Skip to content
2000
image of The Antioxidant and Anti-lipidemic Potential of Angiotensin-converting Enzyme Inhibitor (Ramipril) in L-NAME Hypertensive Rats

Abstract

Introduction

Hypertension is associated with oxidative disturbances and often coexists with metabolic disorders like hyperlipidemia. Some antihypertensive drugs, particularly angiotensin-converting enzyme (ACE) inhibitors, offer benefits beyond lowering blood pressure by addressing related conditions. This study aimed to investigate the effects of ACE inhibitors on oxidative stress and dyslipidemia induced by L-NAME hypertension in rats.

Methods

Fifteen male Wistar rats (150–170 g) were divided into three groups. Group 1 received 10 mL/kg distilled water (control), while Groups 2 and 3 were orally administered 60 mg/kg of L-NAME (L-NAME60) for eight weeks to induce hypertension. After this period, Group 2 continued to receive L-NAME60 plus distilled water (HYP), and Group 3 received L-NAME60 plus ramipril (10 mg/kg) (RMHYP) for an additional five weeks. Blood pressure was measured using the tail-cuff method. Serum oxidative stress markers and lipid profiles were analyzed by spectrophotometry.

Results

The blood pressure significantly decreased in RMHYP compared to HYP. Malondialdehyde concentration significantly decreased, and antioxidant enzyme levels significantly increased in RMHYP compared to HYP. Serum lipid profiles showed a significant decrease in total cholesterol and triglycerides, as well as atherogenic indices, but a significant increase in high-density lipoprotein cholesterol levels in RMHYP compared to HYP.

Discussion

This research shows that ramipril not only lowers blood pressure but also significantly reduces oxidative stress and dyslipidemia in L-NAME hypertensive rats, indicating its potential as an effective treatment for metabolic syndrome.

Conclusion

The findings of this study demonstrate that angiotensin-converting enzyme inhibitors (ramipril) have the ability to act as both an antioxidant and an anti-dyslipidemic agent in hypertensive conditions.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257375839250811064453
2025-08-21
2025-11-16
Loading full text...

Full text loading...

