Skip to content
2000
image of The Effect of Sri Lankan Medicinal Herbs on the Reduction of Dyslipidemia

Abstract

Cardiovascular disease remains a leading global cause of mortality, with dyslipidemia as a major risk factor. While conventional lipid-lowering therapies are effective, they may have adverse effects, highlighting the need for alternative approaches. With its rich biodiversity and long-standing traditional medicine practices, Sri Lanka offers a natural alternative through medicinal plants with antilipidemic properties. Many of these plants are commonly used in Sri Lankan cuisine, not only enhancing flavor but also providing bioactive compounds that regulate lipid levels. This review explores the role of , , , , , , and in managing dyslipidemia. These plants have demonstrated lipid-lowering effects by reducing total cholesterol, LDL cholesterol, and triglycerides while increasing HDL cholesterol, enhancing fat metabolism, and exerting antioxidant and anti-inflammatory properties. The review also promotes the integration of these herbs into daily meals for cardiovascular disease management, offering a natural remedy and prevention method. By integrating traditional knowledge with scientific research, Sri Lanka can enhance its healthcare system and improve cardiovascular health outcomes.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257365508250627002738
2025-07-07
2025-09-10
Loading full text...

Full text loading...

References

  1. Leporn N.E. Fouchian D.D. McCulloughn P.A. New vistas for the treatment of obesity: Turning the tide against the leading cause of morbidity and cardiovascular mortality in the developed world. Rev. Cardiovasc. Med. 2013 14 1 20 40 10.3909/ricm0682 23651984
    [Google Scholar]
  2. Di Cesare M. Perel P. Taylor S. Kabudula C. Bixby H. Gaziano T.A. McGhie D.V. Mwangi J. Pervan B. Narula J. Pineiro D. Pinto F.J. The heart of the world. Glob. Heart 2024 19 1 11 10.5334/gh.1288 38273998
    [Google Scholar]
  3. Zhou W. Liang Z. Lou X. Wang N. Liu X. Li R. Pai P. The combination use of inclisiran and statins versus statins alone in the treatment of dyslipidemia in mainland China: A cost-effectiveness analysis. Front. Pharmacol. 2024 15 1283922 10.3389/fphar.2024.1283922 38469404
    [Google Scholar]
  4. Thomas H. Diamond J. Vieco A. Chaudhuri S. Shinnar E. Cromer S. Perel P. Mensah G.A. Narula J. Johnson C.O. Roth G.A. Moran A.E. Global atlas of cardiovascular disease 2000-2016: The path to prevention and control. Glob. Heart 2018 13 3 143 163 10.1016/j.gheart.2018.09.511 30301680
    [Google Scholar]
  5. Bhopal R. Fischbacher C. Vartiainen E. Unwin N. White M. Alberti G. Predicted and observed cardiovascular disease in South Asians: Application of FINRISK, Framingham and SCORE models to Newcastle Heart Project data. J. Public Health 2005 27 1 93 100 10.1093/pubmed/fdh202 15749725
    [Google Scholar]
  6. Senaviratna N.A.M.R. Cardiovascular disease burden in a country: In the context of Sri Lanka. Eur J. Med. Health. Res. 2023 1 3 55 58 10.59324/ejmhr.2023.1(3).09
    [Google Scholar]
  7. Athauda-arachchi P. Advanced interventional cardiac procedures and perioperative care required to prevent the epidemic of end-stage heart disease in Sri Lanka. Sri Lanka. J. med. 2019 28 1 54 10.4038/sljm.v28i1.121
    [Google Scholar]
