Skip to content
2000
image of Novel Compounds in Targeting the α1-adrenoceptor for Antihypertensive Therapy

Abstract

Hypertension, a prevalent cardiovascular condition, increases the risk of strokes and myocardial infarctions by inducing elevated blood pressure. Its prevalence has risen, particularly in low- and middle-income nations. The incidence of hypertension in adults is higher in low- and middle-income countries compared to high-income nations. One significant class of antihypertensive drugs is α1-adrenoceptor antagonists, which inhibit α1-adrenergic receptors and promote vasodilation. Terazosin, doxazosin, tamsulosin, and alfuzosin are examples of α1-adrenoceptor antagonists that have antihypertensive properties; however, they are linked to considerable side effects, including headaches, dizziness, reproductive problems, and postural hypotension. In the last several years, a number of novel α1-adrenergic antagonists have been synthesised by modifications of various pharmacophores such as Isochroman-4-one, Quinazolines, Piperazine, and Quinazoline-triazole, . The present review highlights recently synthesized α1-adrenoceptor antagonists for the management of hypertension, and emphasizes their structure-activity relationship and subtype selectivity.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257395367250920224239
2025-10-03
2025-11-16
Loading full text...

Full text loading...

References

  1. Lopez E.O. Ballard B.D. Jan A. Cardiovascular disease. StatPearls Publishing 2023
    [Google Scholar]
  2. Al-Makki A. DiPette D. Whelton P.K. Murad M.H. Mustafa R.A. Acharya S. Beheiry H.M. Champagne B. Connell K. Cooney M.T. Ezeigwe N. Gaziano T.A. Gidio A. Lopez-Jaramillo P. Khan U.I. Kumarapeli V. Moran A.E. Silwimba M.M. Rayner B. Sukonthasan A. Yu J. Saraffzadegan N. Reddy K.S. Khan T. Hypertension pharmacological treatment in adults: A world health organization guideline executive summary. Hypertension 2022 79 1 293 301 10.1161/HYPERTENSIONAHA.121.18192 34775787
    [Google Scholar]
  3. Mohammad R. Bansod D.W. Hypertension in india: A gender-based study of prevalence and associated risk factors. BMC Public Health 2024 24 1 2681 10.1186/s12889‑024‑20097‑5 39354462
    [Google Scholar]
  4. Yen F.S. Wei J.C.C. Chiu L.T. Hsu C.C. Hwu C.M. Diabetes, hypertension, and cardiovascular disease development. J. Transl. Med. 2022 20 1 9 10.1186/s12967‑021‑03217‑2 34980154
    [Google Scholar]
  5. Mills K.T. Stefanescu A. He J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020 16 4 223 237 10.1038/s41581‑019‑0244‑2 32024986
    [Google Scholar]
  6. Saka M. Shabu S. Shabila N. Prevalence of hypertension and associated risk factors in older adults in kurdistan, iraq. East. Mediterr. Health J. 2020 26 3 268 275 10.26719/emhj.19.029 32281635
    [Google Scholar]
  7. Jain K.S. Bariwal J.B. Kathiravan M.K. Phoujdar M.S. Sahne R.S. Chauhan B.S. Shah A.K. Yadav M.R. Recent advances in selective α1-adrenoreceptor antagonists as antihypertensive agents. Bioorg. Med. Chem. 2008 16 9 4759 4800 10.1016/j.bmc.2008.02.091 18378462
    [Google Scholar]
  8. Mishima E. Funayama Y. Suzuki T. Mishima F. Nitta,] F.; Toyohara, T.; Kikuchi, K.; Kunikata, H.; Hashimoto, J.;] Miyazaki, M.; Harigae, H.; Nakazawa, T.; Ito, S.; Abe, T. Concurrent analogous organ damage in the brain, eyes, and] kidneys in malignant hypertension: Reversible encephalopathy,] serous retinal detachment, and proteinuria. Hypertens. Res. 2021 44 1 88 97 10.1038/s41440‑020‑0521‑2 32719463
