey: An Antidiabetic and Hypoglycemic Agent to Reverse Diabetes-Induced Complications.Honey in Food Science and Physiology. KumarR. HajamY.A. Bala DhullS. GiriA. SingaporeSpringer202410.1007/978‑981‑97‑3565‑5_16
    [Google Scholar]
  118. CharanJ. BiswasT. How to calculate sample size for different study designs in medical research?Indian J. Psychol. Med.201335212112610.4103/0253‑7176.11623224049221
    [Google Scholar]
  119. GreenP. J. KirbyR. SulsJ. The effects of caffeine on blood pressure and heart rate: A review.Ann. Behav. Med.199618320121610.1007/BF0288339824203773
    [Google Scholar]
  120. HaraA. OhideH. MiyagawaK. TakeuchiT. NakataniY. YokoyamaH. AmanoT. Acute effects of caffeine on blood pressure and heart rate in habitual and non-habitual coffee consumers.Japan. J. Pharmac. Heal. Care. Sci.201440738338810.5649/jjphcs.40.383
    [Google Scholar]
  121. GeleijnseM. Habitual coffee consumption and blood pressure: An epidemiological perspective.Vasc. Health Risk Manag.20084596397010.2147/VHRM.S305519183744
    [Google Scholar]
  122. ClaudioB. BragagniA. New evidence on coffee consumption, hypertension and cardiovascular diseases.G. Ital. Cardiol.202223532332710.1714/3796.3781435578955
    [Google Scholar]
  123. KatarzynaB. WojciechS. MartaP. FilipS. DariaW. MonikaR. SergiuszN. The effect of coffee on blood pressure at healthy subjects.Pol. Merkur. Lekarski.20133520713313524224448
    [Google Scholar]
  124. K AlhabeebM. M AlazzmiM. S AlrashidiM. Al-SowayanN.S. Effect of caffeinated and decaffeinated coffee on blood pressure and heart rate of healthy individuals.Pak. J. Biol. Sci.202225433734410.3923/pjbs.2022.337.34435638528
    [Google Scholar]
  125. ReisC.E.G. DóreaJ.G. da CostaT.H.M. Effects of coffee consumption on glucose metabolism: A systematic review of clinical trials.J. Tradit. Complement. Med.20199318419110.1016/j.jtcme.2018.01.00131193893
    [Google Scholar]
  126. ShailendraS.B. ArchanaK. Role of honey as a dietary adjunct for improvements of glycemic status and body weight in healthy individuals.Int. J. Contemp. Medi. Res.201967
    [Google Scholar]
  127. AbdullahM. J. IntisarA. WisamE. ZainabA. ItharM. MarwaM. AhmedS. Glycemic response to three different types of locally produced natural honey compared with dextrose and ordinary table sugar in apparently healthy volunteers.The Medi. J. Basr. Univer.2008262697510.33762/mjbu.2008.48372
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X348787241217103918
Loading
/content/journals/chddt/10.2174/011871529X348787241217103918
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): blood glucose; Coffee; diastolic blood pressure; heart rate; honey; systolic blood pressure
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test