References

  1. Toth P.P. Cardiovascular disease epidemiology and risk factors: General concepts. Nutraceuticals and Cardiovascular Disease Contemporary Cardiology. Cicero A.F. Rizzo M. Cham Humana 2021 1 22 10.1007/978‑3‑030‑62632‑7_1
    [Google Scholar]
  2. Mills K.T. Stefanescu A. He J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020 16 4 223 237 10.1038/s41581‑019‑0244‑2 32024986
    [Google Scholar]
  3. Fuchs F.D. High blood pressure and cardiovascular disease. Hypertension 2020 75 2 285 10.1161/HYPERTENSIONAHA.119.14240
    [Google Scholar]
  4. Ware W.A. Bonagura J.D. Cardiovascular Disease in Companion Animals: Dog, Cat and Horse. 2nd ed CRC Press 2021 10.1201/9780429186639
    [Google Scholar]
  5. Frąk W. Wojtasińska A. Lisińska W. Młynarska E. Franczyk B. Rysz J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines 2022 10 8 1938 10.3390/biomedicines10081938 36009488
    [Google Scholar]
  6. Nwabuo C.C. Vasan R.S. Pathophysiology of hypertensive heart disease: Beyond left ventricular hypertrophy. Curr. Hypertens. Rep. 2020 22 2 11 10.1007/s11906‑020‑1017‑9 32016791
    [Google Scholar]
  7. Schwinger R.H.G. Pathophysiology of heart failure. Cardiovasc. Diagn. Ther. 2021 11 1 263 276 10.21037/cdt‑20‑302 33708498
    [Google Scholar]
  8. Ameer O.Z. Hypertension in chronic kidney disease: What lies behind the scene. Front. Pharmacol. 2022 13 949260 10.3389/fphar.2022.949260 36304157
    [Google Scholar]
  9. Sharma M.C. Singh J. Ansari I.A. Insight into hypertensive retinopathy and choroidopathy, the unveiling of silent ocular threat prompted by systemic hypertension. International J. Medical Sci. Clin. Res. Review 2024 7 03 474 483
    [Google Scholar]
  10. Viigimaa M. Vlachopoulos C. Doumas M. Wolf J. Imprialos K. Terentes-Printzios D. Ioakeimidis N. Kotsar A. Kiitam U. Stavropoulos K. Narkiewicz K. Manolis A. Jelakovic B. Lovic D. Kreutz R. Tsioufis K. Mancia G. Update of the position paper on arterial hypertension and erectile dysfunction. J. Hypertens. 2020 38 7 1220 1234 10.1097/HJH.0000000000002382 32073535
    [Google Scholar]
  11. Loperena R. Harrison D.G. Oxidative stress and hypertensive diseases. Med. Clin. North Am. 2017 101 1 169 193 10.1016/j.mcna.2016.08.004 27884227
    [Google Scholar]
  12. Rodrigo R. González J. Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens. Res. 2011 34 4 431 440 10.1038/hr.2010.264 21228777
    [Google Scholar]
  13. Chaudhary P. Janmeda P. Docea A.O. Yeskaliyeva B. Abdull Razis A.F. Modu B. Calina D. Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023 11 1158198 10.3389/fchem.2023.1158198 37234200
    [Google Scholar]
  14. Touyz R.M. Rios F.J. Alves-Lopes R. Neves K.B. Camargo L.L. Montezano A.C. Oxidative stress: A unifying paradigm in hypertension. Can. J. Cardiol. 2020 36 5 659 670 10.1016/j.cjca.2020.02.081 32389339
    [Google Scholar]
  15. Harrison D.G. The mosaic theory revisited: Common molecular mechanisms coordinating diverse organ and cellular events in hypertension. J. Am. Soc. Hypertens. 2013 7 1 68 74 10.1016/j.jash.2012.11.007 23321405
    [Google Scholar]
  16. Oparil S. Acelajado M.C. Bakris G.L. Berlowitz D.R. Cífková R. Dominiczak A.F. Grassi G. Jordan J. Poulter N.R. Rodgers A. Whelton P.K. Hypertension. Nat. Rev. Dis. Primers 2018 4 1 18014 18020 10.1038/nrdp.2018.14 29565029
    [Google Scholar]
  17. Zanchetti A. Hyperlipidemia in the hypertensive patient. Am. J. Med. 1994 96 6 S3 S8 10.1016/0002‑9343(94)90225‑9 8017463
    [Google Scholar]
  18. da Silva A.A. do Carmo J.M. Li X. Wang Z. Mouton A.J. Hall J.E. Role of hyperinsulinemia and insulin resistance in hypertension: Metabolic syndrome revisited. Can. J. Cardiol. 2020 36 5 671 682 10.1016/j.cjca.2020.02.066 32389340
    [Google Scholar]
  19. Ames R.P. Hyperlipidemia in hypertension: Causes and prevention. Am. Heart J. 1991 122 4 1219 1224 10.1016/0002‑8703(91)90943‑C 1927888
    [Google Scholar]
