Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

The recognition of oxidative stress as a factor influencing the development and progression of cardiovascular diseases (CVDs) is growing. By producing such reactive oxygen species (ROS) in diverse areas within cells, including mitochondria and Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH)-oxidases, they end up causing damage through the oxidation of lipids, proteins, and DNA. ROS indicates the beginning of inflammatory responses and endothelial dysfunction, which are necessary to produce obstructions in blood vessels and decreased blood vessel function. The fact that oxidative stress plays a significant role in CVD development draws more attention to the need for novel therapies that aim to correct redox imbalances. Therefore, natural polyphenols and antioxidants like vitamin C or E have shown their efficacy in lowering levels of ROS and protecting against the damage caused by oxidative stress. Anyone attempting to cure CVDs should focus on improving the safety and efficacy of antioxidant treatments and identifying which patients will benefit from them the most. This paper discusses not only advanced treatments but also the role played by oxidative stress in such CVD as high blood pressure, hypercholesterolemia, and ischemic heart disease.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257344485250207074727
2025-02-26
2025-12-15
Loading full text...

Full text loading...

References

  1. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. BellE.S. FeiginV.L. SolàF.J. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. JonesL.D. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. HahnleS.K. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. BellE.S. FeiginV.L. SolaF.J. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. JonesL.D. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. KangevariA.M. AbdiA. AbediA. AboyansV. AbrhaW.A. GharbiehA.E. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. SholabiA.W. AkliluA. AkunnaC.J. AlahdabF. EyadhyA.A. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. HashianiA.A. AlmustanyirS. RaddadiA.R.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. MoghaddamA.A. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. BurgosA.L. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. BD.B. BaheiraeiN. BaigA.A. BakhtiariA. BanachM. BanikP.C. BaptistaE.A. BarbozaM.A. BaruaL. BasuS. BediN. BéjotY. BennettD.A. BensenorI.M. BermanA.E. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BrantL.C. BrennerH. BrikoN.I. ButtZ.A. Caetano dos SantosF.L. CahillL.E. HurtadoC.L. CámeraL.A. NonatoC.I.R. BritoC.C. CarJ. CarreroJ.J. CarvalhoF. OrjuelaC.C.A. LópezC.F. CerinE. CharanJ. ChattuV.K. ChenS. ChinK.L. ChoiJ-Y.J. ChuD-T. ChungS-C. CirilloM. CoffeyS. ContiS. CostaV.M. CundiffD.K. DadrasO. DagnewB. DaiX. DamascenoA.A.M. DandonaL. DandonaR. DavletovK. De la Cruz-GóngoraV. De la HozF.P. NeveD.J-W. GutiérrezD.E. MollaD.M. DersehB.T. DesaiR. DeuschlG. DharmaratneS.D. DhimalM. DhunganaR.R. DianatinasabM. DiazD. DjalaliniaS. DokovaK. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. EbtehajS. EftekhariA. EftekharzadehS. EkholuenetaleM. NahasE.N. ElgendyI.Y. ElhadiM. JaafaryE.S.I. EsteghamatiS. EtissoA.E. EyawoO. FadhilI. FaraonE.J.A. FarisP.S. FarwatiM. FarzadfarF. FernandesE. PrendesF.C. FerraraP. FilipI. FischerF. FloodD. FukumotoT. GadM.M. GaidhaneS. GanjiM. GargJ. GebreA.K. GebregiorgisB.G. GebregzabiherK.Z. GebremeskelG.G. GetacherL. ObsaA.G. GhajarA. GhashghaeeA. GhithN. GiampaoliS. GilaniS.A. GillP.S. GillumR.F. GlushkovaE.V. GnedovskayaE.V. GolechhaM. GonfaK.B. GoudarzianA.H. GoulartA.C. GuadamuzJ.S. GuhaA. GuoY. GuptaR. HachinskiV. NejadH.N. HaileT.G. HamadehR.R. HamidiS. HankeyG.J. HargonoA. HartonoR.K. HashemianM. HashiA. HassanS. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HeidariG. HerteliuC. HollaR. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HuangJ. HumayunA. IavicoliI. IbenemeC.U. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IslamR.M. IsoH. IwagamiM. JainV. JavaheriT. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JonasJ.B. JonnagaddalaJ. JoukarF. JozwiakJ.J. JürissonM. KabirA. KahlonT. KalaniR. KalhorR. KamathA. KamelI. KandelH. KandelA. KarchA. KasaA.S. KatotoP.D.M.C. KayodeG.A. KhaderY.S. KhammarniaM. KhanM.S. KhanM.N. KhanM. KhanE.A. KhatabK. KibriaG.M.A. KimY.J. KimG.R. KimokotiR.W. KisaS. KisaA. KivimäkiM. KolteD. KoolivandA. KorshunovV.A. LaxminarayanaK.S.L. KoyanagiA. KrishanK. KrishnamoorthyV. DefoK.B. BicerK.B. KulkarniV. KumarG.A. KumarN. KurmiO.P. KusumaD. KwanG.F. VecchiaL.C. LaceyB. LallukkaT. LanQ. LasradoS. LassiZ.S. LauriolaP. LawrenceW.R. LaxmaiahA. LeGrandK.E. LiM-C. LiB. LiS. LimS.S. LimL-L. LinH. LinZ. LinR-T. LiuX. LopezA.D. LorkowskiS. LotufoP.A. LugoA. MN.K. MadottoF. MahmoudiM. MajeedA. MalekzadehR. MalikA.A. MamunA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MathurM.R. MazzagliaG. MehataS. MehndirattaM.M. MeierT. MenezesR.G. MeretojaA. