Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Cardiovascular disease remains a leading global cause of mortality, with dyslipidemia as a major risk factor. While conventional lipid-lowering therapies are effective, they may have adverse effects, highlighting the need for alternative approaches. With its rich biodiversity and long-standing traditional medicine practices, Sri Lanka offers a natural alternative through medicinal plants with antilipidemic properties. Many of these plants are commonly used in Sri Lankan cuisine, not only enhancing flavor but also providing bioactive compounds that regulate lipid levels. This review explores the role of , , , , , , and in managing dyslipidemia. These plants have demonstrated lipid-lowering effects by reducing total cholesterol, LDL cholesterol, and triglycerides while increasing HDL cholesterol, enhancing fat metabolism, and exerting antioxidant and anti-inflammatory properties. The review also promotes the integration of these herbs into daily meals for cardiovascular disease management, offering a natural remedy and prevention method. By integrating traditional knowledge with scientific research, Sri Lanka can enhance its healthcare system and improve cardiovascular health outcomes.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257365508250627002738
2025-07-07
2026-02-04
Loading full text...

Full text loading...

References

  1. LepornN.E. FouchianD.D. McCulloughnP.A. New vistas for the treatment of obesity: Turning the tide against the leading cause of morbidity and cardiovascular mortality in the developed world.Rev. Cardiovasc. Med.2013141204010.3909/ricm068223651984
    [Google Scholar]
  2. Di CesareM. PerelP. TaylorS. KabudulaC. BixbyH. GazianoT.A. McGhieD.V. MwangiJ. PervanB. NarulaJ. PineiroD. PintoF.J. The heart of the world.Glob. Heart20241911110.5334/gh.128838273998
    [Google Scholar]
  3. ZhouW. LiangZ. LouX. WangN. LiuX. LiR. PaiP. The combination use of inclisiran and statins versus statins alone in the treatment of dyslipidemia in mainland China: A cost-effectiveness analysis.Front. Pharmacol.202415128392210.3389/fphar.2024.128392238469404
    [Google Scholar]
  4. ThomasH. DiamondJ. ViecoA. ChaudhuriS. ShinnarE. CromerS. PerelP. MensahG.A. NarulaJ. JohnsonC.O. RothG.A. MoranA.E. Global atlas of cardiovascular disease 2000-2016: The path to prevention and control.Glob. Heart201813314316310.1016/j.gheart.2018.09.51130301680
    [Google Scholar]
  5. BhopalR. FischbacherC. VartiainenE. UnwinN. WhiteM. AlbertiG. Predicted and observed cardiovascular disease in South Asians: Application of FINRISK, Framingham and SCORE models to Newcastle Heart Project data.J. Public Health.20052719310010.1093/pubmed/fdh20215749725
    [Google Scholar]
  6. SenaviratnaN.A.M.R. Cardiovascular disease burden in a country: In the context of Sri Lanka. Eur J. Med. Health.Res.202313555810.59324/ejmhr.2023.1(3).09
    [Google Scholar]
  7. Athauda-arachchiP. Advanced interventional cardiac procedures and perioperative care required to prevent the epidemic of end-stage heart disease in Sri Lanka. Sri Lanka.J. med.20192815410.4038/sljm.v28i1.121
    [Google Scholar]
