Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Introduction

In-stent restenosis (ISR) is a recurrence of a blockage in a section of the coronary artery that has previously been treated with a stent. Molecular/biochemical pathways underlying ISR are not fully understood, but inflammation and reactive oxygen species (ROS) induced oxidative stress play a significant role in the pathogenesis of restenosis. As blood cells are highly sensitive to oxidative stress and blood is readily accessible compared to other tissues, the current study flow cytometrically investigated intracellular ROS and cytokine profile of blood cells as possible markers of restenosis. Flow cytometry is commonly used for detecting ROS and analyzing oxidative stress but so far, it has not been utilized for prediction of ISR. So, the aim of the study was to explore the potential of flow cytometric assessment of ROS levels in the blood cells as predictor of ISR.

Methods

The study was carried out in a total of 60 patients who had previously undergone coronary artery stent implantation. They were categorized as Group I - Coronary stent implanted patients without restenosis (n=30) and Group II - Coronary stent implanted patients with restenosis (n=30). Sociodemographics, biochemical and angiographic characteristics were assessed. Intracellular ROS and cytokine estimation in blood cells was done by using flow cytometric analysis.

Results

Flow cytometric measurements demonstrated a 1.3-fold increase in ROS levels in red blood cells (RBCs) and 2-fold increase in ROS levels in leucocytes in group II as compared to group I. Mean serum concentrations of pro-inflammatory cytokines: tumor necrosis factor-α (33.54 ± 6.48 . 20.10 ± 5.61, <0.001***), interferon-gamma (21.76 ± 4.46 . 20.10 ± 5.61, <0.001***), interleukin 6 (152.56 ± 30.67 . 113.95 ± 23.38, <0.001***) were found to be higher in restenotic patients as compared to the non-restenotic patients. Correlation analysis showed that intracellular ROS levels of RBCs exhibited a significant positive correlation with late lumen loss in restenotic (r=0.71, <0.01) as well as non-restenotic patients (r=0.59, <0.01). Similarly, intracellular ROS levels of WBCs exhibited a significant positive correlation with late lumen loss in restenotic (r=0.72, <0.01) as well as non-restenotic patients (r=0.61, <0.01).

Conclusion

This study highlights the role of increased levels of intracellular ROS in blood cells in the subsequent development of ISR, which can be detected flow cytometrically. The study suggests that intracellular ROS estimation in blood cells may serve as a potential marker for restenosis and their flow cytometric analysis may facilitate the prediction of ISR.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X341683241206073131
2024-12-16
2025-09-01
Loading full text...

Full text loading...

References

  1. MalakarA.K. ChoudhuryD. HalderB. PaulP. UddinA. ChakrabortyS. A review on coronary artery disease, its risk factors, and therapeutics.J. Cell. Physiol.201923410168121682310.1002/jcp.2835030790284
    [Google Scholar]
  2. NowbarA.N. GittoM. HowardJ.P. FrancisD.P. Al-LameeR. Mortality from ischemic heart disease: Analysis of data from the World Health Organization and coronary artery disease risk factors From NCD Risk Factor Collaboration.Circ. Cardiovasc. Qual. Outcomes2019126e00537510.1161/CIRCOUTCOMES.118.00537531163980
    [Google Scholar]