    [Google Scholar]
  9. Dziedziak J. Zaleska-Żmijewska A. Szaflik J.P. Cudnoch-Jędrzejewska A. Impact of arterial hypertension on the eye: A review of the pathogenesis, diagnostic methods, and treatment of hypertensive retinopathy. Med. Sci. Monit 2022 28 e935135 e1 10.12659/MSM.935135 35046380
    [Google Scholar]
  10. Zeng Y. Jiang Y. Huang Z. Li K. Zhou Y. Association] between AGTR1 (c.1166 A>C) polymorphisms and kidney] injury in hypertension. Front. Biosci. (Landmark Ed) 2023 28 7 146 10.31083/j.fbl2807146 37525908
    [Google Scholar]
  11. Ohishi M. Kubozono T. Higuchi K. Akasaki Y. Hypertension, cardiovascular disease, and nocturia: A systematic review of the pathophysiological mechanisms. Hypertens. Res. 2021 44 7 733 739 10.1038/s41440‑021‑00634‑0 33654248
    [Google Scholar]
  12. Guo H. Xu D. Kuroki M. Lu Z. Xu X. Geurts A. Osborn J.W. Chen Y. Kidney failure, arterial hypertension and left ventricular hypertrophy in rats with loss of function mutation of SOD3. Free Radic. Biol. Med. 2020 152 787 796 10.1016/j.freeradbiomed.2020.01.023 31972339
    [Google Scholar]
  13. Xiao H. Xiong C. Shao X. Gao P. Chen H. Ning J. Chen Y. Zou Z. Hong G. Li X. You X. Sheng J. Wu F. Wang X. Zou H. Visceral adiposity index and chronic kidney disease in a non-diabetic population: A cross-sectional study. Diabetes Metab. Syndr. Obes. 2020 13 257 265 10.2147/DMSO.S231656 32099432
    [Google Scholar]
  14. Vamvakis A. Gkaliagkousi E. Lazaridis A. Grammatikopoulou M.G. Triantafyllou A. Nikolaidou B. Koletsos N. Anyfanti P. Tzimos C. Zebekakis P. Douma S. Impact of intensive lifestyle treatment (diet plus exercise) on endothelial and vascular function, arterial stiffness and blood pressure in stage 1 hypertension: Results of the hintreat randomized controlled trial. Nutrients 2020 12 5 1326 10.3390/nu12051326 32392715
    [Google Scholar]
  15. Ojangba T. Boamah S. Miao Y. Guo X. Fen Y. Agboyibor C. Yuan J. Dong W. Comprehensive effects of lifestyle reform, adherence, and related factors on hypertension control: A review. J. Clin. Hypertens. 2023 25 6 509 520 10.1111/jch.14653 37161520
    [Google Scholar]
  16. Hall J.E. Omoto A.C. Wang Z. Mouton A. Li X. Hall M.E. Pathophysiology of hypertension. Hypertension. Elsevier 2024 71 86 10.1016/B978‑0‑323‑88369‑6.00005‑0
    [Google Scholar]
  17. Adair T. Lopez A.D. The role of overweight and obesity in adverse cardiovascular disease mortality trends: An analysis of multiple cause of death data from Australia and the USA. BMC Med. 2020 18 1 199 10.1186/s12916‑020‑01666‑y 32746822
    [Google Scholar]
  18. Powell-Wiley T.M. Poirier P. Burke L.E. Després J.P. Gordon-Larsen P. Lavie C.J. Lear S.A. Ndumele C.E. Neeland I.J. Sanders P. St-Onge M.P. Obesity and cardiovascular disease: A scientific statement from the american heart association. Circulation 2021 143 21 e984 e1010 [American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council. 10.1161/CIR.0000000000000973 33882682
    [Google Scholar]