  8. In Het PanhuisW. SchönkeM. ModderM. TomH.E. LalaiR.A. PronkA.C.M. StreeflandT.C.M. van KerkhofL.W.M. DolléM.E.T. DepuydtM.A.C. BotI. VosW.G. BosmansL.A. van OsB.W. LutgensE. RensenP.C.N. KooijmanS. Time-restricted feeding attenuates hypercholesterolaemia and atherosclerosis development during circadian disturbance in APOE*3-Leiden.CETP mice.EBioMedicine20239310468010.1016/j.ebiom.2023.10468037356205
    [Google Scholar]
  9. TaherZ.A. TaherA.A. RadiS. An update on dyslipidemia management and medications: A review.Cureus2024163e5625510.7759/cureus.5625538623110
    [Google Scholar]
  10. KayaŞ. KeçeciT. HaliloğluS. Effects of zinc and vitamin A supplements on plasma levels of thyroid hormones, cholesterol, glucose and egg yolk cholesterol of laying hens.Res. Vet. Sci.200171213513910.1053/rvsc.2001.050011883892
    [Google Scholar]
  11. KatulandaP. DissanayakeH.A. De SilvaS.D.N. KatulandaG.W. LiyanageI.K. ConstantineG.R. SheriffR. MatthewsD.R. Prevalence, patterns, and associations of dyslipidemia among Sri Lankan adults—Sri Lanka Diabetes and Cardiovascular Study in 2005–2006.J. Clin. Lipidol.201812244745410.1016/j.jacl.2018.01.00629429894
    [Google Scholar]
  12. BandaraK.M.G.K. KumarasiriP.V.R. NugegodaD.B. Lipid profile and related factors among adolescents in an urban setting in Sri Lanka: The situation in 2006. Sri Lanka.J. med.20162511110.4038/sljm.v25i1.14
    [Google Scholar]
  13. HuangC. ZhangW.Q. TangW.W. LiuY. LiuJ.X. XuR.H. ZhaoS.P. WangT.D. HuangX.B. Prevalence and related factors of dyslipidemia among urban adults aged 35 to 79 years in Southwestern China.Sci. Rep.20211111757910.1038/s41598‑021‑96864‑w34475467
    [Google Scholar]
  14. AyoadeO.G. UmohI. AmadiC. Dyslipidemia and associated risk factors among nigerians with hypertension.Dubai Medical Journal20203415516110.1159/000509570
    [Google Scholar]
  15. PasternakR.C. 2001 National Cholesterol Education Program (NCEP) guidelines on the detection, evaluation and treatment of elevated cholesterol in adults: Adult treatment panel III (ATP III).ACC Curr. J. Rev.2002114374510.1016/S1062‑1458(02)00670‑0
    [Google Scholar]
  16. LiuW. YangC. LeiF. HuangX. CaiJ. ChenS. SheZ.G. LiH. Major lipids and lipoprotein levels and risk of blood pressure elevation: A Mendelian Randomisation study.EBioMedicine202410010496410.1016/j.ebiom.2023.10496438181703
    [Google Scholar]
  17. YanaiH. YoshidaH. Secondary dyslipidemia: Its treatments and association with atherosclerosis.Glob. Health Med.202131152310.35772/ghm.2020.0107833688591
    [Google Scholar]
  18. YingZ. van EenigeR. GeX. van MarwijkC. LambooijJ.M. GuigasB. GieraM. de BoerJ.F. CoskunT. QuH. WangY. BoonM.R. RensenP.C.N. KooijmanS. Combined GIP receptor and GLP1 receptor agonism attenuates NAFLD in male APOE*3-Leiden.CETP mice.EBioMedicine20239310468410.1016/j.ebiom.2023.10468437379656
    [Google Scholar]
  19. LiZ. ZhangB. LiuQ. TaoZ. DingL. GuoB. ZhangE. ZhangH. MengZ. GuoS. ChenY. PengJ. LiJ. WangC. HuangY. XuH. WuY. Genetic association of lipids and lipid-lowering drug target genes with non-alcoholic fatty liver disease.EBioMedicine20239010454310.1016/j.ebiom.2023.10454337002989
    [Google Scholar]
  20. MiklankovaD. MarkovaI. HüttlM. MalinskaH. Empagliflozin alters lipid metabolism in the myocardium and liver in a prediabetes model with severe dyslipidemia.Front. Pharmacol.202415139394610.3389/fphar.2024.139394639027339
    [Google Scholar]
  21. HerinkM. ItoM.K. Medication induced changes in lipid and lipoproteins.Endotext2000