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. MoazenB. MoghadaszadehM. MohammadY. MohammadD.K. MohammedS. MohammedM.A. MokhayeriY. MolokhiaM. MontasirA.A. MoradiG. MoradzadehR. MoragaP. MorawskaL. VelásquezM.I. MorzeJ. MubarikS. MuruetW. MusaK.I. NagarajanA.J. NaliniM. NangiaV. NaqviA.A. SwamyN.S. NascimentoB.R. NayakV.C. NazariJ. NazarzadehM. NegoiR.I. KandelN.S. NguyenH.L.T. NixonM.R. NorrvingB. NoubiapJ.J. NoutheB.E. NowakC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OrruH. OrtizA. OstroffS.M. PadubidriJ.R. PalladinoR. PanaA. JonasP.S. ParekhU. ParkE-C. ParviziM. KanP.F. PatelU.K. PathakM. PaudelR. PepitoV.C.F. PerianayagamA. PericoN. PhamH.Q. PilgrimT. PiradovM.A. PishgarF. PodderV. PolibinR.V. PourshamsA. PribadiD.R.A. RabieeN. RabieeM. RadfarA. RafieiA. RahimF. MovagharR.V. RahmanU.M.H. RahmanM.A. RahmaniA.M. RakovacI. RamP. RamalingamS. RanaJ. RanasingheP. RaoS.J. RathiP. RawalL. RawasiaW.F. RawassizadehR. RemuzziG. RenzahoA.M.N. RezapourA. RiahiS.M. ThomsonR.R.L. RoeverL. RohloffP. RomoliM. RoshandelG. RwegereraG.M. SaadatagahS. AyadS.M.M. SabourS. SaccoS. SadeghiM. MoghaddamS.S. SafariS. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. MilicevicS.M.M. SarrafzadeganN. SarveazadA. SathishT. SawhneyM. SaylanM. SchmidtM.I. SchutteA.E. SenthilkumaranS. SepanlouS.G. ShaF. ShahabiS. ShahidI. ShaikhM.A. ShamaliM. ShamsizadehM. ShawonM.S.R. SheikhA. ShigematsuM. ShinM-J. ShinJ.I. ShiriR. ShiueI. ShuvalK. SiabaniS. SiddiqiT.J. SilvaD.A.S. SinghJ.A. MtechA.S. SkryabinV.Y. SkryabinaA.A. SoheiliA. SpurlockE.E. StockfeltL. StorteckyS. StrangesS. AbdulkaderS.R. TadbiriH. TadesseE.G. TadesseD.B. TajdiniM. TariqujjamanM. TeklehaimanotB.F. TemsahM-H. TesemaA.K. ThakurB. ThankappanK.R. ThaparR. ThriftA.G. TimalsinaB. TonelliM. TouvierM. PaloneT.M.R. TripathiA. TripathyJ.P. TruelsenT.C. TsegayG.M. TsegayeG.W. TsilimparisN. TusaB.S. TyrovolasS. UmapathiK.K. UnimB. UnnikrishnanB. UsmanM.S. VaduganathanM. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. VujcicI.S. WaheedY. WangY. WangF. WeiJ. WeintraubR.G. WeldemariamA.H. WestermanR. WinklerA.S. WiysongeC.S. WolfeC.D.A. WubishetB.L. XuG. YadollahpourA. YamagishiK. YanL.L. YandrapalliS. YanoY. YatsuyaH. YeheyisT.Y. YeshawY. YilgwanC.S. YonemotoN. YuC. YusefzadehH. ZachariahG. ZamanS.B. ZamanM.S. ZamanianM. ZandR. ZandifarA. ZarghiA. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZhangY. ZhangW. ZhongC. ZouZ. ZunigaY.M.H. MurrayC.J.L. FusterV. Global burden of cardiovascular diseases and risk factors, 1990–2019.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.010 33309175
    [Google Scholar]
  2. SongH. FangF. ArnbergF.K. ColsM.D. de la CruzF.L. AlmqvistC. FallK. LichtensteinP. ThorgeirssonG. ValdimarsdóttirU.A. Stress related disorders and risk of cardiovascular disease: Population based, sibling controlled cohort study.BMJ2019365l125510.1136/bmj.l1255 30971390
    [Google Scholar]
  3. FrąkW. WojtasińskaA. LisińskaW. MłynarskaE. FranczykB. RyszJ. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease.Biomedicines2022108193810.3390/biomedicines10081938 36009488
    [Google Scholar]
  4. DeruyD.E. PeugnetV. TurkiehA. PinetF. Oxidative stress in cardiovascular diseases.Antioxidants20209986410.3390/antiox9090864 32937950
    [Google Scholar]
  5. KoeneR.J. PrizmentA.E. BlaesA. KonetyS.H. Shared risk factors in cardiovascular disease and cancer.Circulation2016133111104111410.1161/CIRCULATIONAHA.115.020406 26976915
    [Google Scholar]
  6. DaiberA. ChlopickiS. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies.Free Radic. Biol. Med.2020157February153710.1016/j.freeradbiomed.2020.02.026 32131026
    [Google Scholar]
  7. AgostiniF. BisagliaM. PlotegherN. Linking ROS levels to autophagy: The key role of AMPK.Antioxidants2023127140610.3390/antiox12071406 37507945
    [Google Scholar]
  8. ShaitoA. AramouniK. AssafR. ParentiA. OrekhovA. YazbiA. El, Oxidative stress-induced endothelial dysfunction in cardiovascular diseases.Front. Biosci.202227310510.31083/j.fbl2703105
    [Google Scholar]
  9. LiuW. LiangX. ShiY. Effects of hirudin on high glucose-induced oxidative stress and inflammatory pathway in rat dorsal root ganglion neurons.Chin. J. Integr. Med.202026319720410.1007/s11655‑019‑2712‑8 32180149
    [Google Scholar]
  10. ChangC. WorleyB.L. PhaëtonR. HempelN. Extracellular glutathione peroxidase GPx3 and its role in cancer.Cancers2020128219710.3390/cancers12082197 32781581
    [Google Scholar]
  11. MagoulasA. Mitochondrial DNA.Stock Identif Methods Appl Fish Sci.2004554311330
    [Google Scholar]
  12. SiesH. JonesD.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.Nat. Rev. Mol. Cell Biol.202021736338310.1038/s41580‑020‑0230‑3 32231263
    [Google Scholar]
  13. NakamuraH. TakadaK. Reactive oxygen species in cancer: Current findings and future directions.Cancer Sci.2021112103945395210.1111/cas.15068 34286881
    [Google Scholar]
  14. WangW. KangP.M. Oxidative stress and antioxidant treatments in cardiovascular diseases.Antioxidants2020912129210.3390/antiox9121292 33348578
    [Google Scholar]
  15. CamiciG.G. MaackC. BonettiN.R. FusterV. KovacicJ.C. ZenaT. HHS Public Access.2018702212229
    [Google Scholar]
  16. HagamanD.E. DamascoJ.A. PerezJ.V.D. RojoR.D. MelanconM.P. Recent advances in nanomedicine for the diagnosis and treatment of prostate cancer bone metastasis.Molecules202126238410.3390/molecules26020384 33450939
    [Google Scholar]
  17. GalassoM. GambinoS. RomanelliM.G. DonadelliM. ScupoliM.T. Browsing the oldest antioxidant enzyme: Catalase and its multiple regulation in cancer.Free Radic. Biol. Med.2021172March26427210.1016/j.freeradbiomed.2021.06.010 34129927
    [Google Scholar]