  19. Dikaiou P. Björck L. Adiels M. Lundberg C.E. Mandalenakis Z. Manhem K. Rosengren A. Obesity, overweight and risk for cardiovascular disease and mortality in young women. Eur. J. Prev. Cardiol. 2021 28 12 1351 1359 10.1177/2047487320908983 34647583
    [Google Scholar]
  20. Valensi P. Autonomic nervous system activity changes in patients with hypertension and overweight: Role and therapeutic implications. Cardiovasc. Diabetol. 2021 20 1 170 10.1186/s12933‑021‑01356‑w 34412646
    [Google Scholar]
  21. Mehta J.K. Kaur G. Buttar H.S. Bagabir H.A. Bagabir R.A. Bagabir S.A. Haque S. Tuli H.S. Telessy I.G. Role of the renin–angiotensin system in the pathophysiology of coronary heart disease and heart failure: Diagnostic biomarkers and therapy with drugs and natural products. Front. Physiol. 2023 14 1034170 10.3389/fphys.2023.1034170 36909245
    [Google Scholar]
  22. Shariq O.A. McKenzie T.J. Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery. Gland Surg. 2020 9 1 80 93 10.21037/gs.2019.12.03 32206601
    [Google Scholar]
  23. Schneider R. Reinau D. Stoffel S. Jick S.S. Meier C.R. Spoendlin J. Risk of skin cancer in new users of thiazides and thiazide‐like diuretics: A cohort study using an active comparator group. Br. J. Dermatol. 2021 185 2 343 352 10.1111/bjd.19880 33609289
    [Google Scholar]
  24. Shao S.C. Lai C.C. Chen Y.H. Lai E.C.C. Hung M.J. Chi C.C. Associations of thiazide use with skin cancers: A systematic review and meta-analysis. BMC Med. 2022 20 1 228 10.1186/s12916‑022‑02419‑9 35794547
    [Google Scholar]
  25. Zhou L. Li Y. Gao Q. Lin Y. Su L. Chen R. Cao Y. Xu R. Luo F. Gao P. Zhang X. Li P. Nie S. Tang Y. Xu X. Loop diuretics are associated with increased risk of hospital-acquired acute kidney injury in adult patients: A retrospective study. J. Clin. Med. 2022 11 13 3665 [On Behalf Of The Each Study Investigators. 10.3390/jcm11133665 35806949
    [Google Scholar]
  26. Montinaro V. Cicardi M. ACE inhibitor-mediated angioedema. Int. Immunopharmacol. 2020 78 106081 10.1016/j.intimp.2019.106081 31835086
    [Google Scholar]
  27. Bütikofer L. Varisco P.A. Distler O. Kowal-Bielecka O. Allanore Y. Riemekasten G. Villiger P.M. Adler S. ACE inhibitors in SSc patients display a risk factor for scleroderma renal crisis—a EUSTAR analysis. Arthritis Res. Ther. 2020 22 1 59 10.1186/s13075‑020‑2141‑2 32209135
    [Google Scholar]
  28. Zheng G. Sundquist J. Sundquist K. Ji J. Beta-blockers use and risk of breast cancer in women with hypertension. Cancer Epidemiol. Biomarkers Prev. 2021 30 5 965 973 10.1158/1055‑9965.EPI‑20‑1599 33619022
    [Google Scholar]
  29. Huang K.Y. Tseng P.T. Wu Y.C. Tu Y.K. Stubbs B. Su K.P. Matsuoka Y.J. Hsu C.W. Lin C.H. Chen Y.W. Lin P.Y. Do beta-adrenergic blocking agents increase asthma exacerbation? A network meta-analysis of randomized controlled trials. Sci. Rep. 2021 11 1 452 10.1038/s41598‑020‑79837‑3 33432057
    [Google Scholar]
  30. Ghatage T. Goyal S.G. Dhar A. Bhat A. Novel therapeutics for the treatment of hypertension and its associated complications: Peptide- and nonpeptide-based strategies. Hypertens. Res. 2021 44 7 740 755 10.1038/s41440‑021‑00643‑z 33731923
    [Google Scholar]
  31. (ESC) Guidelines for the Management of Elevated Blood Pressure and Hypertension. European Society of Cardiology. 2024 Available from: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Elevated-Blood-Pressure-and-Hypertension.