  3. Sreeniwas KumarA. SinhaN. Cardiovascular disease in India: A 360 degree overview.Med. J. Armed Forces India20207611310.1016/j.mjafi.2019.12.00532020960
    [Google Scholar]
  4. IyengarS.S. GuptaR. RaviS. ThangamS. AlexanderT. ManjunathC.N. KeshavaR. PatilC.B. SheelaA. SawhneyJ.P.S. Premature coronary artery disease in India: coronary artery disease in the young (CADY) registry.Indian Heart J.201769221121610.1016/j.ihj.2016.09.00928460769
    [Google Scholar]
  5. ShaoC. WangJ. TianJ. TangY.D. Coronary artery disease: From mechanism to clinical practice.Adv. Exp. Med. Biol.2020117713610.1007/978‑981‑15‑2517‑9_1
    [Google Scholar]
  6. ZaromitidouM. SiasosG. PapageorgiouN. OikonomouE. TousoulisD. Atherosclerosis and coronary artery disease: From basics to genetics.Cardiovascular Diseases.Academic Press201632410.1016/B978‑0‑12‑803312‑8.00002‑1
    [Google Scholar]
  7. NagT. GhoshA. Cardiovascular disease risk factors in Asian Indian population: A systematic review.J. Cardiovasc. Dis. Res.20134422222824653585
    [Google Scholar]
  8. UllahM. WahabA. KhanS.U. ZamanU. RehmanK. HamayunS. NaeemM. AliH. RiazT. SaeedS. AlsuhaibaniA.M. RefatM.S. Stent as a novel technology for coronary artery disease and their clinical manifestation.Curr. Probl. Cardiol.202348110141510.1016/j.cpcardiol.2022.10141536155199
    [Google Scholar]
  9. GiustinoG. ColomboA. CamajA. YasumuraK. MehranR. StoneG.W. KiniA. SharmaS.K. Coronary in-stent restenosis: JACC state-of-the-art review.J. Am. Coll. Cardiol.202280434837210.1016/j.jacc.2022.05.01735863852
    [Google Scholar]
  10. BajeuI.T. NiculescuA.G. Scafa-UdrișteA. AndronescuE. Intrastent restenosis: a comprehensive review.Int. J. Mol. Sci.2024253171510.3390/ijms2503171538338993
    [Google Scholar]
  11. KimM.S. DeanL.S. In-Stent Restenosis.Cardiovasc. Ther.201129319019810.1111/j.1755‑5922.2010.00155.x20406239
    [Google Scholar]
  12. DangasG.D. ClaessenB.E. CaixetaA. SanidasE.A. MintzG.S. MehranR. In-stent restenosis in the drug-eluting stent era.J. Am. Coll. Cardiol.201056231897190710.1016/j.jacc.2010.07.02821109112
    [Google Scholar]
  13. FarooqV. GogasB.D. SerruysP.W. Restenosis.Circ. Cardiovasc. Interv.20114219520510.1161/CIRCINTERVENTIONS.110.95988221505166
    [Google Scholar]
  14. UllrichH. OlschewskiM. MünzelT. GoriT. Coronary in-stent restenosis: predictors and treatment.Dtsch. Arztebl. Int.20211183863764434379053
    [Google Scholar]
  15. MisraP. ReddyP.C. ShuklaD. CalditoG.C. YerraL. AwT.Y. In-stent stenosis: potential role of increased oxidative stress and glutathione-linked detoxification mechanisms.Angiology200859446947410.1177/000331970730965118504266
    [Google Scholar]
  16. ScicchitanoP. CorteseF. GesualdoM. De PaloM. MassariF. GiordanoP. CicconeM.M. The role of endothelial dysfunction and oxidative stress in cerebrovascular diseases.Free Radic. Res.201953657959510.1080/10715762.2019.162093931106620
    [Google Scholar]
  17. AzevedoL. PedroM.A. SouzaL.C. de SouzaH.P. JaniszewskiM. da LuzP.L. LaurindoF.R. Oxidative stress as a signaling mechanism of the vascular response to injury The redox hypothesis of restenosis.Cardiovasc. Res.200047343644510.1016/S0008‑6363(00)00091‑210963717
    [Google Scholar]
  18. TardifJ.C. GrégoireJ. BourassaM.G. Antioxidants and restenosis—human studies.Antioxidants and Cardiovascular Disease.DordrechtSpringer Netherlands200017519110.1007/978‑94‑011‑4375‑2_12
    [Google Scholar]