  8. In Het Panhuis W. Schönke M. Modder M. Tom H.E. Lalai R.A. Pronk A.C.M. Streefland T.C.M. van Kerkhof L.W.M. Dollé M.E.T. Depuydt M.A.C. Bot I. Vos W.G. Bosmans L.A. van Os B.W. Lutgens E. Rensen P.C.N. Kooijman S. Time-restricted feeding attenuates hypercholesterolaemia and atherosclerosis development during circadian disturbance in APOE*3-Leiden.CETP mice. EBioMedicine 2023 93 104680 10.1016/j.ebiom.2023.104680 37356205
    [Google Scholar]
  9. Taher Z.A. Taher A.A. Radi S. An update on dyslipidemia management and medications: A review. Cureus 2024 16 3 e56255 10.7759/cureus.56255 38623110
    [Google Scholar]
  10. Kaya Ş. Keçeci T. Haliloğlu S. Effects of zinc and vitamin A supplements on plasma levels of thyroid hormones, cholesterol, glucose and egg yolk cholesterol of laying hens. Res. Vet. Sci. 2001 71 2 135 139 10.1053/rvsc.2001.0500 11883892
    [Google Scholar]
  11. Katulanda P. Dissanayake H.A. De Silva S.D.N. Katulanda G.W. Liyanage I.K. Constantine G.R. Sheriff R. Matthews D.R. Prevalence, patterns, and associations of dyslipidemia among Sri Lankan adults—Sri Lanka Diabetes and Cardiovascular Study in 2005–2006. J. Clin. Lipidol. 2018 12 2 447 454 10.1016/j.jacl.2018.01.006 29429894
    [Google Scholar]
  12. Bandara K.M.G.K. Kumarasiri P.V.R. Nugegoda D.B. Lipid profile and related factors among adolescents in an urban setting in Sri Lanka: The situation in 2006. Sri Lanka. J. Med. 2016 25 1 11 10.4038/sljm.v25i1.14
    [Google Scholar]
  13. Huang C. Zhang W.Q. Tang W.W. Liu Y. Liu J.X. Xu R.H. Zhao S.P. Wang T.D. Huang X.B. Prevalence and related factors of dyslipidemia among urban adults aged 35 to 79 years in Southwestern China. Sci. Rep. 2021 11 1 17579 10.1038/s41598‑021‑96864‑w 34475467
    [Google Scholar]
  14. Ayoade O.G. Umoh I. Amadi C. Dyslipidemia and associated risk factors among nigerians with hypertension. Dubai Medical Journal 2020 3 4 155 161 10.1159/000509570
    [Google Scholar]
  15. Pasternak R.C. 2001 National Cholesterol Education Program (NCEP) guidelines on the detection, evaluation and treatment of elevated cholesterol in adults: Adult treatment panel III (ATP III). ACC Curr. J. Rev. 2002 11 4 37 45 10.1016/S1062‑1458(02)00670‑0
    [Google Scholar]
  16. Liu W. Yang C. Lei F. Huang X. Cai J. Chen S. She Z.G. Li H. Major lipids and lipoprotein levels and risk of blood pressure elevation: A Mendelian Randomisation study. EBioMedicine 2024 100 104964 10.1016/j.ebiom.2023.104964 38181703
    [Google Scholar]
  17. Yanai H. Yoshida H. Secondary dyslipidemia: Its treatments and association with atherosclerosis. Glob. Health. Med. 2021 3 1 15 23 10.35772/ghm.2020.01078 33688591
    [Google Scholar]
  18. Ying Z. van Eenige R. Ge X. van Marwijk C. Lambooij J.M. Guigas B. Giera M. de Boer J.F. Coskun T. Qu H. Wang Y. Boon M.R. Rensen P.C.N. Kooijman S. Combined GIP receptor and GLP1 receptor agonism attenuates NAFLD in male APOE*3-Leiden.CETP mice. EBioMedicine 2023 93 104684 10.1016/j.ebiom.2023.104684 37379656
    [Google Scholar]
  19. Li Z. Zhang B. Liu Q. Tao Z. Ding L. Guo B. Zhang E. Zhang H. Meng Z. Guo S. Chen Y. Peng J. Li J. Wang C. Huang Y. Xu H. Wu Y. Genetic association of lipids and lipid-lowering drug target genes with non-alcoholic fatty liver disease. EBioMedicine 2023 90 104543 10.1016/j.ebiom.2023.104543 37002989
    [Google Scholar]
  20. Miklankova D. Markova I. Hüttl M. Malinska H. Empagliflozin alters lipid metabolism in the myocardium and liver in a prediabetes model with severe dyslipidemia. Front. Pharmacol. 2024 15 1393946 10.3389/fphar.2024.1393946 39027339
    [Google Scholar]