    [Google Scholar]
  32. Balistrieri A. Makino A. Yuan J.X.J. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol. Rev. 2023 103 3 1827 1897 10.1152/physrev.00030.2021 36422993
    [Google Scholar]
  33. Zhang F. Armando I. Jose P.A. Zeng C. Yang J. G protein-coupled receptor kinases in hypertension: physiology, pathogenesis, and therapeutic targets. Hypertens. Res. 2024 47 9 2317 2336 10.1038/s41440‑024‑01763‑y 38961282
    [Google Scholar]
  34. Palma J.A. Muscarinic control of cardiovascular function in humans: a review of current clinical evidence. Clin. Auton. Res. 2024 34 1 31 44 10.1007/s10286‑024‑01016‑5 38305989
    [Google Scholar]
  35. Tsentsevitsky A. Nurullin L. Tyapkina O. Bukharaeva E. Sympathomimetics regulate quantal acetylcholine release at neuromuscular junctions through various types of adrenoreceptors. Mol. Cell. Neurosci. 2020 108 103550 10.1016/j.mcn.2020.103550 32890729
    [Google Scholar]
  36. Desiniotis A. Kyprianou N. Advances in the design and synthesis of prazosin derivatives over the last ten years. Expert Opin. Ther. Targets 2011 15 12 1405 1418 10.1517/14728222.2011.641534 22148952
    [Google Scholar]
  37. Perez D.M. α1-Adrenergic receptors in neurotransmission, synaptic plasticity, and cognition. Front. Pharmacol. 2020 11 581098 10.3389/fphar.2020.581098 33117176
    [Google Scholar]
  38. Motiejunaite J. Amar L. Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol. (Paris) 2021 82 3-4 193 197 10.1016/j.ando.2020.03.012 32473788
    [Google Scholar]
  39. Tapbergenov S.O. Sovetov B.S. Smailova Z.K. Adrenergic receptors in the mechanism of regulation of mitochondrial and cytoplasmic enzymes of cardiomyocytes by catecholamines. Bull. Exp. Biol. Med. 2022 173 3 330 334 10.1007/s10517‑022‑05544‑w 35852683
    [Google Scholar]
  40. Entezari S. Thygesen M.M. Staehr C. Melnikova E. Skov M. Rajanathan R. Rasmussen M. Rasmussen M.M. Matchkov V.V. Spinal cord blood flow elevation with systemic vasopressor noradrenaline is partly mediated by vasodilation of spinal arteries due to reduced expression of alpha adrenoreceptors. Spine J. 2025 25 3 609 619 10.1016/j.spinee.2024.11.010 39613033
    [Google Scholar]
  41. Gambardella J. Fiordelisi A. Avvisato R. Buonaiuto A. Cerasuolo F.A. Sorriento D. Iaccarino G. Adrenergic receptors in endothelial and vascular smooth muscle cells. Curr. Opin. Physiol. 2023 36 100721 10.1016/j.cophys.2023.100721
    [Google Scholar]
  42. Harald W. Nicole K. Michaela S. Carola H. Nina S. Youli S. Thomas F. Frank-Michael K. Ulrich P. Matthias T. Artur M. Identification of catecholamine and drug target α2A-adrenoceptor in human testis and human testicular peritubular cells. J. Clin. Med. 2024 13 15 4357 10.3390/jcm13154357 39124625
    [Google Scholar]
  43. Dwaib H. Michel M.C. Adrenoceptor expression and function in the endocrine pancreas. Adrenoceptors. Springer 2024 639 664 10.1007/164_2024_717
    [Google Scholar]
  44. Cotecchia S. The α 1 -adrenergic receptors: Diversity of signaling networks and regulation. J. Recept. Signal Transduct. Res. 2010 30 6 410 419 10.3109/10799893.2010.518152 20954794
    [Google Scholar]
  45. Chhatar S. Lal G. Role of adrenergic receptor signalling in neuroimmune communication. Curr. Res. Immunol. 2021 2 202 217 10.1016/j.crimmu.2021.11.001 35492402
    [Google Scholar]
  46. Wu F.J. Williams L.M. Abdul-Ridha A. Gunatilaka A. Vaid T.M. Kocan M. Whitehead A.R. Griffin M.D.W. Bathgate R.A.D. Scott D.J. Gooley P.R. Probing the correlation between ligand efficacy and conformational diversity at the α1A-adrenoreceptor reveals allosteric coupling of its microswitches. J. Biol. Chem. 2020 295 21 7404 7417 10.1074/jbc.RA120.012842 32303636