  18. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: Properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  19. RiveraA.A.K. GregorioC.A. HernándezA.Y.L. CruzH.E.Y. ChaverriP.J. RONS and oxidative stress: An overview of basic concepts.Oxygen20222443747810.3390/oxygen2040030
    [Google Scholar]
  20. ShiraiwaM. UedaK. PozzerA. LammelG. KampfC.J. FushimiA. EnamiS. ArangioA.M. NowoiskyF.J. FujitaniY. FuruyamaA. LakeyP.S.J. LelieveldJ. LucasK. MorinoY. PöschlU. TakahamaS. TakamiA. TongH. WeberB. YoshinoA. SatoK. Aerosol health effects from molecular to global scales.Environ. Sci. Technol.20175123135451356710.1021/acs.est.7b04417 29111690
    [Google Scholar]
  21. OteroS.M.G. MartínezP.I. ChiT.D.M. AguileraA.A. Methods of physical control of pathogenic microorganisms in hospital areas.ECORFAN202110.35429/H.2021.14.59.77
    [Google Scholar]
  22. MachF. BaigentC. CatapanoA.L. KoskinasK.C. CasulaM. BadimonL. ChapmanM.J. BackerD.G.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM.R. TokgozogluL. WiklundO. MuellerC. DrexelH. AboyansV. CorsiniA. DoehnerW. FarnierM. GiganteB. KayikciogluM. KrstacicG. LambrinouE. LewisB.S. MasipJ. MoulinP. PetersenS. PetronioA.S. PiepoliM.F. PintóX. RäberL. RayK.K. ReinerŽ. RiesenW.F. RoffiM. SchmidJ-P. ShlyakhtoE. SimpsonI.A. StroesE. SudanoI. TselepisA.D. ViigimaaM. VindisC. VonbankA. VrablikM. VrsalovicM. ZamoranoJ.L. ColletJ-P. KoskinasK.C. CasulaM. BadimonL. ChapmanJ.M. BackerD.G.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM-R. TokgozogluL. WiklundO. WindeckerS. AboyansV. BaigentC. ColletJ-P. DeanV. DelgadoV. FitzsimonsD. GaleC.P. GrobbeeD. HalvorsenS. HindricksG. IungB. JüniP. KatusH.A. LandmesserU. LeclercqC. LettinoM. LewisB.S. MerkelyB. MuellerC. PetersenS. PetronioA.S. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. UvaS.M. TouyzR.M. NiboucheD. ZelveianP.H. SiostrzonekP. NajafovR. van de BorneP. PojskicB. PostadzhiyanA. KyprisL. ŠpinarJ. LarsenM.L. EldinH.S. ViigimaaM. StrandbergT.E. FerrièresJ. AgladzeR. LaufsU. RallidisL. BajnokL. GudjónssonT. MaherV. HenkinY. GuliziaM.M. MussagaliyevaA. BajraktariG. KerimkulovaA. LatkovskisG. HamouiO. SlapikasR. VisserL. DingliP. IvanovV. BoskovicA. NazziM. VisserenF. MitevskaI. RetterstølK. JankowskiP. CarvalhoF.R. GaitaD. EzhovM. FoscoliM. GigaV. PellaD. FrasZ. IslaD.L.P. HagströmE. LehmannR. AbidL. OzdoganO. MitchenkoO. PatelR.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk.Eur. Heart J.202041111118810.1093/eurheartj/ehz455 31504418
    [Google Scholar]
  23. LangsethM.S. OpstadT.B. BratsethV. SolheimS. ArnesenH. PettersenA.Å. SeljeflotI. HelsethR. Markers of neutrophil extracellular traps are associated with adverse clinical outcome in stable coronary artery disease.Eur. J. Prev. Cardiol.201825776276910.1177/2047487318760618 29473463
    [Google Scholar]
  24. HuangY. GuoX. WuY. ChenX. FengL. XieN. ShenG. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment.Signal Transduct. Target. Ther.2024913410.1038/s41392‑024‑01745‑z 38378653
    [Google Scholar]
  25. AyokaT.O. EzemaB.O. EzeC.N. NnadiC.O. Antioxidants for the prevention and treatment of non-communicable diseases.J. Explor. Res. Pharmacol.202273179189
    [Google Scholar]
  26. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.2013 24987008
    [Google Scholar]
  27. AgarwalA. SharmaR. GuptaS. HarlevA. AhmadG. PlessisD.S.S. Oxidative stress in human reproduction shedding light on a complicated phenomenon.Springer201710.1007/978‑3‑319‑48427‑3
    [Google Scholar]
  28. TsutsuiH. KinugawaS. MatsushimaS. Oxidative stress and heart failure.American J. Physiol. Heart Circul. Physiol.20113016H2181H219010.1152/ajpheart.00554.2011
    [Google Scholar]
  29. TsutsuiH. KinugawaS. MatsushimaS. Mitochondrial oxidative stress and dysfunction in myocardial remodelling.Cardiovasc. Res.200881344945610.1093/cvr/cvn280 18854381
    [Google Scholar]
  30. SackM.N. FyhrquistF.Y. SaijonmaaO.J. FusterV. KovacicJ.C. Basic biology of oxidative stress and the cardiovascular system.J. Am. Coll. Cardiol.201770219621110.1016/j.jacc.2017.05.034 28683968
    [Google Scholar]
  31. BurgoyneJ.R. DinM.H. EatonP. ShahA.M. Redox signaling in cardiac physiology and pathology.Circ. Res.201211181091110610.1161/CIRCRESAHA.111.255216 23023511
    [Google Scholar]
  32. MorisD. SpartalisM. SpartalisE. KarachaliouG.S. KaraolanisG.I. TsourouflisG. TsilimigrasD.I. TzatzakiE. TheocharisS. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox.Ann. Transl. Med.201751632610.21037/atm.2017.06.27 28861423
    [Google Scholar]
  33. LismontC. RevencoI. FransenM. Peroxisomal hydrogen peroxide metabolism and signaling in health and disease.Int. J. Mol. Sci.20192015367310.3390/ijms20153673 31357514
    [Google Scholar]
  34. ChenJ. LuY. ChengY. MaR. ZouJ. ZhengH. WangR. ZhuZ. LiF. Novel strategy of gene delivery system based on dendrimer loaded recombinant hirudine plasmid for thrombus targeting therapy.Mol. Pharm.20191641648165710.1021/acs.molpharmaceut.8b01325 30802064
    [Google Scholar]
  35. KasaiS. ShimizuS. TataraY. MimuraJ. ItohK. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology.Biomolecules202010232010.3390/biom10020320 32079324
    [Google Scholar]
  36. LoyerX. HeymesC. SamuelJ.L. Constitutive nitric oxide synthases in the heart from hypertrophy to failure.Clin. Exp. Pharmacol. Physiol.200835448348810.1111/j.1440‑1681.2008.04901.x 18307746
    [Google Scholar]