    [Google Scholar]
  22. ZoddaD. GiammonaR. SchifillitiS. Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs.Pharmacy2018611010.3390/pharmacy601001029361723
    [Google Scholar]
  23. Industrial Data book 2022.2022Available from:https://www.industry.gov.lk/web/wp-content/uploads/2023/05/data-book-2022-Copy.pdf
  24. KaralisD.G. VictorB. AhedorL. LiuL. Use of lipid-lowering medications and the likelihood of achieving optimal ldl-cholesterol goals in coronary artery disease patients.Cholesterol201220121710.1155/2012/86192422888414
    [Google Scholar]
  25. MaX.N. ShiM.F. WangS.I. FengW. ChenS.L. ZhongX.Q. LiuQ.P. Cheng-Chung WeiJ. LinC.S. XuQ. Risk of dyslipidemia and major adverse cardiac events with tofacitinib versus adalimumab in rheumatoid arthritis: A real-world cohort study from 7580 patients.Front. Pharmacol.202415137066110.3389/fphar.2024.137066138881871
    [Google Scholar]
  26. RamkumarS. RaghunathA. RaghunathS. RaghunathS. Statin therapy: Review of safety and potential side effects.Zhonghua Minguo Xinzangxue Hui Zazhi201632663163910.6515/ACS20160611A27899849
    [Google Scholar]
  27. BansalA.B. CassagnolM. HMG-CoA Reductase Inhibitors.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  28. HoC.K.M. WalkerS.W. Statins and their interactions with other lipid-modifying medications: Safety issues in the elderly.Ther. Adv. Drug Saf.201231354610.1177/204209861142848625083224
    [Google Scholar]
  29. SizarO. NassereddinA. TalatiR. Ezetimibe.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  30. MalihaM. SatishV. KumarS.S. ChiK.Y. ShamaN. KharawalaA. DuarteG. LiW. PurkayasthaS. MangeshkarS. BorkowskiP. GashiE. BehuriaS. The safety profile of inclisiran in patients with dyslipidemia: A systematic review and meta-analysis.Health Care202513214110.3390/healthcare1302014139857168
    [Google Scholar]
  31. HansenM. SonneD.P. MikkelsenK.H. GluudL.L. VilsbøllT. KnopF.K. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: A systematic review with meta-analysis of randomized controlled trials.J. Diabetes Complications201731591892710.1016/j.jdiacomp.2017.01.01128238556
    [Google Scholar]
  32. MazharF. HaiderN. Proprotein convertase subtilisin/kexin type 9 enzyme inhibitors: An emerging new therapeutic option for the treatment of dyslipidemia.J. Pharmacol. Pharmacother.20167419019310.4103/0976‑500X.19590628163543
    [Google Scholar]
  33. GürgözeM.T. Muller-HansmaA.H.G. SchreuderM.M. Galema-BoersA.M.H. BoersmaE. Roeters van LennepJ.E. Adverse events associated with PCSK 9 inhibitors: A real‐world experience.Clin. Pharmacol. Ther.2019105249650410.1002/cpt.119330053327
    [Google Scholar]
  34. DuZ. QinY. Dyslipidemia and cardiovascular disease: Current knowledge, existing challenges, and new opportunities for management strategies.J. Clin. Med.202312136310.3390/jcm1201036336615163
    [Google Scholar]
  35. Duarte LauF. GiuglianoR.P. Adenosine triphosphate citrate lyase and fatty acid synthesis inhibition.JAMA Cardiol.20238987988710.1001/jamacardio.2023.240237585218
    [Google Scholar]
  36. LincoffA.M. RayK.K. SasielaW.J. HaddadT. NichollsS.J. LiN. ChoL. MasonD. LibbyP. GoodmanS.G. NissenS.E. Comparative cardiovascular benefits of bempedoic acid and statin drugs.J. Am. Coll. Cardiol.202484215216210.1016/j.jacc.2024.04.04838960508