    [Google Scholar]
  47. Civantos Calzada B. Aleixandre de Artiñano A. Alpha-adrenoceptor subtypes. Pharmacol. Res. 2001 44 3 195 208 10.1006/phrs.2001.0857 11529686
    [Google Scholar]
  48. Hirsch S.J. Budig A. Husam S. Birklein F. Aged females unilaterally hypersensitize, lack descending inhibition, and overexpress alpha1D adrenergic receptors in a murine posttraumatic chronic pain model. Pain 2024 165 9 1966 1977 10.1097/j.pain.0000000000003197 38408277
    [Google Scholar]
  49. Pierce K.L. Premont R.T. Lefkowitz R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 2002 3 9 639 650 10.1038/nrm908 12209124
    [Google Scholar]
  50. Xu J. Cao S. Hübner H. Weikert D. Chen G. Lu Q. Yuan D. Gmeiner P. Liu Z. Du Y. Structural insights into ligand recognition, activation, and signaling of the α 2A adrenergic receptor. Sci. Adv. 2022 8 9 eabj5347 10.1126/sciadv.abj5347 35245122
    [Google Scholar]
  51. Nachawati D. Patel, JB Alpha Blockers. StatPearls 2022 32310526
    [Google Scholar]
  52. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. 2012 Available from: https://www.ncbi.nlm.nih.gov/books/NBK548719/
  53. Malekinejad Z. Aghajani S. Jeddi M. Qahremani R. Shahbazi S. Bagheri Y. Ahmadian E. Prazosin treatment protects brain and heart by diminishing oxidative stress and apoptotic pathways after renal ischemia reperfusion. Drug Res. 2022 72 6 336 342 10.1055/a‑1806‑1453 35426094
    [Google Scholar]
  54. Bremner J.B. Coban B. Griffith R. Groenewoud K.M. Yates B.F. Ligand design for α 1 adrenoceptor subtype selective antagonists. Bioorg. Med. Chem. 2000 8 1 201 214 10.1016/S0968‑0896(99)00263‑1 10968279
    [Google Scholar]
  55. Rahman M.U. Rathore A. Siddiqui A.A. Parveen G. Shahar Yar M. Synthesis and antihypertensive screening of new derivatives of quinazolines linked with isoxazole. BioMed Res. Int. 2014 2014 1 1 13 10.1155/2014/739056 25013797
    [Google Scholar]
  56. Sear J.W. Antihypertensive Drugs and Vasodilators. Pharmacology and Physiology for Anesthesia. London Elsevier 2019 535 555 10.1016/B978‑0‑323‑48110‑6.00026‑0
    [Google Scholar]
  57. Koola M.M. Varghese S.P. Fawcett J.A. High-dose prazosin for the treatment of post-traumatic stress disorder. Ther. Adv. Psychopharmacol. 2014 4 1 43 47 10.1177/2045125313500982 24490030
    [Google Scholar]
  58. Take H. Shibata K. Awaji T. Hirasawa A. Ikegaki I. Asano T. Takada T. Tsujimoto G. Vascular α1-adrenoceptor subtype selectivity and α1-blocker-induced orthostatic hypotension. Jpn. J. Pharmacol. 1998 77 1 61 70 10.1254/jjp.77.61 9639061
    [Google Scholar]
  59. de Leeuw P.W. Birkenhäger W.H. Hypothermia: A possible side effect of prazosin. BMJ 1980 281 6249 1181 10.1136/bmj.281.6249.1181 7427628
    [Google Scholar]
  60. Xie S. Li X. Yu H. Zhang P. Wang J. Wang C. Xu S. Wu Z. Liu J. Zhu Z. Xu J. Design, synthesis and biological evaluation of isochroman-4-one hybrids bearing piperazine moiety as antihypertensive agent candidates. Bioorg. Med. Chem. 2019 27 13 2764 2770 10.1016/j.bmc.2019.05.004 31078380
    [Google Scholar]
  61. Waszkielewicz A.M. Kubacka M. Pańczyk K. Mogilski,] S.; Siwek, A.; Głuch-Lutwin, M.; Gryboś, A.; Filipek, B. Synthesis and activity of newly designed aroxyalkyl or aroxyethoxyethyl derivatives of piperazine on the cardiovascular and the central] nervous systems. Bioorg. Med. Chem. Lett. 2016 26 21 5315 5321 10.1016/j.bmcl.2016.09.037 27692547
    [Google Scholar]
  62. Rapacz A. Pytka K. Sapa J. Kubacka M. Filipek B. Szkaradek N. Marona H. Antiarrhythmic, hypotensive and α1-adrenolytic properties of new 2-methoxyphenylpiperazine derivatives of xanthone. Eur. J. Pharmacol. 2014 735 10 16 10.1016/j.ejphar.2014.04.010 24751714