  37. HammondJ. BalligandJ.L. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: From contractility to remodeling.J. Mol. Cell. Cardiol.201252233034010.1016/j.yjmcc.2011.07.029 21843527
    [Google Scholar]
  38. AleksandrE. Vendrov1; Kimberly C. Molnar2; Alberto Smith3; Jinling Yuan1; Arihiro Sumida1; Jacques Robidoux4; Marschall S. Runge1 ; and Nageswara R. Madamanchi1.1999734176
    [Google Scholar]
  39. GuzikT.J. ChenW. GongoraM.C. GuzikB. LobH.E. MangalatD. HochN. DikalovS. RudzinskiP. KapelakB. SadowskiJ. HarrisonD.G. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease.J. Am. Coll. Cardiol.200852221803180910.1016/j.jacc.2008.07.063 19022160
    [Google Scholar]
  40. RamachandraC.J.A. CongS. ChanX. YapE.P. YuF. HausenloyD.J. Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets.Free Radic. Biol. Med.2021166March29731210.1016/j.freeradbiomed.2021.02.040 33675957
    [Google Scholar]
  41. PeoplesJ.N. SarafA. GhazalN. PhamT.T. KwongJ.Q. Mitochondrial dysfunction and oxidative stress in heart disease.Exp. Mol. Med.2019511211310.1038/s12276‑019‑0355‑7 31857574
    [Google Scholar]
  42. ZhaoG.J. ZhaoC.L. OuyangS. DengK.Q. ZhuL. MontezanoA.C. ZhangC. HuF. ZhuX.Y. TianS. LiuX. JiY.X. ZhangP. ZhangX.J. SheZ.G. TouyzR.M. LiH. Ca 2+ -dependent NOX5 (NADPH Oxidase 5) exaggerates cardiac hypertrophy through reactive oxygen species production.Hypertension202076382783810.1161/HYPERTENSIONAHA.120.15558 32683902
    [Google Scholar]
  43. OstoE. CosentinoF. The role of oxidative stress in endothelial dysfunction and vascular inflammation. Nitric Oxide.2nd Ed.Elsevier Inc.201070575410.1016/B978‑0‑12‑373866‑0.00022‑8
    [Google Scholar]
  44. IncalzaM.A. D’OriaR. NatalicchioA. PerriniS. LaviolaL. GiorginoF. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases.Vascul. Pharmacol.201810011910.1016/j.vph.2017.05.005 28579545
    [Google Scholar]
  45. SharmaR. DavidoffM.N. Oxidative stress and endothelial dysfunction in heart failure.Congest. Heart Fail.20028316517210.1111/j.1527‑5299.2002.00714.x 12045385
    [Google Scholar]
  46. PoredošP. Endothelial dysfunction and cardiovascular disease.Pathophysiol. Haemost. Thromb.2002325-627427710.1159/000073580 13679656
    [Google Scholar]
  47. AlfatniA. RiouM. Peripheral blood mononuclear cells and platelets mitochondrial dysfunction, oxidative stress, and circulating mtDNA in cardiovascular diseases.J. Clin. Med.202092311
    [Google Scholar]
  48. HandyD.E. LoscalzoJ. Redox regulation of mitochondrial function.Antioxid. Redox Signal.201216111323136710.1089/ars.2011.4123
    [Google Scholar]
  49. BrandM.D. The sites and topology of mitochondrial superoxide production.Exp. Gerontol.2010457-846647210.1016/j.exger.2010.01.003 20064600
    [Google Scholar]
  50. ZhangZ. DalanR. HuZ. WangJ.W. ChewN.W.S. PohK.K. TanR.S. SoongT.W. DaiY. YeL. ChenX. Reactive oxygen species scavenging nanomedicine for the treatment of ischemic heart disease.Adv. Mater.20223435220216910.1002/adma.202202169 35470476
    [Google Scholar]
  51. WohlgemuthS.E. CalvaniR. MarzettiE. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology.J. Mol. Cell. Cardiol.201471627010.1016/j.yjmcc.2014.03.007 24650874
    [Google Scholar]
  52. MullerF.L. LiuY. RemmenV.H. Complex III releases superoxide to both sides of the inner mitochondrial membrane.J. Biol. Chem.2004279474906449073
    [Google Scholar]
  53. LiX. LeeY.J. KimY.C. JeongG.S. CuiH.Z. KimH.Y. KangD.G. LeeH.S. Bakuchicin induces vascular relaxation via endothelium‐dependent NO‐ CGMP signaling.Phytother. Res.201125101574157810.1002/ptr.3478 21442677
    [Google Scholar]
  54. BirbenE. SahinerU.M. SackesenC. ErzurumS. KalayciO. Oxidative stress and antioxidant defense.World Allergy Organ. J.20125191910.1097/WOX.0b013e3182439613 23268465
    [Google Scholar]
  55. WangY. BranickyR. NoëA. HekimiS. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.J. Cell Biol.201821761915192810.1083/jcb.201708007 29669742
    [Google Scholar]
  56. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.201854428729310.1016/j.ajme.2017.09.001
    [Google Scholar]
  57. JasieckaJ.A. PłoskaA. WierońskaJ.M. DobruckiL.W. KalinowskiL. Endothelial dysfunction due to eNOS uncoupling: Molecular mechanisms as potential therapeutic targets.Cell. Mol. Biol. Lett.20232812110.1186/s11658‑023‑00423‑2 36890458
    [Google Scholar]
  58. NandiA. YanL.J. JanaC.K. DasN. Role of catalase in oxidative stress‐and age‐associated degenerative diseases.Oxid. Med. Cell. Long.201920199613090
    [Google Scholar]
  59. RasheedZ. Therapeutic potentials of catalase: Mechanisms, applications, and future perspectives.Int. J. Health Sci.20241821
    [Google Scholar]
  60. DuttaR.K. LeeJ.N. MaharjanY. ParkC. ChoeS.K. HoY.S. ParkR. Catalase deficiency facilitates the shuttling of free fatty acid to brown adipose tissue through lipolysis mediated by ROS during sustained fasting.Cell Biosci.202111120110.1186/s13578‑021‑00710‑5 34876210
    [Google Scholar]
  61. StancillJ.S. CorbettJ.A. The role of thioredoxin/peroxiredoxin in the β-cell defense against oxidative damage.Front. Endocrinol.202112September71823510.3389/fendo.2021.718235 34557160
    [Google Scholar]
  62. MartinsD. EnglishA.M. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast.Redox Biol.20142130831310.1016/j.redox.2013.12.019 24563848
    [Google Scholar]
  63. ZhaoM.X. WenJ.L. WangL. WangX.P. ChenT.S. Intracellular catalase activity instead of glutathione level dominates the resistance of cells to reactive oxygen species.Cell Stress Chaper.201924360961910.1007/s12192‑019‑00993‑1 30989612