    [Google Scholar]
  37. BioloG. VinciP. MangognaA. LandolfoM. SchincariolP. FiottiN. MearelliF. Di GirolamoF.G. Mechanism of action and therapeutic use of bempedoic acid in atherosclerosis and metabolic syndrome.Front. Cardiovasc. Med.20229102835510.3389/fcvm.2022.102835536386319
    [Google Scholar]
  38. BrandtsJ. RayK.K. Bempedoic acid, an inhibitor of ATP citrate lyase for the treatment of hypercholesterolemia: Early indications and potential.Expert Opin. Investig. Drugs202029876377010.1080/13543784.2020.177866832564642
    [Google Scholar]
  39. PahanK. Lipid-lowering drugs.Cell. Mol. Life Sci.200663101165117810.1007/s00018‑005‑5406‑716568248
    [Google Scholar]
  40. SinghG. CorreaR. Fibrate Medications.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  41. ŽákA. VeckaM. PerlíkF. HromádkaR. StaňkováB. TvrzickáE. ŽákA. Niacin in the treatment of hyperlipidemias in light of new clinical trials: Has niacin lost its place?Med. Sci. Monit.2015212156216210.12659/MSM.89361926210594
    [Google Scholar]
  42. GanjiS.H. KamannaV.S. KashyapM.L. Niacin and cholesterol: Role in cardiovascular disease (review).J. Nutr. Biochem.200314629830510.1016/S0955‑2863(02)00284‑X12873710
    [Google Scholar]
  43. DjadjoS. BajajT. Niacin.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  44. PirilloA. CatapanoA.L. Omega-3 polyunsaturated fatty acids in the treatment of atherogenic dyslipidemia.Atheroscler. Suppl.201314223724210.1016/S1567‑5688(13)70004‑723958479
    [Google Scholar]
  45. RyuH. Pharmacokinetic interactions between the fixed-dose combination of ezetimibe/rosuvastatin 10/20 mg and the fixed-dose combination of telmisartan/amlodipine 80/5 mg in healthy subjects.Drug Des. Devel. Ther.2024182641265210.2147/DDDT.S46565238974125
    [Google Scholar]
  46. FeingoldK.R. Cholesterol Lowering Drugs.Endotext2000
    [Google Scholar]
  47. WaisundaraV.Y. Important history of incorporation of medicinal plants into porridge in Sri Lanka.In: Traditional Herbal Remedies of Sri Lanka.Boca Raton, FLCRC Press201910.1201/9781315181844‑3
    [Google Scholar]
  48. KuruppuA.I. ParanagamaP. GoonasekaraC.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka.Saudi Pharm. J.201927456557310.1016/j.jsps.2019.02.00431061626
    [Google Scholar]
  49. PereraP. Current scenario of herbal medicine in Sri Lanka.New Delhi on 14 -15 April,2012.
  50. BalasooriyaS.J. SotheeswaranS. BalasubramaniumS. Economically useful plants of Sri Lanka Part IV* Screening of Sri Lanka Plants for Tannins.J. Natl. Sci. Found. Sri Lanka198210221310.4038/jnsfsr.v10i2.8430
    [Google Scholar]
  51. TanZ. HalterB. LiuD. GilbertE.R. ClineM.A. Dietary flavonoids as modulators of lipid metabolism in poultry.Front. Physiol.20221386386010.3389/fphys.2022.86386035547590
    [Google Scholar]
  52. SiriwardhanaA. WijesundaraS. KarunaratneV. A review of studies on bioactive compounds isolated from Sri Lankan flora.J. Natl. Sci. Found. Sri Lanka20154311110.4038/jnsfsr.v43i1.7912
    [Google Scholar]
  53. WeerasingheW.P.N.W. DeraniyagalaS.A. Antioxidant activity of some Sri Lankan endemic medicinal plants.Pharmaceutical Journal of Sri Lanka201660910.4038/pjsl.v6i0.10
    [Google Scholar]