  20. Borghi C. Fogacci F. Agnoletti D. Cicero A.F.G. Hypertension and dyslipidemia combined therapeutic approaches. High Blood Press. Cardiovasc. Prev. 2022 29 3 221 230 10.1007/s40292‑022‑00507‑8 35334087
    [Google Scholar]
  21. Muthusamy V.V. Br 08-3 Management of dyslipidemia in hypertension. J. Hypertens 2016 34 e545 (Suppl. 1) 10.1097/01.hjh.0000501492.32355.c5
    [Google Scholar]
  22. Arvanitis M. Lowenstein C.J. Dyslipidemia. Ann. Intern. Med. 2023 176 6 ITC81 ITC96 10.7326/AITC202306200 37307585
    [Google Scholar]
  23. Tang N. Ma J. Tao R. Chen Z. Yang Y. He Q. Lv Y. Lan Z. Zhou J. The effects of the interaction between BMI and dyslipidemia on hypertension in adults. Sci. Rep. 2022 12 1 927 10.1038/s41598‑022‑04968‑8 35042940
    [Google Scholar]
  24. Brown N.J. Vaughan D.E. Angiotensin-converting enzyme inhibitors. Circulation 1998 97 14 1411 1420 10.1161/01.CIR.97.14.1411 9577953
    [Google Scholar]
  25. Chauhan M. Patel J.B. Ahmad F. Ramipril. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  26. Moinuddin G. KulKarni K. KulKarni C. Modulation of hemodynamics, endogenous antioxidant enzymes, and patho-physiological changes by angiotensin-converting enzyme inhibitors in pressure-overload rats. Hellenic J. Cardiol. 2011 52 216 222 21642070
    [Google Scholar]
  27. Ohkawa H. Ohishi N. Yagi K. Assay for Lipid peroxidation and lipid peroxides in animal tissues by thiobarbituric. acid reaction. Anal. Biochem. 1979 95 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  28. Beutler E. Duron O. Kelly B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963 61 882 888 13967893
    [Google Scholar]
  29. Li B. He X. Lei S.S. Zhou F.C. Zhang N.Y. Chen Y.H. Wang Y.Z. Su J. Yu J.J. Li L.Z. Zheng X. Luo R. Kołodyńska D. Xiong S. Lv G.Y. Chen S.H. Hypertensive Rats treated chronically with Nω-Nitro-L-Arginine Methyl Ester (L-NAME) induced disorder of hepatic fatty acid metabolism and intestinal pathophysiology. Front. Pharmacol. 2020 10 1677 10.3389/fphar.2019.01677 32076406
    [Google Scholar]
  30. Ajeigbe O.F. Oboh G. Ademosun A.O. Oyagbemi A.A. Ficus asperifolia Miq ‐enriched biscuit diet protects against L ‐NAME induced hyperlipidemia and hypertension in rats. Food. Front. 2022 3 1 150 160 10.1002/fft2.101
    [Google Scholar]
  31. Zuo J. Jiang Z. Melatonin attenuates hypertension and oxidative stress in a rat model of L-NAME-induced gestational hypertension. Vasc. Med. 2020 25 4 295 301 10.1177/1358863X20919798
    [Google Scholar]
  32. Oboh G. Ojueromi O.O. Ademosun A.O. Omayone T.P. Oyagbemi A.A. Ajibade T.O. Adedapo A.A. Effects of caffeine and caffeic acid on selected biochemical parameters in L‐NAME‐induced hypertensive rats. J. Food. Biochem. 2021 45 3 e13384 10.1111/jfbc.13384 32725646
    [Google Scholar]
  33. Liman A.A. Salihu A. Onyike E. Effect of methanol extract of baobab (Adansonia digitata L.) fruit pulp on NG-Nitro-l-Arginine Methyl Ester (l-NAME) induced hypertension in rats. High Blood Press. Cardiovasc. Prev. 2021 28 3 291 300 10.1007/s40292‑021‑00448‑8 33826116
    [Google Scholar]
  34. Graciano M.L. Cavaglieri R.C. Dellê H. Dominguez W.V. Casarini D.E. Malheiros D.M. Noronha I.L. Intrarenal renin-angiotensin system is upregulated in experimental model of progressive renal disease induced by chronic inhibition of nitric oxide synthesis. J. Am. Soc. Nephrol. 2004 15 7 1805 1815 10.1097/01.ASN.0000131528.00773.A9 15213268
    [Google Scholar]
  35. Majzunova M. Kvandova M. Berenyiova A. Balis P. Dovinova I. Cacanyiova S. Chronic NOS inhibition affects oxidative state and antioxidant response differently in the kidneys of young normotensive and hypertensive rats. Oxid. Med. Cell. Longev. 2019 2019 1 10 10.1155/2019/5349398 31885800
    [Google Scholar]
  36. Rincón J. Correia D. Arcaya J.L. Finol E. Fernández A. Pérez M. Yaguas K. Talavera E. Chávez M. Summer R. Romero F. Role of angiotensin II type 1 receptor on renal NAD(P)H oxidase, oxidative stress and inflammation in nitric oxide inhibition induced-hypertension. Life. Sci. 2015 124 81 90 10.1016/j.lfs.2015.01.005 25623850