  19. LiX. GuoD. HuY. ZhouH. ChenY. Potential biomarkers and therapeutic targets: Inflammation and oxidative stress in left carotid artery stenosis with coronary artery disease.Curr. Pharm. Des.2023291296697910.2174/138161282966623041710014437073146
    [Google Scholar]
  20. KurtulA. OrnekE. Platelet to lymphocyte ratio in cardiovascular diseases: a systematic review.Angiology201970980281810.1177/000331971984518631030530
    [Google Scholar]
  21. AyçaB. AkinF. ÇelikÖ. YükselY. ÖztürkD. TekinerF. ÇetinŞ. OkuyanE. Dinçkal MH. Platelet to lymphocyte ratio as a prognostic marker in primary percutaneous coronary intervention.Platelets201526763864410.3109/09537104.2014.96811725350375
    [Google Scholar]
  22. BolcaO. GüngörB. ÖzcanK.S. KaradenizF.Ö. SungurA. KöroğluB. BakhshyaliyevN. YelgeçN.S. KarataşB. İpekG. YilmazH. ÖztürkR. The neutrophil-to-lymphocyte ratio is associated with bare-metal stent restenosis in STEMI patients treated with primary PCI.Coron. Artery Dis.201526540240810.1097/MCA.000000000000025425919903
    [Google Scholar]
  23. MuratS.N. YarliogluesM. CelikI.E. KurtulA. DuranM. KilicA. OksuzF. The relationship between lymphocyte-to-monocyte ratio and bare-metal stent in-stent restenosis in patients with stable coronary artery disease.Clin. Appl. Thromb. Hemost.201723323524010.1177/107602961562734026759373
    [Google Scholar]
  24. WangZ. LiuC. FangH. Blood cell parameters and predicting coronary in-stent restenosis.Angiology201970871171810.1177/000331971983049530773906
    [Google Scholar]
  25. ZhangE. GaoM. GaoJ. XiaoJ. LiX. ZhaoH. WangJ. ZhangN. WangS. LiuY. Inflammatory and hematological indices as simple, practical severity predictors of microdysfunction following coronary intervention: a systematic review and meta-analysis.Angiology202071434935910.1177/000331971989647232013536
    [Google Scholar]
  26. LiC. ShenY. XuR. DaiY. ChangS. LuH. DongZ. DengJ. QianJ. GeJ. Evaluation of preprocedural laboratory parameters as predictors of drug-eluting stent restenosis in coronary chronic total occlusion lesions.Angiology201970327227810.1177/000331971775224529338303
    [Google Scholar]
  27. PandeyK.B. RizviS.I. Biomarkers of oxidative stress in red blood cells.Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub.2011155213113610.5507/bp.2011.027
    [Google Scholar]
  28. AmerJ. GoldfarbA. FibachE. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells.Eur. J. Haematol.2003702849010.1034/j.1600‑0609.2003.00011.x12581189
    [Google Scholar]
  29. AmerJ. GoldfarbA. FibachE. Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells.Cytometry A200460A1738010.1002/cyto.a.2001715229859
    [Google Scholar]
  30. SuoY. GuZ. WeiX. Advances of in vivo flow cytometry on cancer studies.Cytometry A2020971152310.1002/cyto.a.2385131273910
    [Google Scholar]
  31. GeorgakoudiI. SolbanN. NovakJ. RiceW.L. WeiX. HasanT. LinC.P. In vivo flow cytometry: a new method for enumerating circulating cancer cells.Cancer Res.200464155044504710.1158/0008‑5472.CAN‑04‑105815289300
    [Google Scholar]
  32. MaceyM.G. SangsterJ. VeysP.A. NewlandA.C. Flow cytometric analysis of the functional ability of neutrophils from patients with autoimmune neutropenia.J. Microsc.1990159327728310.1111/j.1365‑2818.1990.tb03033.x2243362
    [Google Scholar]
  33. KyriakouD. PapadakiH.A. SakellariouD. EliopoulosA.G. KapsimaliV. EliopoulosG.D. Flow-cytometric analysis of peripheral blood lymphocytes in patients with chronic idiopathic neutropenia of adults.Ann. Hematol.199775310311010.1007/s0027700503229368479