  54. Sharifi-RadJ. QuispeC. ImranM. RaufA. NadeemM. GondalT.A. AhmadB. AtifM. MubarakM.S. SytarO. ZhilinaO.M. GarsiyaE.R. SmeriglioA. TrombettaD. PonsD.G. MartorellM. CardosoS.M. RazisA.F.A. SunusiU. KamalR.M. RotariuL.S. ButnariuM. DoceaA.O. CalinaD. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits.Oxid. Med. Cell. Longev.202120211326813610.1155/2021/326813634336089
    [Google Scholar]
  55. NapagodaM. PrathibhaE. NifrasM. In vitro erythrocyte membrane stabilization potential in some Sri Lankan medicinal plant extracts.Prayogik Rasayan20193310.53023/p.rasayan‑20190222
    [Google Scholar]
  56. WaisundaraV.Y. WatawanaM.I. The classification of sri lankan medicinal herbs: An extensive comparison of the antioxidant activities.J. Tradit. Complement. Med.20144319620210.4103/2225‑4110.12617525161925
    [Google Scholar]
  57. ArseculeratneS.N. GunatilakaA.A.L. PanabokkeR.G. Studies on medicinal plants of sri lanka. part 14: Toxicity of some traditional medicinal herbs.J. Ethnopharmacol.198513332333510.1016/0378‑8741(85)90078‑94058035
    [Google Scholar]
  58. ChenX.Q. HuT. HanY. HuangW. YuanH.B. ZhangY.T. DuY. JiangY.W. Preventive effects of catechins on cardiovascular disease.Molecules20162112175910.3390/molecules2112175928009849
    [Google Scholar]
  59. SamarasekeraR. HemalalK.P. AtaA. In pursuit of bioactive constituents from Sri Lankan medicinal plants.Planta Med.2010765s-0030s-125180310.1055/s‑0030‑1251803
    [Google Scholar]
  60. BariM.D.N. AnsariM.D.R. AnwarM. Bioactive compounds from medicinal plants in liver disease treatment: A review.Ann. Phytomed.202211110.54085/ap.2022.11.1.21
    [Google Scholar]
  61. Mohammadi-CheraghabadiM. HazratiS. Terpenoids, steroids, and phenolic compounds of medicinal plants.In: Phytochemicals in Medicinal Plants. AroraC. VermaD.K. AslamJ. MahishP.K. De Gruyter202310513010.1515/9783110791891‑005
    [Google Scholar]
  62. RayS. SainiM.K. Cure and prevention of cardiovascular diseases: Herbs for heart.Clinical Phytoscience2021716410.1186/s40816‑021‑00294‑0
    [Google Scholar]
  63. GyawaliD. VohraR. Orme-JohnsonD. RamaratnamS. SchneiderR.H. A systematic review and meta-analysis of ayurvedic herbal preparations for hypercholesterolemia.Medicina202157654610.3390/medicina5706054634071454
    [Google Scholar]
  64. MuradS. NiazK. AslamH. Effects of ginger on LDL-C, total cholesterol and body weight.Clin. Med. Biochem.20184210.4172/2471‑2663.1000140
    [Google Scholar]
  65. QinS. HuangL. GongJ. ShenS. HuangJ. RenH. HuH. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials.Nutr. J.20171616810.1186/s12937‑017‑0293‑y29020971
    [Google Scholar]
  66. ReddyB.M. DhanpalC.K. LakshmiB.V.S. A review on curry leaves (Murraya koenigii): Versatile multi-potential medicinal plant.Int. J. Adv. Pharm. Med. Bioallied Sci.2018613141
    [Google Scholar]
  67. JayaweeraD.M.A. Medicinal plants (Indigenous and Exotic) Used in Ceylon Part 1.2006Available from: [https://archive.org/details/medical_used_in_ceylon_581_na_02
  68. JayaweeraD.M.A. Medicinal plants (Indigenous and Exotic) Used in Ceylon Part 2.2006Available from: [https://dl.nsf.gov.lk/items/69292058-79c4-49a3-abbc-eac7b76805d6
  69. JayaweeraD.M.A. Medicinal plants (Indigenous and Exotic) Used in Ceylon Part 3.2006Available from: [https://dl.nsf.gov.lk/items/5bda5566-92c1-4077-8c1f-19c2332d191c
  70. JayaweeraD.M.A. Medicinal plants (Indigenous and Exotic) Used in Ceylon Part 4.2006Available from: [https://dl.nsf.gov.lk/items/a43d6e91-5ce2-4dd6-bace-3aec2eeb2d0a
