Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Background

Arterial thrombosis is one of the most significant healthcare concerns in the world. Echinochrome A (Ech-A) is a natural quinone pigment isolated from sea urchins. It has a variety of medicinal values associated with its antioxidant, anticancer, antiviral, anti-diabetic, and cardio-protective activities.

Objectives

The current study aims to investigate the effect and mechanism of Ech-A to inhibit thrombus formation induced by ferric chloride in rats.

Methods

Twenty-four rats were assigned into four groups (n= 6); sham and thrombotic model groups were orally administered 2% DMSO, while the other groups were treated with two dosages of Ech-A (1 and 10 mg/kg, body weight). After seven days of administration, all groups were exposed to 50% ferric chloride for 10 min, except the sham group exposure to normal saline.

Results

The molecular docking showed the free binding energies of Ech-A and vitamin K (Vit. K) with Vit. K epoxide reductase were -8.5 and -9.8 kcal/mol, which confirm the antithrombotic activity of Ech-A. The oral administration of Ech-A caused a significant increase in partial thromboplastin time, prothrombin time, clotting time, platelet count, fibrinogen levels, factor VIII, glutathione reduced, catalase, nitric oxide, and glutathione S-transferase. While white blood cells count, calcium level, and malondialdehyde concentration significantly decreased. The histological examination revealed a definite improvement in the carotid and cardiac tissues in the Ech-A groups.

Conclusion

The study results showed that Ech-A prevented thrombosis by several mechanisms, including chelating calcium ions, increasing the NO concentration, suppressing oxidative stress, and antagonizing Vit. K.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257332064241104114546
2025-06-01
2025-09-16
Loading full text...

Full text loading...