    [Google Scholar]
  64. FlohéB.R. MaiorinoM. Glutathione peroxidases.Biochim. Biophys. Acta, Gen. Subj.2013183053289330310.1016/j.bbagen.2012.11.020 23201771
    [Google Scholar]
  65. BhowmickD. MugeshG. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics.Org. Biomol. Chem.20151341102621027210.1039/C5OB01665G 26372527
    [Google Scholar]
  66. AkramN.A. ShafiqF. AshrafM. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance.Front. Plant Sci.20178April61310.3389/fpls.2017.00613 28491070
    [Google Scholar]
  67. AhmadP. JaleelC.A. AzoozM.M. NabiG. Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants.Bot. Res. Int.2009211120
    [Google Scholar]
  68. TraberM.G. AtkinsonJ. Vitamin E, antioxidant and nothing more.Free Radic. Biol. Med.200743141510.1016/j.freeradbiomed.2007.03.024 17561088
    [Google Scholar]
  69. BratovcicA. Antioxidant enzymes and their role in preventing cell damage.Acta Sci. Nutr. Health20204010710.31080/ASNH.2020.04.0659
    [Google Scholar]
  70. SoaresC. CarvalhoM.E.A. AzevedoR.A. FidalgoF. Plants facing oxidative challenges—A little help from the antioxidant networks.Environ. Exp. Bot.201916142510.1016/j.envexpbot.2018.12.009
    [Google Scholar]
  71. AugustinL.S.A. KendallC.W.C. JenkinsD.J.A. WillettW.C. AstrupA. BarclayA.W. BjörckI. MillerB.J.C. BrighentiF. BuykenA.E. CerielloA. VecchiaL.C. LiveseyG. LiuS. RiccardiG. RizkallaS.W. SievenpiperJ.L. TrichopoulouA. WoleverT.M.S. SinnottB.S. PoliA. Glycemic index, glycemic load and glycemic response: An international scientific consensus summit from the international carbohydrate quality consortium (ICQC).Nutr. Metab. Cardiovasc. Dis.201525979581510.1016/j.numecd.2015.05.005 26160327
    [Google Scholar]
  72. DasK. DasS. BiradarM.S. BobbaralaV. TataS.S. Free radical medicine and biology.BoD–Books on Demand201910.5772/intechopen.77829
    [Google Scholar]
  73. SunC. ZhaoC. GuvenE.C. PaoliP. GandaraS.J. RamkumarK.M. WangS. BuleuF. PahA. TuriV. DamianG. DraganS. TomasM. KhanW. WangM. DelmasD. PortilloM.P. DarP. ChenL. XiaoJ. Dietary polyphenols as antidiabetic agents: Advances and opportunities.Food Front.202011184410.1002/fft2.15
    [Google Scholar]
  74. AprotosoaieA.C. LucaS.V. MironA. Flavor chemistry of cocoa and cocoa products—An overview.Compr. Rev. Food Sci. Food Saf.2016151739110.1111/1541‑4337.12180 33371573
    [Google Scholar]
  75. SarianM.N. AhmedQ.U. Mat So’adS.Z. AlhassanA.M. MurugesuS. PerumalV. MohamadS.S.N.A. KhatibA. LatipJ. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study.BioMed Res. Int.2017201711410.1155/2017/8386065 29318154
    [Google Scholar]
  76. MariaA.G. GrazianoR. NicolantonioD.O. Carotenoids: Potential allies of cardiovascular health?Food Nutr. Res.20155912676210.3402/fnr.v59.26762 25660385
    [Google Scholar]
  77. KimK.S. SongC.G. KangP.M. Targeting oxidative stress using nanoparticles as a theranostic strategy for cardiovascular diseases.Antioxid. Redox Signal.201930573374610.1089/ars.2017.7428 29228781
    [Google Scholar]
  78. CasasO.B. MartínezG.A. FloresG.J. IbañezB.A. PandaK.P. SantanaG. de la VegaH.A. SuarM. RodeloG.C. KaushikA. MishraK.Y. DuttA. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment.Mater. Today20215053356910.1016/j.mattod.2021.07.025
    [Google Scholar]
  79. ThakurA. KayaS. KumarA. Recent trends in the characterization and application progress of nano-modified coatings in corrosion mitigation of metals and alloys.Appl. Sci.202313273010.3390/app13020730
    [Google Scholar]
  80. MittalD. KaurG. SinghP. YadavK. AliS.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook.Front. Nanotechnol.20202579954
    [Google Scholar]
  81. SidhuA.K. VermaN. KaushalP. Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential.Front. Nanotechnol.20223801620
    [Google Scholar]
  82. LondoñoM.O. TancrediP. MuracaD. ZélisM.P. CoralD. van RaapF.M.B. WolffU. NeuV. DammC. OliveiraD.C.L.P. PirotaK.R. KnobelM. SocolovskyL.M. Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems.J. Magn. Magn. Mater.201742810511810.1016/j.jmmm.2016.12.019
    [Google Scholar]
  83. LiX. XuH. ZhaoX. LiY. LvS. ZhouW. WangJ. SunZ. LiY. GuoC. Ferroptosis contributing to cardiomyocyte injury induced by silica nanoparticles via miR-125b-2-3p/HO-1 signaling.Part. Fibre Toxicol.20242111710.1186/s12989‑024‑00579‑5 38561847
    [Google Scholar]
  84. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  85. TripathiA. SarafS. SarafS. Carbon nanotropes: A contemporary paradigm in drug delivery.Materials2015863068310010.3390/ma8063068
    [Google Scholar]
  86. SenapatiS. MahantaA.K. KumarS. MaitiP. Controlled drug delivery vehicles for cancer treatment and their performance.Signal Transduct. Target. Ther.201831710.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  87. GeraldesC.F.G.C. CastroM.M.C.A. PetersJ.A. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy.Coord. Chem. Rev.202144521406910.1016/j.ccr.2021.214069
    [Google Scholar]
  88. MauricioM.D. OjedaG.S. MarchioP. VallesS.L. AldasoroM. LopezE.I. Nanoparticles in medicine: A focus on vascular oxidative stress.Oxid. Med. Cell. Long.20182018623148210.1155/2018/6231482
    [Google Scholar]
  89. BormP.J.A. RobbinsD. HauboldS. KuhlbuschT. FissanH. DonaldsonK. The potential risks of nanomaterials: A review carried out for ECETOC.Parti Fibre Toxicol.20063135