  71. KesariA.N. KesariS. SinghS.K. GuptaR.K. WatalG. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals.J. Ethnopharmacol.2007112230531110.1016/j.jep.2007.03.02317467937
    [Google Scholar]
  72. VasudevanM. ParleM. Antiamnesic potential of Murraya koenigii leaves.Phytother. Res.200923330831610.1002/ptr.262018844259
    [Google Scholar]
  73. ZahinM. AqilF. HusainF.M. AhmadI. Antioxidant capacity and antimutagenic potential of Murraya koenigii.BioMed Res. Int.2013201311010.1155/2013/26350923853769
    [Google Scholar]
  74. LubeckB. Garcinia cambogia: Potential Health Benefits vs. Risks.2024Available from: https://www.verywellhealth.com/everything-you-should-know-about-garcinia-cambogia-7565005
  75. NimanthikaW.J. KaththriarachchiH.S. Systematics of genus Garcinia L. (Clusiaceae) in Sri Lanka: New insights from vegetative morphology.J. Natl. Sci. Found. Sri Lanka20103812910.4038/jnsfsr.v38i1.1723
    [Google Scholar]
  76. SemwalR.B. SemwalD.K. VermaakI. ViljoenA. A comprehensive scientific overview of Garcinia cambogia.Fitoterapia201510213414810.1016/j.fitote.2015.02.01225732350
    [Google Scholar]
  77. HewageeganaA. HewageeganaH. ArawwawalaL. Comparison on phytochemical and physicochemical parameters of Garcinia cambogia (Gaertn.) Desr. and Garcinia zeylanica Linn fruit rinds.J. Pharmacogn. Phytochem.20187225322535
    [Google Scholar]
  78. Garcinia Cambogia.In: LiverTox: Clinical and Research Information on Drug-Induced Liver.Bethesda, (MD)National Institute of Diabetes and Digestive and Kidney Diseases2012
    [Google Scholar]
  79. FassinaP. Scherer AdamiF. Terezinha ZaniV. Kasper MachadoI.C. GaravagliaJ. Quevedo GraveM.T. RamosR. Morelo Dal BoscoS. The effect of Garcinia cambogia as coadjuvant in the weight loss process.Nutr. Hosp.20153262400240810.3305/nh.2015.32.6.958726667686
    [Google Scholar]
  80. KimK.Y. LeeH.N. KimY.J. ParkT. Garcinia cambogia extract ameliorates visceral adiposity in C57BL/6J mice fed on a high-fat diet.Biosci. Biotechnol. Biochem.20087271772178010.1271/bbb.8007218603810
    [Google Scholar]
  81. MathapatiI.S RM. PP. R HJ. Therapeutic Evaluation of Vrikshamla (Garcinia Cambogia) in the Management of Sthoulya (Obesity) W.S.R Dyslipidemia a case report.Int. J. Life. Sci. Pharma Res.2022(Jul)10.22376/ijpbs/lpr.2022.12.4.L97‑107
    [Google Scholar]
  82. LiyanagamageD.S.N.K. JayasingheS. AttanayakeA.P. KarunaratneV. WijesundaraD.S.A. Antihyperglycemic activity of fruit extracts of Sri Lankan endemic species Garcinia quaesita Pierre “Rathgoraka” and its isolated compound, garcinol.Ceylon Journal of Science202049330310.4038/cjs.v49i3.7781
    [Google Scholar]
  83. SampathS.N.T.I. JayasingheS. AttanayakeA.P. KarunaratneV. Sub-acute antihyperlipidemic and antihyperglycemic activity of the hexane extract of a polyherbal mixture in streptozotocin-induced diabetic rats.Ceylon J. Sci.202150327910.4038/cjs.v50i3.7909
    [Google Scholar]
  84. AnzanoA. AmmarM. PapaianniM. GrausoL. SabbahM. CapparelliR. LanzottiV. Moringa oleifera Lam.: A phytochemical and pharmacological overview.Horticulturae202171040910.3390/horticulturae7100409
    [Google Scholar]
  85. MillaP.G. PeñalverR. NietoG. Health benefits of uses and applications of Moringa oleifera in bakery products.Plants202110231810.3390/plants1002031833562157