  21. Herink M. Ito M.K. Medication induced changes in lipid and lipoproteins. Endotext 2000
    [Google Scholar]
  22. Zodda D. Giammona R. Schifilliti S. Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs. Pharmacy 2018 6 1 10 10.3390/pharmacy6010010 29361723
    [Google Scholar]
  23. Industrial Data book 2022. 2022 Available from:https://www.industry.gov.lk/web/wp-content/uploads/2023/05/data-book-2022-Copy.pdf
  24. Karalis D.G. Victor B. Ahedor L. Liu L. Use of lipid-lowering medications and the likelihood of achieving optimal ldl-cholesterol goals in coronary artery disease patients. Cholesterol 2012 2012 1 7 10.1155/2012/861924 22888414
    [Google Scholar]
  25. Ma X.N. Shi M.F. Wang S.I. Feng W. Chen S.L. Zhong X.Q. Liu Q.P. Cheng-Chung Wei J. Lin C.S. Xu Q. Risk of dyslipidemia and major adverse cardiac events with tofacitinib versus adalimumab in rheumatoid arthritis: A real-world cohort study from 7580 patients. Front. Pharmacol. 2024 15 1370661 10.3389/fphar.2024.1370661 38881871
    [Google Scholar]
  26. Ramkumar S. Raghunath A. Raghunath S. Raghunath S. Statin therapy: Review of safety and potential side effects. Zhonghua Minguo Xinzangxue Hui Zazhi 2016 32 6 631 639 10.6515/ACS20160611A 27899849
    [Google Scholar]
  27. Bansal A.B. Cassagnol M. HMG-CoA Reductase Inhibitors. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  28. Ho C.K.M. Walker S.W. Statins and their interactions with other lipid-modifying medications: Safety issues in the elderly. Ther. Adv. Drug Saf. 2012 3 1 35 46 10.1177/2042098611428486 25083224
    [Google Scholar]
  29. Sizar O. Nassereddin A. Talati R. Ezetimibe. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  30. Maliha M. Satish V. Kumar S.S. Chi K.Y. Shama N. Kharawala A. Duarte G. Li W. Purkayastha S. Mangeshkar S. Borkowski P. Gashi E. Behuria S. The safety profile of inclisiran in patients with dyslipidemia: A systematic review and meta-analysis. Health care 2025 13 2 141 10.3390/healthcare13020141 39857168
    [Google Scholar]
  31. Hansen M. Sonne D.P. Mikkelsen K.H. Gluud L.L. Vilsbøll T. Knop F.K. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: A systematic review with meta-analysis of randomized controlled trials. J. Diabetes Complications 2017 31 5 918 927 10.1016/j.jdiacomp.2017.01.011 28238556
    [Google Scholar]
  32. Mazhar F. Haider N. Proprotein convertase subtilisin/kexin type 9 enzyme inhibitors: An emerging new therapeutic option for the treatment of dyslipidemia. J. Pharmacol. Pharmacother. 2016 7 4 190 193 10.4103/0976‑500X.195906 28163543
    [Google Scholar]
  33. Gürgöze M.T. Muller-Hansma A.H.G. Schreuder M.M. Galema-Boers A.M.H. Boersma E. Roeters van Lennep J.E. Adverse events associated with PCSK 9 inhibitors: A real‐world experience. Clin. Pharmacol. Ther. 2019 105 2 496 504 10.1002/cpt.1193 30053327
    [Google Scholar]
  34. Du Z. Qin Y. Dyslipidemia and cardiovascular disease: Current knowledge, existing challenges, and new opportunities for management strategies. J. Clin. Med. 2023 12 1 363 10.3390/jcm12010363 36615163
    [Google Scholar]
  35. Duarte Lau F. Giugliano R.P. Adenosine triphosphate citrate lyase and fatty acid synthesis inhibition. JAMA Cardiol. 2023 8 9 879 887 10.1001/jamacardio.2023.2402 37585218
    [Google Scholar]
  36. Lincoff A.M. Ray K.K. Sasiela W.J. Haddad T. Nicholls S.J. Li N. Cho L. Mason D. Libby P. Goodman S.G. Nissen S.E. Comparative cardiovascular benefits of bempedoic acid and statin drugs. J. Am. Coll. Cardiol. 2024 84 2 152 162 10.1016/j.jacc.2024.04.048 38960508