    [Google Scholar]
  63. Chen J. Campbell A.P. Urmi K.F. Wakelin L.P.G. Denny W.A. Griffith R. Finch A.M. Human α1-adrenoceptor subtype selectivity of substituted homobivalent 4-aminoquinolines. Bioorg. Med. Chem. 2014 22 21 5910 5916 10.1016/j.bmc.2014.09.017 25288493
    [Google Scholar]
  64. Awadallah F.M. El-Eraky W.I. Saleh D.O. Synthesis, vasorelaxant activity, and molecular modeling study of some new phthalazine derivatives. Eur. J. Med. Chem. 2012 52 14 21 10.1016/j.ejmech.2012.02.051 22440857
    [Google Scholar]
  65. Xi B.M. Jiang Z.Z. Zou J.W. Ni P.Z. Chen W.H. Drug metabolism-based design, synthesis, and bioactivities of 1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (DDPH) analogs as α1-adrenoceptors antagonists. Bioorg. Med. Chem. 2011 19 2 783 788 10.1016/j.bmc.2010.12.020 21215646
    [Google Scholar]
  66. Abou-Seri S.M. Abouzid K. Abou El Ella D.A. Molecular modeling study and synthesis of quinazolinone-arylpiperazine derivatives as α1-adrenoreceptor antagonists. Eur. J. Med. Chem. 2011 46 2 647 658 10.1016/j.ejmech.2010.11.045 21193252
    [Google Scholar]
  67. Romeiro L.A.S. da Silva Ferreira M. da Silva L.L. Castro H.C. Miranda A.L.P. Silva C.L.M. Noël F. Nascimento J.B. Araújo C.V. Tibiriçá E. Barreiro E.J. Fraga C.A.M. Discovery of LASSBio-772, a 1,3-benzodioxole N-phenylpiperazine derivative with potent α 1A/D-Adrenergic receptor blocking properties. Eur. J. Med. Chem. 2011 46 7 3000 3012 10.1016/j.ejmech.2011.04.032 21549456
    [Google Scholar]
  68. Sagratini G. Angeli P. Buccioni M. Gulini U. Marucci G. Melchiorre C. Leonardi A. Poggesi E. Giardinà D. Synthesis and α1-adrenoceptor antagonist activity of derivatives and isosters of the furan portion of (+)-cyclazosin. Bioorg. Med. Chem. 2007 15 6 2334 2345 10.1016/j.bmc.2007.01.028 17276073
    [Google Scholar]
  69. Alagarsamy V. Pathak U.S. Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg. Med. Chem. 2007 15 10 3457 3462 10.1016/j.bmc.2007.03.007 17391966
    [Google Scholar]
  70. Ismail M.A.H. Aboul-Enein M.N.Y. Abouzid K.A.M. Serya R.A.T. Ligand design and synthesis of new imidazo[5,1-b]quinazoline derivatives as α1-adrenoceptor agonists and antagonists. Bioorg. Med. Chem. 2006 14 4 898 910 10.1016/j.bmc.2005.07.037 16337797
    [Google Scholar]
  71. Strappaghetti G. Brodi C. Giannaccini G. Betti L. New 4-(4-methyl-phenyl)phthalazin-1(2H)-one derivatives and their effects on α1-receptors. Bioorg. Med. Chem. Lett. 2006 16 10 2575 2579 10.1016/j.bmcl.2006.02.068 16545955
    [Google Scholar]
  72. Balle T. Perregaard J. Ramirez M.T. Larsen A.K. Søby K.K. Liljefors T. Andersen K. Synthesis and structure-affinity relationship investigations of 5-heteroaryl-substituted analogues of the antipsychotic sertindole. A new class of highly selective α(1) adrenoceptor antagonists. J. Med. Chem. 2003 46 2 265 283 10.1021/jm020938y 12519065
    [Google Scholar]
  73. Brasili L. Sorbi C. Franchini S. Manicardi M. Angeli P. Marucci G. Leonardi A. Poggesi E. 1,3-dioxolane-based ligands as a novel class of α1-adrenoceptor antagonists. J. Med. Chem. 2003 46 8 1504 1511 10.1021/jm021078o 12672251
    [Google Scholar]
  74. ACD/ChemSketch, version 2021.1.1; Advanced Chemistry Development, Inc.: Toronto, ON, Canada 2021 Available at: www.acdlab.com (accessed Sept 12, 2023).
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257395367250920224239
Loading
/content/journals/chamc/10.2174/0118715257395367250920224239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test