    [Google Scholar]
  34. LuoJ. LiN. Paul RobinsonJ. ShiR. Detection of reactive oxygen species by flow cytometry after spinal cord injury.J. Neurosci. Methods2002120110511210.1016/S0165‑0270(02)00193‑012351211
    [Google Scholar]
  35. KaneganeH. HoshinoA. OkanoT. YasumiT. WadaT. TakadaH. OkadaS. YamashitaM. YehT. NishikomoriR. TakagiM. ImaiK. OchsH.D. MorioT. Flow cytometry-based diagnosis of primary immunodeficiency diseases.Allergol. Int.2018671435410.1016/j.alit.2017.06.00328684198
    [Google Scholar]
  36. SarkarM. VarshneyR. ChopraM. SekhriT. AdhikariJ.S. DwarakanathB.S. Flow-cytometric analysis of reactive oxygen species in peripheral blood mononuclear cells of patients with thyroid dysfunction.Cytometry B Clin. Cytom.200670B1202310.1002/cyto.b.2008216342062
    [Google Scholar]
  37. EmmendörfferA. NakamuraM. RotheG. SpiekermannK. Lohmann-MatthesM.L. RoeslerJ. Evaluation of flow cytometric methods for diagnosis of chronic granulomatous disease variants under routine laboratory conditions.Cytometry199418314715510.1002/cyto.9901803067813334
    [Google Scholar]
  38. MarroccoI. AltieriF. PelusoI. Measurement and clinical significance of biomarkers of oxidative stress in humans.Oxid. Med. Cell. Longev.201720171650104610.1155/2017/650104628698768
    [Google Scholar]
  39. WanC.P. MyungE. LauB.H.S. An automated micro-fluorometric assay for monitoring oxidative burst activity of phagocytes.J. Immunol. Methods19931591-213113810.1016/0022‑1759(93)90150‑68445246
    [Google Scholar]
  40. LiB.X. DuanX.Y. LiM.W. LiX.F. ZhaoQ. WangY.L. LiuA.H. BaoF.K. [Clinical significance of detecting partial cytokines in serum of patients with pulmonary tuberculosis by cytometric bead array].Xibao Yu Fenzi Mianyixue Zazhi201228329730022394642
    [Google Scholar]
  41. ChenX. ZhongZ. XuZ. ChenL. WangY. 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy.Free Radic. Res.201044658760410.3109/1071576100370980220370560
    [Google Scholar]
  42. ZavattiV. Application of flow cytometry and fluorescence spectroscopy to monitor and predict the fermentation activity in a vaccine manufacturing process.PhD thesis, University of Waterloo, 2019.
    [Google Scholar]
  43. RobinsonJ.P. CarterW.O. NarayananP. Functional assays by flow cytometry.Immune Cell Phenotyping And Flow Cytometric AnalysisThermo Fisher Scientific Inc.1997
    [Google Scholar]
  44. YuD. ZhaY. ZhongZ. RuanY. LiZ. SunL. HouS. Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation.Sensors and Actuators B Chem.339129878
    [Google Scholar]
  45. CossarizzaA. FerraresiR. TroianoL. RoatE. GibelliniL. BertoncelliL. NasiM. PintiM. Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry.Nat. Protoc.20094121790179710.1038/nprot.2009.18920010930
    [Google Scholar]
  46. BoylesM. MurphyF. MuellerW. WohllebenW. JacobsenN.R. BraakhuisH. GiustiA. StoneV. Development of a standard operating procedure for the DCFH 2 -DA acellular assessment of reactive oxygen species produced by nanomaterials.Toxicol. Mech. Methods202232643945210.1080/15376516.2022.202965635086424
    [Google Scholar]
  47. ArmstrongJ.S. WhitemanM. Measurement of reactive oxygen species in cells and mitochondria.Methods Cell Biol.20078035537710.1016/S0091‑679X(06)80018‑X17445704
    [Google Scholar]