    [Google Scholar]
  37. Stanko P. Repova K. Baka T. Krajcirovicova K. Aziriova S. Barta A. Zorad S. Adamcova M. Simko F. Sacubitril/Valsartan alleviates cardiac remodeling and dysfunction in L-NAME-induced hypertension and hypertensive heart disease. Biomedicines 2024 12 4 733 10.3390/biomedicines12040733 38672089
    [Google Scholar]
  38. Skonieczna M. Hejmo T. Poterala-Hejmo A. Cieslar-Pobuda A. Buldak R.J. NADPH Oxidases: Insights into Selected functions and mechanisms of action in cancer and stem cells. Oxid. Med. Cell. Longev. 2017 2017 1 9420539 10.1155/2017/9420539 28626501
    [Google Scholar]
  39. Singh B.M. Mehta J.L. Interactions between the renin-angiotensin system and dyslipidemia: Relevance in the therapy of hypertension and coronary heart disease. Arch. Intern. Med. 2003 163 11 1296 1304 10.1001/archinte.163.11.1296 12796065
    [Google Scholar]
  40. Putnam K. Shoemaker R. Yiannikouris F. Cassis L.A. The renin-angiotensin system: A target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol. 2012 302 6 H1219 H1230 10.1152/ajpheart.00796.2011 22227126
    [Google Scholar]
  41. Poznyak A.V. Bharadwaj D. Prasad G. Grechko A.V. Sazonova M.A. Orekhov A.N. Renin-angiotensin system in pathogenesis of atherosclerosis and treatment of CVD. Int. J. Mol. Sci. 2021 22 13 6702 10.3390/ijms22136702 34206708
    [Google Scholar]
  42. Dąbrowska E. Narkiewicz K. Hypertension and dyslipidemia: The two partners in endothelium-related crime. Curr. Atheroscler. Rep. 2023 25 9 605 612 10.1007/s11883‑023‑01132‑z 37594602
    [Google Scholar]
  43. Dandona P. Dhindsa S. Ghanim H. Chaudhuri A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens. 2007 21 1 20 27 10.1038/sj.jhh.1002101 17096009
    [Google Scholar]
  44. Li S. Zhou C. Zhu Y. Chao Z. Sheng Z. Zhang Y. Zhao Y. Ferrostatin-1 alleviates angiotensin II (Ang II)- induced inflammation and ferroptosis in astrocytes. Int. Immunopharmacol. 2021 90 107179 10.1016/j.intimp.2020.107179 33278745
    [Google Scholar]
  45. Esteve E. Ricart W. Fernández-Real J.M. Dyslipidemia and inflammation: An evolutionary conserved mechanism. Clin. Nutr. 2005 24 1 16 31 10.1016/j.clnu.2004.08.004
    [Google Scholar]
  46. Han Y. Jiang X. Qin Y. Zhao Y. Zhang G. Liu C. A cross-sectional study exploring the relationship between the dietary inflammatory index and hyperlipidemia based on the National Health and Nutrition Examination Survey (2005–2018). Lipids Health. Dis. 2023 22 1 140 10.1186/s12944‑023‑01908‑x 37653500
    [Google Scholar]
  47. Jan-on G. Sangartit W. Pakdeechote P. Kukongviriyapan V. Sattayasai J. Senaphan K. Kukongviriyapan U. Virgin rice bran oil alleviates hypertension through the upregulation of eNOS and reduction of oxidative stress and inflammation in L-NAME–induced hypertensive rats. Nutrition 2020 69 110575 10.1016/j.nut.2019.110575 31585258
    [Google Scholar]
  48. Abdel-Zaher A.O. Elkoussi A.E.A. Abudahab L.H. Elbakry M.H. Elsayed E.A.E. Simvastatin enhances the antihypertensive effect of ramipril in hypertensive hypercholesterolemic animals and patients. Possible role of nitric oxide, oxidative stress, and high sensitivity C‐reactive protein. Fundam. Clin. Pharmacol. 2012 26 6 701 711 10.1111/j.1472‑8206.2011.00975.x 21913974
    [Google Scholar]
  49. Aldubayan M.A. Ahmed A.S. Emara A.M. Ahmed A.A. Elgharabawy R.M. Sinapic acid attenuates cardiovascular disorders in rats by modulating reactive oxygen species and angiotensin receptor expression. Oxid. Med. Cell. Longev. 2020 2020 1 14 10.1155/2020/1436858 32765804
    [Google Scholar]
  50. Cabandugama P.K. Gardner M.J. Sowers J.R. The renin angiotensin aldosterone system in obesity and hypertension. Med. Clin. North Am. 2017 101 1 129 137 10.1016/j.mcna.2016.08.009 27884224
    [Google Scholar]
  51. Ramalingam L. Menikdiwela K. LeMieux M. Dufour J.M. Kaur G. Kalupahana N. Moustaid-Moussa N. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim. Biophys. Acta. Mol. Basis Dis. 2017 1863 5 1106 1114 10.1016/j.bbadis.2016.07.019 27497523