    [Google Scholar]
  37. Biolo G. Vinci P. Mangogna A. Landolfo M. Schincariol P. Fiotti N. Mearelli F. Di Girolamo F.G. Mechanism of action and therapeutic use of bempedoic acid in atherosclerosis and metabolic syndrome. Front. Cardiovasc. Med. 2022 9 1028355 10.3389/fcvm.2022.1028355 36386319
    [Google Scholar]
  38. Brandts J. Ray K.K. Bempedoic acid, an inhibitor of ATP citrate lyase for the treatment of hypercholesterolemia: Early indications and potential. Expert Opin. Investig. Drugs 2020 29 8 763 770 10.1080/13543784.2020.1778668 32564642
    [Google Scholar]
  39. Pahan K. Lipid-lowering drugs. Cell. Mol. Life Sci. 2006 63 10 1165 1178 10.1007/s00018‑005‑5406‑7 16568248
    [Google Scholar]
  40. Singh G. Correa R. Fibrate Medications. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  41. Žák A. Vecka M. Perlík F. Hromádka R. Staňková B. Tvrzická E. Žák A. Niacin in the treatment of hyperlipidemias in light of new clinical trials: Has niacin lost its place? Med. Sci. Monit. 2015 21 2156 2162 10.12659/MSM.893619 26210594
    [Google Scholar]
  42. Ganji S.H. Kamanna V.S. Kashyap M.L. Niacin and cholesterol: Role in cardiovascular disease. (review) J. Nutr. Biochem. 2003 14 6 298 305 10.1016/S0955‑2863(02)00284‑X 12873710
    [Google Scholar]
  43. Djadjo S. Bajaj T. Niacin. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  44. Pirillo A. Catapano A.L. Omega-3 polyunsaturated fatty acids in the treatment of atherogenic dyslipidemia. Atheroscler. Suppl. 2013 14 2 237 242 10.1016/S1567‑5688(13)70004‑7 23958479
    [Google Scholar]
  45. Ryu H. Pharmacokinetic interactions between the fixed-dose combination of ezetimibe/rosuvastatin 10/20 mg and the fixed-dose combination of telmisartan/amlodipine 80/5 mg in healthy subjects. Drug Des. Devel. Ther. 2024 18 2641 2652 10.2147/DDDT.S465652 38974125
    [Google Scholar]
  46. Feingold K.R. Cholesterol Lowering Drugs. Endotext 2000
    [Google Scholar]
  47. Waisundara V.Y. Important history of incorporation of medicinal plants into porridge in Sri Lanka. Traditional Herbal Remedies of Sri Lanka. Boca Raton, FL CRC Press 2019 10.1201/9781315181844‑3
    [Google Scholar]
  48. Kuruppu A.I. Paranagama P. Goonasekara C.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm. J. 2019 27 4 565 573 10.1016/j.jsps.2019.02.004 31061626
    [Google Scholar]
  49. Perera P. Current scenario of herbal medicine in Sri Lanka New Delhi on 14 -15 April, 2012
    [Google Scholar]
  50. Balasooriya S.J. Sotheeswaran S. Balasubramanium S. Economically useful plants of Sri Lanka Part IV* Screening of Sri Lanka Plants for Tannins. J. Natl. Sci. Found. Sri Lanka 1982 10 2 213 10.4038/jnsfsr.v10i2.8430
    [Google Scholar]
  51. Tan Z. Halter B. Liu D. Gilbert E.R. Cline M.A. Dietary flavonoids as modulators of lipid metabolism in poultry. Front. Physiol. 2022 13 863860 10.3389/fphys.2022.863860 35547590
    [Google Scholar]
  52. Siriwardhana A. Wijesundara S. Karunaratne V. A review of studies on bioactive compounds isolated from Sri Lankan flora. J. Natl. Sci. Found. Sri Lanka 2015 43 1 11 10.4038/jnsfsr.v43i1.7912
    [Google Scholar]
  53. Weerasinghe W.P.N.W. Deraniyagala S.A. Antioxidant activity of some Sri Lankan endemic medicinal plants. Pharmaceutical Journal of Sri Lanka 2016 6 0 9 10.4038/pjsl.v6i0.10
    [Google Scholar]