  48. MengD. ZhangP. ZhangL. WangH. HoC.T. LiS. ShahidiF. ZhaoH. Detection of cellular redox reactions and antioxidant activity assays.J. Funct. Foods20173746747910.1016/j.jff.2017.08.008
    [Google Scholar]
  49. BourbonA. VionnetM. LeprinceP. VaissierE. CopelandJ. McDonaghP. DebréP. GandjbakhchI. The effect of methylprednisolone treatment on the cardiopulmonary bypass-induced systemic inflammatory response.Eur. J. Cardiothorac. Surg.200426593293810.1016/j.ejcts.2004.07.04415519185
    [Google Scholar]
  50. HachiyaM. AkashiM. Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2).Radiat. Res.2005163327128210.1667/RR330615733034
    [Google Scholar]
  51. ScottJ. HomcyC.J. KhawB.A. RabitoC.A. Quantitation of intracellular oxidation in a renal epithelial cell line.Free Radic. Biol. Med.198842798310.1016/0891‑5849(88)90067‑63345920
    [Google Scholar]
  52. CarterW.O. NaryananP.K. RobinsonJ.P. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells.J. Leukoc. Biol.199455225325810.1002/jlb.55.2.2538301222
    [Google Scholar]
  53. SuharaT. FukuoK. SugimotoT. MorimotoS. NakahashiT. HataS. ShimizuM. OgiharaT. Hydrogen peroxide induces up-regulation of Fas in human endothelial cells.J. Immunol.199816084042404710.4049/jimmunol.160.8.40429558114
    [Google Scholar]
  54. TrueA.L. RahmanA. MalikA.B. Activation of NF-κB induced by H 2 O 2 and TNF-α and its effects on ICAM-1 expression in endothelial cells.Am. J. Physiol. Lung Cell. Mol. Physiol.20002792L302L31110.1152/ajplung.2000.279.2.L30210926553
    [Google Scholar]
  55. OyamaY. HayashiA. UehaT. MaekawaK. Characterization of 2′,7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide.Brain Res.19946351-211311710.1016/0006‑8993(94)91429‑X8173945
    [Google Scholar]
  56. RheeS.G. ChangT.S. JeongW. KangD. Methods for detection and measurement of hydrogen peroxide inside and outside of cells.Mol. Cells201029653954910.1007/s10059‑010‑0082‑320526816
    [Google Scholar]
  57. GoudarziF. MohammadalipourA. BahabadiM. GoodarziM.T. SarveazadA. KhodadadiI. Hydrogen peroxide: a potent inducer of differentiation of human adipose-derived stem cells into chondrocytes.Free Radic. Res.201852776377410.1080/10715762.2018.146612129658381
    [Google Scholar]
  58. ZhuangC. XuN.W. GaoG.M. NiS. MiaoK.S. LiC.K. WangL.M. XieH.G. Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro.Int. J. Biol. Macromol.20168732232810.1016/j.ijbiomac.2016.02.03126893055
    [Google Scholar]
  59. Lundqvist-GustafssonH. BengtssonT. Activation of the granule pool of the NADPH oxidase accelerates apoptosis in human neutrophils.J. Leukoc. Biol.199965219620410.1002/jlb.65.2.19610088602
    [Google Scholar]
  60. AzadnivM. TorresA. BosciaJ. SpeersD.M. FrasierL.M. UtellM.J. FramptonM.W. Neutrophils in lung inflammation: Which reactive oxygen species are being measured?Inhal. Toxicol.200113648549510.1080/0895837015113185511445888
    [Google Scholar]
  61. LaochumroonvorapongP. PaulS. ElkonK.B. KaplanG. H2O2 induces monocyte apoptosis and reduces viability of Mycobacterium avium-M. intracellulare within cultured human monocytes.Infect. Immun.199664245245910.1128/iai.64.2.452‑459.19968550191
    [Google Scholar]
  62. PaardekooperL.M. DingjanI. LindersP.T.A. StaalA.H.J. CristescuS.M. VerberkW.C.E.P. van den BogaartG. Human monocyte-derived dendritic cells produce millimolar concentrations of ROS in phagosomes per second.Front. Immunol.201910121610.3389/fimmu.2019.0121631191556
    [Google Scholar]