    [Google Scholar]
  90. StapletonP.A. NurkiewiczT.R. Vascular distribution of nanomaterials.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20146433834810.1002/wnan.1271 24777845
    [Google Scholar]
  91. PalaR. AnjuV.T. DyavaiahM. BusiS. NauliS.M. Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases.Int. J. Nanomedicine2020153741376910.2147/IJN.S250872 32547026
    [Google Scholar]
  92. GaoC. HuangQ. LiuC. KwongC.H.T. YueL. WanJ.B. LeeS.M.Y. WangR. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines.Nat. Commun.2020111262210.1038/s41467‑020‑16439‑7 32457361
    [Google Scholar]
  93. RasmussenS.T. AndersenJ.T. NielsenT.K. CejvanovicV. PetersenK.M. HenriksenT. WeimannA. LykkesfeldtJ. PoulsenH.E. Simvastatin and oxidative stress in humans: A randomized, double-blinded, placebo-controlled clinical trial.Redox Biol.20169323810.1016/j.redox.2016.05.007 27281490
    [Google Scholar]
  94. SabriA.M.H. AmmarN. KorzhS. AlsehliA.M. HosseiniK. FredrikssonR. MwinyiJ. WilliamsM.J. BoukhatmiH. SchiöthH.B. Fluvastatin-induced myofibrillar damage is associated with elevated ROS, and impaired fatty acid oxidation, and is preceded by mitochondrial morphological changes.Sci. Rep.2024141333810.1038/s41598‑024‑53446‑w 38336990
    [Google Scholar]
  95. DymkowskaD. WrzosekA. ZabłockiK. Atorvastatin and pravastatin stimulate nitric oxide and reactive oxygen species generation, affect mitochondrial network architecture and elevate nicotinamide N‐methyltransferase level in endothelial cells.J. Appl. Toxicol.20214171076108810.1002/jat.4094 33073877
    [Google Scholar]
  96. NasserM.I. ZhuS. ChenC. ZhaoM. HuangH. ZhuP. A comprehensive review on schisandrin B and its biological properties.Oxid. Med. Cell. Long.202020202172740
    [Google Scholar]
  97. RousselotB.D. Resveratrol and cardiovascular diseases.Nutrients20168525010.3390/nu8050250 27144581
    [Google Scholar]
  98. NassifR.M. ChalhoubE. ChedidP. NedelecH.M. RayaE. DangP.M.C. MarieJ.C. BennaE.J. Metformin inhibits ROS production by human M2 macrophages via the activation of AMPK.Biomedicines202210231910.3390/biomedicines10020319 35203528
    [Google Scholar]
  99. TaoQ. ZhangZ.D. QinZ. LiuX.W. LiS.H. BaiL.X. GeW.B. LiJ.Y. YangY.J. Aspirin eugenol ester alleviates lipopolysaccharide-induced acute lung injury in rats while stabilizing serum metabolites levels.Front. Immunol.202213July93910610.3389/fimmu.2022.939106 35967416
    [Google Scholar]
  100. MaZ. LiuX. ZhangQ. YuZ. GaoD. Carvedilol suppresses malignant proliferation of mammary epithelial cells through inhibition of the ROS mediated PI3K/AKT signaling pathway.Oncol. Rep.2019412811818 30483797
    [Google Scholar]
  101. FloridoJ. SantanaR.C. RuizM.L. RodríguezL.A. CastroviejoA.D. RusanovaI. EscamesG. Understanding the mechanism of action of melatonin, which induces ROS production in cancer cells.Antioxidants2022118162110.3390/antiox11081621 36009340
    [Google Scholar]
  102. MarquesP. DomingoE. RubioA. HervásM.S. AscasoJ.F. PiquerasL. Beneficial effects of PCSK9 inhibition with alirocumab in familial hypercholesterolemia involve modulation of new immune players.Biomed. Pharmacother.20212022145 34864314
    [Google Scholar]
  103. YangP. RenJ. YangL. Nanoparticles in the New Era of cardiovascular therapeutics: Challenges and opportunities.Int. J. Mol. Sci.2023246520510.3390/ijms24065205 36982284
    [Google Scholar]
  104. HanH.S. KooS.Y. ChoiK.Y. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging.Bioact. Mater.20211414182205 35310344
    [Google Scholar]
  105. BaeS. ParkM. KangC. DilmenS. KangT.H. KangD.G. KeQ. LeeS.U. LeeD. KangP.M. Hydrogen peroxide‐responsive nanoparticle reduces myocardial ischemia/reperfusion injury.J. Am. Heart Assoc.2016511e00369710.1161/JAHA.116.003697 27930351
    [Google Scholar]
  106. FarJ.G. MolinaV.M. CarrascoR.A. ZepedaA.B. LetelierP. CastilloR.L. Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress.Nutrients201799966
    [Google Scholar]
  107. MyungS.K. JuW. ChoB. OhS.W. ParkS.M. KooB.K. ParkB.J. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: Systematic review and metaanalysis of randomised controlled trials.BMJ2013346jan18 1f1010.1136/bmj.f1023335472
    [Google Scholar]
  108. ShastakY. GordilloA. PelletierW. The relationship between vitamin A status and oxidative stress in animal production.J. Appl. Anim. Res.202351154655310.1080/09712119.2023.2239319
    [Google Scholar]
  109. PetizL.L. GirardiC.S. BortolinR.C. KunzlerA. GasparottoJ. RabeloT.K. MattéC. MoreiraJ.C.F. GelainD.P. Vitamin A oral supplementation induces oxidative stress and suppresses IL‐10 and HSP70 in skeletal muscle of trained rats.Nutrients20179435310.3390/nu9040353 28368329
    [Google Scholar]
  110. van de LagemaatE.E. GrootD.L.C.P.G.M. van den HeuvelE.G.H.M. Vitamin B12 in relation to oxidative stress: A systematic review.Nutrients201911248210.3390/nu11020482 30823595
    [Google Scholar]
  111. BitoT. MisakiT. YabutaY. IshikawaT. KawanoT. WatanabeF. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.Redox Biol.20171111212910.1016/j.redox.2016.10.013 27840283
    [Google Scholar]
  112. ChakrabortyA. JanaN.R. Vitamin C-conjugated nanoparticle protects cells from oxidative stress at low doses but induces oxidative stress and cell death at high doses.ACS Appl. Mater. Interfaces2017948418074181710.1021/acsami.7b16055 29135217