    [Google Scholar]
  52. David B.G. Targeting the renin-angiotensin system in obesity-driven hyperlipidemia and hypertension. IAA J. Appl. Sci. 2024 12 1 16 20 10.59298/IAAJAS/2024/121.16200
    [Google Scholar]
  53. Birk M. Baum E. Zadeh J.K. Manicam C. Pfeiffer N. Patzak A. Helmstädter J. Steven S. Kuntic M. Daiber A. Gericke A. Angiotensin I.I. Angiotensin II Induces Oxidative Stress and Endothelial Dysfunction in Mouse Ophthalmic Arteries via Involvement of AT1 Receptors and NOX2. Antioxidants 2021 10 8 1238 10.3390/antiox10081238 34439486
    [Google Scholar]
  54. Ajoolabady A. Pratico D. Ren J. Angiotensin I.I. Angiotensin II Role in oxidative stress, endothelial dysfunction, and diseases. Mol. Cell. Endocrinol. 2024 592 112309 10.1016/j.mce.2024.112309 38852657
    [Google Scholar]
  55. St Paul A. Corbett C.B. Okune R. Autieri M.V. Angiotensin I.I. Angiotensin II, hypercholesterolemia, and vascular smooth muscle cells: A perfect trio for vascular pathology. Int. J. Mol. Sci. 2020 21 12 4525 10.3390/ijms21124525 32630530
    [Google Scholar]
  56. Stefanelli L.F. Gobbi L. Ravarotto V. Bertoldi G. Calò L.A. The counter-regulatory arm of the renin-angiotensin system and COVID-19: insights from Gitelman’s and Bartter’s syndromes. J. Hypertens. 2022 40 4 648 649 10.1097/HJH.0000000000003090 35165247
    [Google Scholar]
  57. Caputo I. Bertoldi G. Driussi G. Cacciapuoti M. Calò L.A. The RAAS goodfellas in cardiovascular system. J. Clin. Med. 2023 12 21 6873 10.3390/jcm12216873 37959338
    [Google Scholar]
  58. Wanas H. Rabie M.A. Aboulhoda B.E. Ramadan N.M. Abdelwahab S. Abdallah S.S.K. Ali E.N. Khayruddeen L.N. Elhassan Y.H. Alghabban H.M. Abdelsalam S.M. Khalifa A.K. The potential therapeutic role of Lisinopril in augmenting the striatal neuroplasticity via the striatal ACE2/Ang1-7/MAS receptor axis in 3-nitropropionic acid-induced Huntington’s disease in rats: shifting paradigms in Huntington’s disease treatment. Future J. Pharm. Sci. 2024 10 1 150 10.1186/s43094‑024‑00724‑z
    [Google Scholar]
  59. Ocaranza M.P. Michea L. Chiong M. Lagos C.F. Lavandero S. Jalil J.E. Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system. Clin. Sci. (Lond.) 2015 127 9 549 10.1042/CS20130449
    [Google Scholar]
  60. Padda R.S. Shi Y. Lo C.S. Zhang S.L. Chan J.S. Angiotensin-(1-7): A novel peptide to treat hypertension and nephropathy in diabetes? J. Diabetes Metab. 2015 6 10 10.4172/2155‑6156.1000615
    [Google Scholar]
  61. Medina D. Arnold A.C. Angiotensin-(1-7): Translational avenues in cardiovascular control. Am. J. Hypertens. 2019 32 12 1133 1142 10.1093/ajh/hpz146 31602467
    [Google Scholar]
  62. Norambuena-Soto I. Lopez-Crisosto C. Martinez-Bilbao J. Hernandez-Fuentes C. Parra V. Lavandero S. Chiong M. Angiotensin-(1–9) in hypertension. Biochem. Pharmacol. 2022 203 115183 10.1016/j.bcp.2022.115183 35870482
    [Google Scholar]
  63. Derkachev I.A. Popov S.V. Maslov L.N. Mukhomedzyanov A.V. Naryzhnaya N.V. Gorbunov A.S. Kan A. Krylatov A.V. Podoksenov Y.K. Stepanov I.V. Gusakova S.V. Fu F. Pei J.M. Angiotensin 1–7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart—The signaling mechanism. Fundam. Clin. Pharmacol. 2024 38 3 489 501 10.1111/fcp.12983 38311344
    [Google Scholar]
  64. Lima E.B.S. Carvalho A.F.S. Zaidan I. Monteiro A.H.A. Cardoso C. Lara E.S. Carneiro F.S. Oliveira L.C. Resende F. Santos F.R.S. Souza-Costa L.P. Chaves I.M. Queiroz-Junior C.M. Russo R.C. Santos R.A.S. Tavares L.P. Teixeira M.M. Costa V.V. Sousa L.P. Angiotensin-(1–7) decreases inflammation and lung damage caused by betacoronavirus infection in mice. Inflamm. Res. 2024 73 11 2009 2022 10.1007/s00011‑024‑01948‑8 39292270
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257375839250811064453
Loading
/content/journals/chamc/10.2174/0118715257375839250811064453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test