  54. Sharifi-Rad J. Quispe C. Imran M. Rauf A. Nadeem M. Gondal T.A. Ahmad B. Atif M. Mubarak M.S. Sytar O. Zhilina O.M. Garsiya E.R. Smeriglio A. Trombetta D. Pons D.G. Martorell M. Cardoso S.M. Razis A.F.A. Sunusi U. Kamal R.M. Rotariu L.S. Butnariu M. Docea A.O. Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxid. Med. Cell. Longev. 2021 2021 1 3268136 10.1155/2021/3268136 34336089
    [Google Scholar]
  55. Napagoda M. Prathibha E. Nifras M. In vitro erythrocyte membrane stabilization potential in some Sri Lankan medicinal plant extracts. Prayogik Rasayan, 2019 3 (3) 10.53023/p.rasayan‑20190222
    [Google Scholar]
  56. Waisundara V.Y. Watawana M.I. The classification of sri lankan medicinal herbs: An extensive comparison of the antioxidant activities. J. Tradit. Complement. Med. 2014 4 3 196 202 10.4103/2225‑4110.126175 25161925
    [Google Scholar]
  57. Arseculeratne S.N. Gunatilaka A.A.L. Panabokke R.G. Studies on medicinal plants of sri lanka. part 14: Toxicity of some traditional medicinal herbs. J. Ethnopharmacol. 1985 13 3 323 335 10.1016/0378‑8741(85)90078‑9 4058035
    [Google Scholar]
  58. Chen X.Q. Hu T. Han Y. Huang W. Yuan H.B. Zhang Y.T. Du Y. Jiang Y.W. Preventive effects of catechins on cardiovascular disease. Molecules 2016 21 12 1759 10.3390/molecules21121759 28009849
    [Google Scholar]
  59. Samarasekera R. Hemalal K.P. Ata A. In pursuit of bioactive constituents from Sri Lankan medicinal plants. Planta Med. 2010 76 5 s-0030 s-1251803 10.1055/s‑0030‑1251803
    [Google Scholar]
  60. Bari M.D.N. Ansari M.D.R. Anwar M. Bioactive compounds from medicinal plants in liver disease treatment: A review. Ann. Phytomed. 2022 11 1 10.54085/ap.2022.11.1.21
    [Google Scholar]
  61. Mohammadi-Cheraghabadi M. Hazrati S. Terpenoids, steroids, and phenolic compounds of medicinal plants. In:Phytochemicals in Medicinal Plants. Arora C. Verma D.K. Aslam J. Mahish P.K. De Gruyter 2023 105 130 10.1515/9783110791891‑005
    [Google Scholar]
  62. Ray S. Saini M.K. Cure and prevention of cardiovascular diseases: Herbs for heart. Clinical Phytoscience 2021 7 1 64 10.1186/s40816‑021‑00294‑0
    [Google Scholar]
  63. Gyawali D. Vohra R. Orme-Johnson D. Ramaratnam S. Schneider R.H. A systematic review and meta-analysis of ayurvedic herbal preparations for hypercholesterolemia. Medicina 2021 57 6 546 10.3390/medicina57060546 34071454
    [Google Scholar]
  64. Murad S. Niaz K. Aslam H. Effects of ginger on LDL-C, total cholesterol and body weight. Clin. Med. Biochem. 2018 4 2 10.4172/2471‑2663.1000140
    [Google Scholar]
  65. Qin S. Huang L. Gong J. Shen S. Huang J. Ren H. Hu H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutr. J. 2017 16 1 68 10.1186/s12937‑017‑0293‑y 29020971
    [Google Scholar]
  66. Reddy B.M. Dhanpal C.K. Lakshmi B.V.S. A review on curry leaves (Murraya koenigii): Versatile multi-potential medicinal plant. Int. J. Adv. Pharm. Med. Bioallied Sci. 2018 6 1 31 41
    [Google Scholar]
  67. Jayaweera D.M.A. Medicinal plants (Indigenous and Exotic) Used in Ceylon Part 1. 2006 Available from:[https://archive.org/details/medical_used_in_ceylon_581_na_02
    [Google Scholar]
  68. Jayaweera D.M.A. Medicinal plants (Indigenous and Exotic) Used in Ceylon Part 2. 2006 Available from:[https://dl.nsf.gov.lk/items/69292058-79c4-49a3-abbc-eac7b76805d6
    [Google Scholar]
  69. Jayaweera D.M.A. Medicinal plants (Indigenous and Exotic) Used in Ceylon Part 3. 2006 Available from [https://dl.nsf.gov.lk/items/5bda5566-92c1-4077-8c1f-19c2332d191c
    [Google Scholar]