    [Google Scholar]
  113. KawashimaA. SekizawaA. KoideK. HasegawaJ. SatohK. ArakakiT. TakenakaS. MatsuokaR. Vitamin C induces the reduction of oxidative stress and paradoxically stimulates the apoptotic gene expression in extravillous trophoblasts derived from first-trimester tissue.Reprod. Sci.201522778379010.1177/1933719114561561 25519716
    [Google Scholar]
  114. WimalawansaS.J. Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging.Biology2019823010.3390/biology8020030
    [Google Scholar]
  115. MotamedS. NikooyehB. AnariR. MotamedS. MokhtariZ. NeyestaniT. The effect of vitamin D supplementation on oxidative stress and inflammatory biomarkers in pregnant women: A systematic review and meta-analysis of clinical trials.BMC Pregnancy Childbirth202222181610.1186/s12884‑022‑05132‑w 36335311
    [Google Scholar]
  116. VijayaraghavanR. SuribabuC.S. SekarB. OommenP.K. KavithalakshmiS.N. MadhusudhananN. PanneerselvamC. Protective role of vitamin E on the oxidative stress in Hansen’s disease (Leprosy) patients.Eur. J. Clin. Nutr.200559101121112810.1038/sj.ejcn.1602221 16015260
    [Google Scholar]
  117. GenerosoG. BittencourtM.S. VitaminA. Vitamin A: An enhanced vision of the relationship between apolipoproteins and cardiovascular risk?Atherosclerosis201726525625710.1016/j.atherosclerosis.2017.08.020 28864203
    [Google Scholar]
  118. PanthN. PaudelK.R. ParajuliK. Reactive oxygen species: A key hallmark of cardiovascular disease.Adv. Med.2016201611210.1155/2016/9152732 27774507
    [Google Scholar]
  119. ChenX. TouyzR.M. ParkJ.B. SchiffrinE.L. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR.Hypertension200138360661110.1161/hy09t1.094005 11566940
    [Google Scholar]
  120. CiumarneanL.M.V.M. RuncanO. VesaS.C. RachisA.L. NegreanV. PernéM.G. The effects of flavonoids in cardiovascular diseases.Molecules20202518432010.3390/molecules25184320
    [Google Scholar]
  121. BeattieC.J. FultonR.L. HigginsP. PadmanabhanS. McCallumL. WaltersM.R. DominiczakA.F. TouyzR.M. DawsonJ. Allopurinol initiation and change in blood pressure in older adults with hypertension.Hypertension20146451102110710.1161/HYPERTENSIONAHA.114.03953 25135183
    [Google Scholar]
  122. WuH. LiH. LiuY. LiangJ. LiuQ. XuZ. ChenZ. ZhangX. ZhangK. XuC. Blockading a new NSCLC immunosuppressive target by pluripotent autologous tumor vaccines magnifies sequential immunotherapy.Bioact. Mater.20211313223238 35224304
    [Google Scholar]
  123. PereiraC. SouzaA. VasconcelosA. PradoP. NameJ. Antioxidant and anti inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review).Int. J. Mol. Med.2020471374810.3892/ijmm.2020.4783 33155666
    [Google Scholar]
  124. CasasA.I. MaghzalG.J. SeredeninaT. KaludercicN. antonR.N LisaF Di, Pharmacology and clinical drug candidates in redox medicine.Antioxid. Redox Signal.2015231411131129
    [Google Scholar]
  125. LinkerR.A. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway.Brain20111343678692
    [Google Scholar]
  126. VarnaK. JucaiteA. SvenningssonP. RinneJ.O. CseleZ. AminiN. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: A PET study in Parkinson’s disease.Brain2015138926872700
    [Google Scholar]
  127. StielowC. CatarR.A. MullerG. WinglerK. ScheurerP. SchmidtHHHW Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells.Biochem. Biophys. Res. Commun.200634420020510.1016/j.bbrc.2006.03.114
    [Google Scholar]
  128. WenzelP. SchulzE. OelzeM. MüllerJ. SchuhmacherS. AlhamdaniM.S.S. AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats.Free Rad. Biol. Med.2008455619626
    [Google Scholar]
  129. FischbachM.A. BluestoneJ.A. LimW.A. Cell-based therapeutics: The next pillar of medicine.Sci. Transl. Med.20135179179ps710.1126/scitranslmed.3005568 23552369
    [Google Scholar]
  130. KimH. YunJ. Therapeutic strategies for oxidative stress‐related cardiovascular diseases: Removal of Excess Reactive oxygen species in adult stem cells.Oxid. Med. Cell. Long.201620162483163
    [Google Scholar]
  131. CuadradoA. MandaG. HassanA. AlcarazM.J. BarbasC. DaiberA. GhezziP. LeónR. LópezM.G. OlivaB. PajaresM. RojoA.I. AntónR.N. ValverdeA.M. GuneyE. SchmidtH.H.H.W. Transcription factor NRF2 as a therapeutic target for chronic diseases: A systems medicine approach.Pharmacol. Rev.201870234838310.1124/pr.117.014753 29507103
    [Google Scholar]
  132. DonosoA. DuránG.J. MuñozA.A. GonzálezP.A. MuñozA.C. “Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials”.Pharmacol. Res.2021166January10547910.1016/j.phrs.2021.105479 33549728
    [Google Scholar]
  133. MurrayK.O. MacielB.M. DarvishS. CoppockM.E. YouZ. ChoncholM. SealsD.R. RossmanM.J. Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans: A study protocol.Front. Physiol.202213September98078310.3389/fphys.2022.980783 36187760
    [Google Scholar]
  134. ButzM.S. NiermannT. KanF.E. BarbosaV. ButzN. JohnD. BrinkM. BuserP.T. ZauggC.E. Dimethyl fumarate, a small molecule drug for psoriasis, inhibits Nuclear Factor-κB and reduces myocardial infarct size in rats.Eur. J. Pharmacol.20085861-325125810.1016/j.ejphar.2008.02.038 18405893
    [Google Scholar]
  135. LuoM. SunQ. ZhaoH. TaoJ. YanD. The effects of dimethyl fumarate on atherosclerosis in the apolipoprotein E-deficient mouse model with streptozotocin-induced hyperglycemia mediated by the nuclear factor erythroid 2-related factor 2/Antioxidant response element (Nrf2/ARE) signaling pathway.Med. Sci. Monit.2019257966797510.12659/MSM.918951 31645538