References

  1. ChenG. FarrisM.S. CowlingT. PintoL. RogozaR.M. MacKinnonE. ChampsiS. AndersonT.J. Prevalence of atherosclerotic cardiovascular disease and subsequent major adverse cardiovascular events in Alberta, Canada: A real-world evidence study.Clin. Cardiol.202144111613162010.1002/clc.2373234585767
    [Google Scholar]
  2. MendisS. DavisS. NorrvingB. Organizational update: The world health organization global status report on noncommunicable diseases 2014: One more landmark step in the combat against stroke and vascular disease.Stroke2015465e121210.1161/STROKEAHA.115.008097.
    [Google Scholar]
  3. ShiP. ZhengW. ZhouJ. HanN. YinJ. Effects of MaiLiuPian on carotid thrombosis in rats and acute pulmonary embolism in mice and its antithrombotic mechanism.J. Food Biochem.2022467e1414310.1111/jfbc.1414335388507
    [Google Scholar]
  4. AshorobiD. AmeerM.A. FernandezR.J.S. Thrombosis.StatPearlsTreasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  5. KaikitaK. HosokawaK. DahlenJ.R. TsujitaK. Total thrombus-formation analysis system (T-TAS): Clinical application of quantitative analysis of thrombus formation in cardiovascular disease.Thromb. Haemost.2019119101554156210.1055/s‑0039‑169341131330558
    [Google Scholar]
  6. ZhangY. LiL. ZhaoY. HanH. HuY. LiangD. YuB. KouJ. The myosin II inhibitor, blebbistatin, ameliorates FeCl3-induced arterial thrombosis via the GSK3β-NF-κB pathway.Int. J. Biol. Sci.201713563063910.7150/ijbs.1848528539835
    [Google Scholar]
  7. SonneveldM.A.H. de MaatM.P.M. LeebeekF.W.G. Von Willebrand factor and ADAMTS13 in arterial thrombosis: A systematic review and meta-analysis.Blood Rev.201428416717810.1016/j.blre.2014.04.00324825749
    [Google Scholar]
  8. JoshiS. SmithA.N. PrakhyaK.S. AlfarH.R. LykinsJ. ZhangM. PokrovskayaI. AronovaM. LeapmanR.D. StorrieB. WhiteheartS.W. Ferric chloride-induced arterial thrombosis and sample collection for 3D electron microscopy analysis.J Vis Exp2023193e6498510.3791/64985.
    [Google Scholar]
  9. BangJ. JeonW. K. Mumefural improves blood flow in a rat model of FeCl3-induced arterial thrombosis.Nutrients20201212379510.3390/nu12123795
    [Google Scholar]
  10. GroverS.P. MackmanN. How useful are ferric chloride models of arterial thrombosis?Platelets202031443243810.1080/09537104.2019.167811931608756
    [Google Scholar]
  11. LiP. LinB. TangP. YeY. WuZ. GuiS. ZhanY. YangW. LinB. Aqueous extract of Whitmania pigra Whitman ameliorates ferric chloride-induced venous thrombosis in rats via antioxidation.J. Thromb. Thrombolysis2021521596810.1007/s11239‑020‑02337‑833201380
    [Google Scholar]
  12. ShimY. KwonI. ParkY. LeeH.W. KimJ. KimY.D. NamH.S. ParkS. HeoJ.H.J.Y.j. Characterization of ferric chloride-induced arterial thrombosis model of mice and the role of red blood cells in thrombosis acceleration.Yonsei Med J202162111032104110.3349/ymj.2021.62.11.1032.
    [Google Scholar]
  13. WangP. ChiL. ZhangZ. ZhaoH. ZhangF. LinhardtR.J. Heparin: An old drug for new clinical applications.Carbohydr. Polym.202229511981810.1016/j.carbpol.2022.11981835989029
    [Google Scholar]
  14. AnsariU. AsgharZ. OswaldM. NgH. Apixaban-induced hepatotoxicity.Cureus2022144e2387935402115
    [Google Scholar]
  15. NguyenT.N.M. ShaS. ChenL.J. HolleczekB. BrennerH. SchöttkerB. Strongly increased risk of gastric and duodenal ulcers among new users of low-dose aspirin: Results from two large cohorts with new-user design.Aliment. Pharmacol. Ther.202256225126210.1111/apt.1705035621052
    [Google Scholar]
  16. SampatP.J. WadhwaR. PrasugrelStatPearlsTreasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  17. SadekS.A. HassaneinS.S. MohamedA.S. SolimanA.M. FahmyS.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats.J. Food Biochem.2022463e1372910.1111/jfbc.1372933871886
    [Google Scholar]
  18. KimH.K. VasilevaE.A. MishchenkoN.P. FedoreyevS.A. HanJ. Multifaceted clinical effects of echinochrome.Mar Drugs202119841210.3390/md19080412.
    [Google Scholar]
  19. KikionisS. PapakyriakopoulouP. MavrogiorgisP. VasilevaE.A. MishchenkoN.P. FedoreyevS.A. ValsamiG. IoannouE. RoussisV. Development of novel pharmaceutical forms of the marine bioactive pigment echinochrome A enabling alternative routes of administration.Mar Drugs202321425010.3390/md21040250
    [Google Scholar]
  20. SunQ. HuS. LouZ. GaoJ. The macrophage polarization in inflammatory dermatosis and its potential drug candidates.Biomed. Pharmacother.202316111446910.1016/j.biopha.2023.11446937002572
    [Google Scholar]
  21. Moreno-GarcíaD.M. Salas-RojasM. Fernández-MartínezE. López-CuellarM.R. Sosa-GutierrezC.G. Peláez-AceroA. Rivero-PerezN. Zaragoza-BastidaA. Ojeda-RamírezD. Sea urchins: An update on their pharmacological properties.PeerJ202210e1360610.7717/peerj.1360635811815
    [Google Scholar]
  22. SibiyaA. JeyavaniJ. SivakamavalliJ. RaviC. DivyaM. VaseeharanB. Bioactive compounds from various types of sea urchin and their therapeutic effects — A review.Reg. Stud. Mar. Sci.20214410176010.1016/j.rsma.2021.101760
    [Google Scholar]
  23. CoatesC.J. McCullochC. BettsJ. WhalleyT. Echinochrome A release by red spherule cells is an iron-withholding strategy of sea urchin innate immunity.J. Innate Immun.201810211913010.1159/00048472229212075