  70. Jayaweera D.M.A. Medicinal plants (Indigenous and Exotic) Used in Ceylon Part 4. 2006 Available from [https://dl.nsf.gov.lk/items/a43d6e91-5ce2-4dd6-bace-3aec2eeb2d0a
    [Google Scholar]
  71. Kesari A.N. Kesari S. Singh S.K. Gupta R.K. Watal G. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J. Ethnopharmacol. 2007 112 2 305 311 10.1016/j.jep.2007.03.023 17467937
    [Google Scholar]
  72. Vasudevan M. Parle M. Antiamnesic potential of Murraya koenigii leaves. Phytother. Res. 2009 23 3 308 316 10.1002/ptr.2620 18844259
    [Google Scholar]
  73. Zahin M. Aqil F. Husain F.M. Ahmad I. Antioxidant capacity and antimutagenic potential of Murraya koenigii. BioMed Res. Int. 2013 2013 1 10 10.1155/2013/263509 23853769
    [Google Scholar]
  74. Lubeck B. Garcinia cambogia: Potential Health Benefits vs. Risks 2024 Available from:https://www.verywellhealth.com/everything-you-should-know-about-garcinia-cambogia-7565005
  75. Nimanthika W.J. Kaththriarachchi H.S. Systematics of genus Garcinia L. (Clusiaceae) in Sri Lanka: New insights from vegetative morphology. J. Natl. Sci. Found. Sri Lanka 2010 38 1 29 10.4038/jnsfsr.v38i1.1723
    [Google Scholar]
  76. Semwal R.B. Semwal D.K. Vermaak I. Viljoen A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia 2015 102 134 148 10.1016/j.fitote.2015.02.012 25732350
    [Google Scholar]
  77. Hewageegana A. Hewageegana H. Arawwawala L. Comparison on phytochemical and physicochemical parameters of Garcinia cambogia (Gaertn.) Desr. and Garcinia zeylanica Linn fruit rinds. J. Pharmacogn. Phytochem. 2018 7 2 2532 2535
    [Google Scholar]
  78. Garcinia Cambogia LiverTox: Clinical and Research Information on Drug-Induced Liver. Bethesda, MD National Institute of Diabetes and Digestive and Kidney Diseases 2012
    [Google Scholar]
  79. Fassina P. Scherer Adami F. Terezinha Zani V. Kasper Machado I.C. Garavaglia J. Quevedo Grave M.T. Ramos R. Morelo Dal Bosco S. The effect of Garcinia cambogia as coadjuvant in the weight loss process. Nutr. Hosp. 2015 32 6 2400 2408 10.3305/nh.2015.32.6.9587 26667686
    [Google Scholar]
  80. Kim K.Y. Lee H.N. Kim Y.J. Park T. Garcinia cambogia extract ameliorates visceral adiposity in C57BL/6J mice fed on a high-fat diet. Biosci. Biotechnol. Biochem. 2008 72 7 1772 1780 10.1271/bbb.80072 18603810
    [Google Scholar]
  81. Mathapati I.S. R, M.; P, P.; R H, J. Therapeutic Evaluation of Vrikshamla (Garcinia Cambogia) in the Management of Sthoulya (Obesity) W.S.R Dyslipidemia a case report. Int. J. Life Sci. Pharma Res. 2022(Jul) 10.22376/ijpbs/lpr.2022.12.4.L97‑107
    [Google Scholar]
  82. Liyanagamage D.S.N.K. Jayasinghe S. Attanayake A.P. Karunaratne V. Wijesundara D.S.A. Antihyperglycemic activity of fruit extracts of Sri Lankan endemic species Garcinia quaesita Pierre “Rathgoraka” and its isolated compound, garcinol. Ceylon Journal of Science 2020 49 3 303 10.4038/cjs.v49i3.7781
    [Google Scholar]
  83. Sampath S.N.T.I. Jayasinghe S. Attanayake A.P. Karunaratne V. Sub-acute antihyperlipidemic and antihyperglycemic activity of the hexane extract of a polyherbal mixture in streptozotocin-induced diabetic rats. Ceylon J. Sci. 2021 50 3 279 10.4038/cjs.v50i3.7909
    [Google Scholar]
  84. Anzano A. Ammar M. Papaianni M. Grauso L. Sabbah M. Capparelli R. Lanzotti V. Moringa oleifera Lam.: A phytochemical and pharmacological overview. Horticulturae 2021 7 10 409 10.3390/horticulturae7100409
    [Google Scholar]
  85. Milla P.G. Peñalver R. Nieto G. Health benefits of uses and applications of Moringa oleifera in bakery products. Plants 2021 10 2 318 10.3390/plants10020318 33562157