    [Google Scholar]
  136. AgarwalV. HansN. MesserliF.H. Effect of allopurinol on blood pressure: A systematic review and meta-analysis.J. Clin. Hypertens.201315643544210.1111/j.1751‑7176.2012.00701.x 23730993
    [Google Scholar]
  137. OkaforO.N. FarringtonK. GorogD.A. Allopurinol as a therapeutic option in cardiovascular disease.Pharmacol. Ther.201717213915010.1016/j.pharmthera.2016.12.004 27916655
    [Google Scholar]
  138. AltenhöferS. RadermacherK.A. KleikersP.W.M. WinglerK. SchmidtH.H.H.W. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement.Antioxid. Redox Signal.201523540642710.1089/ars.2013.5814 24383718
    [Google Scholar]
  139. FlachR.R.J. SuC. BollingerE. CortesC. RobertsonA.W. OpsahlA.C. CoskranT.M. MarescaK.P. KeliherE.J. YatesP.D. KimA.M. KalgutkarA.S. BuckbinderL. Myeloperoxidase inhibition in mice alters atherosclerotic lesion composition.PLoS One2019143e021415010.1371/journal.pone.0214150 30889221
    [Google Scholar]
  140. Efavirenz versus rilpivirine on vascular function, inflammation, and oxidative stress.Available from: https://clinicaltrials.gov/study/NCT01585038 2015
  141. Local antioxidant therapy vasoconstriction effects in different races.Available from: https://clinicaltrials.gov/study/NCT03684213 2024
  142. The effect of endothelin and l-arginine on racial differences in vasoconstriction.Available from: https://clinicaltrials.gov/study/NCT03679780 2024
  143. Sympathetic-vascular dysfunction in obesity and insulin resistance (Vitamin C Study).Available from: https://clinicaltrials.gov/study/NCT04715022 2023
  144. Effects of prolonged delivery of nitric oxide gas on plasma reduction-oxidation reactions in cardiac surgical patients.Available from: https://clinicaltrials.gov/study/NCT04022161 2022
  145. Effect of rosuvastatin on endothelial function.Available from: https://clinicaltrials.gov/study/NCT00986999 2015
  146. Examining the effects of mitochondrial oxidative stress in DCM (MitoDCM).Available from: https://clinicaltrials.gov/study/NCT05410873 2022
  147. Oxidative stress lowering effect of simvastatin and atorvastatin. (SOS)Available from: https://clinicaltrials.gov/study/NCT00404599 2008
  148. The effects of acetylcysteine on alleviating damage of oxidative stress in hemodialysis patients.Available from: https://clinicaltrials.gov/study/NCT00247507 2006
  149. Ramipril treatment of claudication: Oxidative damage and muscle fibrosis.Available from: https://clinicaltrials.gov/study/NCT02842424 2024
  150. Discontinuation of postmenopausal hormone therapy: Impact on the cardiovascular system and quality of life.Available from: https://clinicaltrials.gov/study/NCT04050592 2021
  151. Impact of Nrf2 activation on macrovascular, microvascular & leg function & walking capacity in peripheral artery disease.Available from: https://clinicaltrials.gov/study/NCT06319339 2024
  152. Pilot study of lovaza (omega 3 fatty acids) to improve cardiac antioxidant/anti-inflammatory profile before cardiac surgery.Available from: https://clinicaltrials.gov/study/NCT01046604 2013
  153. Nicotinamide riboside supplementation for treating arterial stiffness and elevated systolic blood pressure in patients with moderate to severe CKD.Available from: https://clinicaltrials.gov/study/NCT04040959 2024
  154. MagentaA. GrecoS. GaetanoC. MartelliF. Oxidative stress and microRNAs in vascular diseases.Int. J. Mol. Sci.2013149173191734610.3390/ijms140917319 23975169
    [Google Scholar]
  155. KuraB. BacovaS.B. KalocayovaB. SykoraM. SlezakJ. Oxidative stress-responsive microRNAs in heart injury.Int. J. Mol. Sci.202021135810.3390/ijms21010358 31948131
    [Google Scholar]
  156. ClimentM. ViggianiG. ChenY.W. CoulisG. CastaldiA. Microrna and ros crosstalk in cardiac and pulmonary diseases.Int. J. Mol. Sci.20202112437010.3390/ijms21124370 32575472
    [Google Scholar]
  157. ZampetakiA. DudekK. MayrM. Oxidative stress in atherosclerosis: The role of microRNAs in arterial remodeling.Free Radic. Biol. Med.201364697710.1016/j.freeradbiomed.2013.06.025 23797034
    [Google Scholar]
  158. DingR. HuangL. YanK. SunZ. DuanJ. New insight into air pollution-related cardiovascular disease: An adverse outcome pathway framework of PM2.5-associated vascular calcification.Cardiovasc. Res.2024120769970710.1093/cvr/cvae082 38636937
    [Google Scholar]
  159. MurphyE. LiuJ.C. Mitochondrial calcium and reactive oxygen species in cardiovascular disease.Cardiovasc. Res.202311951105111610.1093/cvr/cvac134 35986915
    [Google Scholar]
  160. FangX. ArdehaliH. MinJ. WangF. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease.Nat. Rev. Cardiol.202320172310.1038/s41569‑022‑00735‑4 35788564
    [Google Scholar]
  161. RotariuD. BabesE.E. TitD.M. MoisiM. BusteaC. StoicescuM. RaduA.F. VesaC.M. BehlT. BungauA.F. BungauS.G. Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders.Biomed. Pharmacother.202215211323810.1016/j.biopha.2022.113238 35687909
    [Google Scholar]
  162. SharmaA. LiawK. SharmaR. ZhangZ. KannanS. KannanR.M. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics.Theranostics20188205529554710.7150/thno.29039 30555562
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257344485250207074727
Loading
/content/journals/chamc/10.2174/0118715257344485250207074727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test