    [Google Scholar]
  86. MbikayM. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review.Front. Pharmacol.201232410.3389/fphar.2012.0002422403543
    [Google Scholar]
  87. LeoneA. SpadaA. BattezzatiA. SchiraldiA. AristilJ. BertoliS. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview.Int. J. Mol. Sci.2015166127911283510.3390/ijms16061279126057747
    [Google Scholar]
  88. JainP.G. PatilS.D. HaswaniN.G. GiraseM.V. SuranaS.J. Hypolipidemic activity of Moringa oleifera Lam., Moringaceae, on high fat diet induced hyperlipidemia in albino rats.Rev. Bras. Farmacogn.201020696997310.1590/S0102‑695X2010005000038
    [Google Scholar]
  89. NambiarV. GuinP. ParnamiS. DanielM. Impact of antioxidants from drumstick leaves on the lipid profile of hyperlipidemics.J. Herb Med. Toxicol.20104165172
    [Google Scholar]
  90. YahiaE.M. SalihN.K-E. Tamarind (Tamarindus indica L.).In: Postharvest Biology and Technology of Tropical and Subtropical Fruits.Elsevier2011442458e10.1533/9780857092618.442
    [Google Scholar]
  91. LimC.Y. Mat JunitS. AbdullaM.A. Abdul AzizA. In vivo biochemical and gene expression analyses of the antioxidant activities and hypocholesterolaemic properties of Tamarindus indica fruit pulp extract.PLoS One201387e7005810.1371/journal.pone.007005823894592
    [Google Scholar]
  92. UchennaU.E. ShoriA.B. BabaA.S. Tamarindus indica seeds improve carbohydrate and lipid metabolism: An in vivo study.J. Ayurveda Integr. Med.20189425826510.1016/j.jaim.2017.06.00429203351
    [Google Scholar]
  93. Thahira BanuA. AswiniM. Role of Piper nigrum in functional food and nutraceuticals.In: Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods.Elsevier2023416010.1016/B978‑0‑323‑90794‑1.00019‑3
    [Google Scholar]
  94. MittalR. GuptaR.L. In vitro antioxidant activity of piperine.Methods Find. Exp. Clin. Pharmacol.200022527127410.1358/mf.2000.22.5.79664411031726
    [Google Scholar]
  95. DuangjaiA. IngkaninanK. PraputbutS. LimpeanchobN. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins.J. Nat. Med.201367230331010.1007/s11418‑012‑0682‑722736065
    [Google Scholar]
  96. VijayakumarR.S. SuryaD. SenthilkumarR. NaliniN. Hypolipidemic effect of black pepper (Piper nigrum Linn.) in rats fed high fat diet.J. Clin. Biochem. Nutr.200232314210.3164/jcbn.32.31
    [Google Scholar]
  97. AshokkumarK. MuruganM. DhanyaM.K. PandianA. WarkentinT.D. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review.Clinical Phytoscience2021715210.1186/s40816‑021‑00292‑2
    [Google Scholar]
  98. SinghN. YadavS.S. KumarS. NarashimanB. Ethnopharmacological, phytochemical and clinical studies on Fenugreek (Trigonella foenum-graecum L.).Food Biosci.20224610154610.1016/j.fbio.2022.101546
    [Google Scholar]
  99. GoyalS. GuptaN. ChatterjeeS. Investigating therapeutic potential of Trigonella foenum-graecum L. as our defense mechanism against several human diseases.J. Toxicol.2016201611010.1155/2016/125038726884758
    [Google Scholar]
  100. KumarP. BhandariU. JamadagniS. Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats.BioMed Res. Int.2014201411110.1155/2014/60602124868532
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257365508250627002738
Loading
/content/journals/chamc/10.2174/0118715257365508250627002738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test