    [Google Scholar]
  86. Mbikay M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front. Pharmacol. 2012 3 24 10.3389/fphar.2012.00024 22403543
    [Google Scholar]
  87. Leone A. Spada A. Battezzati A. Schiraldi A. Aristil J. Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015 16 6 12791 12835 10.3390/ijms160612791 26057747
    [Google Scholar]
  88. Jain P.G. Patil S.D. Haswani N.G. Girase M.V. Surana S.J. Hypolipidemic activity of Moringa oleifera Lam., Moringaceae, on high fat diet induced hyperlipidemia in albino rats. Rev. Bras. Farmacogn. 2010 20 6 969 973 10.1590/S0102‑695X2010005000038
    [Google Scholar]
  89. Nambiar V. Guin P. Parnami S. Daniel M. Impact of antioxidants from drumstick leaves on the lipid profile of hyperlipidemics. J. Herb Med. Toxicol. 2010 4 165 172
    [Google Scholar]
  90. Yahia E.M. Salih N.K-E. Tamarind (Tamarindus indica L.). In:Postharvest Biology and Technology of Tropical and Subtropical Fruits. Elsevier 2011 442 458e 10.1533/9780857092618.442
    [Google Scholar]
  91. Lim C.Y. Mat Junit S. Abdulla M.A. Abdul Aziz A. In vivo biochemical and gene expression analyses of the antioxidant activities and hypocholesterolaemic properties of Tamarindus indica fruit pulp extract. PLoS One 2013 8 7 e70058 10.1371/journal.pone.0070058 23894592
    [Google Scholar]
  92. Uchenna U.E. Shori A.B. Baba A.S. Tamarindus indica seeds improve carbohydrate and lipid metabolism: An in vivo study. J. Ayurveda Integr. Med. 2018 9 4 258 265 10.1016/j.jaim.2017.06.004 29203351
    [Google Scholar]
  93. Thahira Banu A. Aswini M. Role of Piper nigrum in functional food and nutraceuticals. In:Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods. Elsevier 2023 41 60 10.1016/B978‑0‑323‑90794‑1.00019‑3
    [Google Scholar]
  94. Mittal R. Gupta R.L. In vitro antioxidant activity of piperine. Methods Find. Exp. Clin. Pharmacol. 2000 22 5 271 274 10.1358/mf.2000.22.5.796644 11031726
    [Google Scholar]
  95. Duangjai A. Ingkaninan K. Praputbut S. Limpeanchob N. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins. J. Nat. Med. 2013 67 2 303 310 10.1007/s11418‑012‑0682‑7 22736065
    [Google Scholar]
  96. Vijayakumar R.S. Surya D. Senthilkumar R. Nalini N. Hypolipidemic effect of black pepper (Piper nigrum Linn.) in rats fed high fat diet. J. Clin. Biochem. Nutr. 2002 32 31 42 10.3164/jcbn.32.31
    [Google Scholar]
  97. Ashokkumar K. Murugan M. Dhanya M.K. Pandian A. Warkentin T.D. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review. Clinical Phytoscience 2021 7 1 52 10.1186/s40816‑021‑00292‑2
    [Google Scholar]
  98. Singh N. Yadav S.S. Kumar S. Narashiman B. Ethnopharmacological, phytochemical and clinical studies on Fenugreek (Trigonella foenum-graecum L.). Food Biosci. 2022 46 101546 10.1016/j.fbio.2022.101546
    [Google Scholar]
  99. Goyal S. Gupta N. Chatterjee S. Investigating therapeutic potential of Trigonella foenum-graecum L. as our defense mechanism against several human diseases. J. Toxicol. 2016 2016 1 10 10.1155/2016/1250387 26884758
    [Google Scholar]
  100. Kumar P. Bhandari U. Jamadagni S. Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats. BioMed Res. Int. 2014 2014 1 11 10.1155/2014/606021 24868532
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257365508250627002738
Loading
/content/journals/chamc/10.2174/0118715257365508250627002738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test