  63. RahimiK. MaerzH.K. ZotzR.J. TárnokA. Pre-procedural expression of Mac-1 and LFA-1 on leukocytes for prediction of late restenosis and their possible correlation with advanced coronary artery disease.Cytometry B Clin. Cytom.200353B1636910.1002/cyto.b.1003612717693
    [Google Scholar]
  64. KobzikL. GodleskiJ.J. BrainJ.D. Oxidative metabolism in the alveolar macrophage: analysis by flow cytometry.J. Leukoc. Biol.199047429530310.1002/jlb.47.4.2952319204
    [Google Scholar]
  65. LuK.Y. LinP.Y. ChuangE.Y. ShihC.M. ChengT.M. LinT.Y. SungH.W. MiF.L. H2O2-depleting and O2-generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages.ACS Appl. Mater. Interfaces2017965158517210.1021/acsami.6b1551528120612
    [Google Scholar]
  66. ImrichA. NingY. KobzikL. Intracellular oxidant production and cytokine responses in lung macrophages: evaluation of fluorescent probes.J. Leukoc. Biol.199965449950710.1002/jlb.65.4.49910204579
    [Google Scholar]
  67. AghaeepourN. NikolicR. HoosH.H. BrinkmanR.R. Rapid cell population identification in flow cytometry data.Cytometry A201179A161310.1002/cyto.a.2100721182178
    [Google Scholar]
  68. LaerumO.D. FarsundT. Clinical application of flow cytometry: A review.Cytometry19812111310.1002/cyto.9900201027023887
    [Google Scholar]
  69. AdanA. AlizadaG. KirazY. BaranY. NalbantA. Flow cytometry: basic principles and applications.Crit. Rev. Biotechnol.201737216317610.3109/07388551.2015.112887626767547
    [Google Scholar]
  70. SemyanovK. ZharinovA. TarasovP. YurkinM. SkribunovI. Van BockstaeleD. MaltsevV. Optics of leucocytes.Optics of Biological Particles.Springer Netherlands200726928010.1007/978‑1‑4020‑5502‑7_10
    [Google Scholar]
  71. SimonP. FrankowskiM. BockN. NeukammerJ. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.Lab Chip201616122326233810.1039/C6LC00128A27229300
    [Google Scholar]
  72. IJsselmuidenA.J.J. MustersR.J.P. de RuiterG. van HeerebeekL. Alderse-BaasF. van SchilfgaardeM. LeyteA. TangelderG.J. LaarmanG.J. PaulusW.J. Circulating white blood cells and platelets amplify oxidative stress in heart failure.Nat. Clin. Pract. Cardiovasc. Med.200851281182010.1038/ncpcardio136418957960
    [Google Scholar]
  73. KatoT. HikichiY. HashimotoS. HiraseT. MorookaT. ImotoY. TakedaY. SendoF. NodeK. InoueT. Stent-induced neutrophil activation is associated with an oxidative burst in the inflammatory process, leading to neointimal thickening.Thromb. Haemost.2006951434810.1160/TH05‑08‑059116543960
    [Google Scholar]
  74. MitraA.K. GangaharD.M. AgrawalD.K. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia.Immunol. Cell Biol.200684211512410.1111/j.1440‑1711.2005.01407.x16519729
    [Google Scholar]
  75. LeeM.S. DavidE.M. MakkarR.R. WilentzJ.R. Molecular and cellular basis of restenosis after percutaneous coronary intervention: The intertwining roles of platelets, leukocytes, and the coagulation–fibrinolysis system.J. Pathol.20042034861870
    [Google Scholar]
  76. RothenburgerM. TjanT.D. SchneiderM. BerendesE. SchmidC. WilhelmM.J. BöckerD. ScheldH.H. SoeparwataR. The impact of the pro-and anti-inflammatory immune response on ventilation time after cardiac surgery. Cytometry Part B: Clinical Cytometry.J. Int. Soc. Analyt. Cytol.2003531707412717694
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X341683241206073131
Loading
/content/journals/chddt/10.2174/011871529X341683241206073131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test