    [Google Scholar]
  24. HwangJ.W. ParkJ.H. ParkB.W. KimH. KimJ.J. SimW.S. MishchenkoN.P. FedoreyevS.A. VasilevaE.A. BanK. ParkH.J. BaekS.H. Histochrome attenuates myocardial ischemia-reperfusion injury by inhibiting ferroptosis-induced cardiomyocyte death.Antioxidants20211010162410.3390/antiox1010162434679760
    [Google Scholar]
  25. ClarkA. Monograph of shallow-water Indo-West pacific echinoderms.Trust. Br. Mus. (Nat. Hist.), Publ.19716901238
    [Google Scholar]
  26. AmarowiczR. SynowieckiJ. ShahidiF. Sephadex LH-20 separation of pigments from shells of red sea urchin (Strongylocentrotus franciscanus).Food Chem.199451222722910.1016/0308‑8146(94)90262‑3
    [Google Scholar]
  27. KuwaharaR. HatateH. YukiT. MurataH. TanakaR. HamaY. Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina .Lebensm. Wiss. Technol.20094271296130010.1016/j.lwt.2009.02.020
    [Google Scholar]
  28. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  29. RahmanF. TabrezS. AliR. AlqahtaniA.S. AhmedM.Z. RubA. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins.J. Tradit. Complement. Med.202111217317910.1016/j.jtcme.2021.01.00633520682
    [Google Scholar]
  30. GulH. JamshedA. JabeenQ. Pharmacological investigation of Asphodelus tenuifolius Cav. for its potential against thrombosis in experimental models.Dose Response202220310.1177/15593258221127566.
    [Google Scholar]
  31. FriesD. InnerhoferP. KlinglerA. BerresheimU. MittermayrM. CalatzisA. SchobersbergerW. The effect of the combined administration of colloids and lactated Ringer’s solution on the coagulation system: An in vitro study using thrombelastograph coagulation analysis (ROTEG).Anesth. Analg.20029451280128710.1097/00000539‑200205000‑0004311973205
    [Google Scholar]
  32. LinX. ZhaoP. LinZ. ChenJ. BingwaL.A. Siaw-DebrahF. ZhangP. JinK. YangS. ZhugeQ. Establishment of a modified and standardized ferric chloride-induced rat carotid artery thrombosis model.ACS Omega20227108919892710.1021/acsomega.1c0731635309441
    [Google Scholar]
  33. MohamedA.S. HosneyM. BassionyH. HassaneinS.S. SolimanA.M. FahmyS.R. GaafarK. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats.Sci. Rep.202010137810.1038/s41598‑019‑57252‑731942001
    [Google Scholar]
  34. MohamedA.S. SolimanA.M. MarieM.A.S. Mechanisms of echinochrome potency in modulating diabetic complications in liver.Life Sci.2016151414910.1016/j.lfs.2016.03.00726947587
    [Google Scholar]
  35. SayedD.A. SolimanA.M. FahmyS.R. Echinochrome pigment as novel therapeutic agent against experimentally - Induced gastric ulcer in rats.Biomed. Pharmacother.2018107909510.1016/j.biopha.2018.07.17330081206
    [Google Scholar]
  36. YoungD.J.C.C. Effects of disease on clinical lab tests.AACC200148682
    [Google Scholar]
  37. YoungD.S. PestanerL.C. GibbermanV. Effects of drugs on clinical laboratory tests.Clin. Chem.19752151D432D1091375
    [Google Scholar]
  38. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.19636188288813967893
    [Google Scholar]
  39. AebiH. Catalase in vitro.Methods Enzymol198410512112610.1016/s0076‑6879(84)05016‑3.
    [Google Scholar]
  40. HabigW.H. PabstM.J. JakobyW.B. Glutathione S-transferases.J. Biol. Chem.1974249227130713910.1016/S0021‑9258(19)42083‑84436300
    [Google Scholar]
  41. MontogomeryH. DymockJ. The determination of nitrite in water.Analyst1961414416
    [Google Scholar]
  42. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  43. BancroftJ. StevensA. Theory And Practice Of Histological Techniques.New YorkChurchill Livingstone1996309339
    [Google Scholar]
  44. Qin-WeiZ.H.U. Yong-GuangL.I. Berberine attenuates myocardial ischemia reperfusion injury by suppressing the activation of PI3K/AKT signaling.Exp. Ther. Med.201611397898410.3892/etm.2016.301826998023
    [Google Scholar]
  45. LacroixR. DuboisC. LeroyerA.S. SabatierF. Dignat-GeorgeF. Revisited role of microparticles in arterial and venous thrombosis.J. Thromb. Haemost.201311s1243510.1111/jth.1226823809108
    [Google Scholar]
  46. ZirlikA. BodeC. Vitamin K antagonists: Relative strengths and weaknesses vs. direct oral anticoagulants for stroke prevention in patients with atrial fibrillation.J. Thromb. Thrombolysis201743336537910.1007/s11239‑016‑1446‑027896543
    [Google Scholar]
  47. KiouptsiK. JäckelS. PontarolloG. GrillA. KuijpersM.J.E. WilmsE. WeberC. SommerF. NagyM. NeideckC. JansenY. AscherS. FormesH. KarwotC. BayerF. KollarB. SubramaniamS. MolitorM. WenzelP. RosenstielP. TodorovH. GerberS. WalterU. JurkK. HeemskerkJ.W.M. van der VorstE.P.C. DöringY. ReinhardtC. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice.MBio2019105e02298-1910.1128/mBio.02298‑1931641089
    [Google Scholar]
  48. SongJ. DrobatzK.J. SilversteinD.C. Retrospective evaluation of shortened prothrombin time or activated partial thromboplastin time for the diagnosis of hypercoagulability in dogs: 25 cases (2006-2011).J Vet Emerg Crit Care (San Antonio)201626339840510.1111/vec.12478.
    [Google Scholar]
  49. ChoiJ.H. KimY.S. ShinC.H. LeeH.J. KimS. Antithrombotic activities of luteolin in vitro and in vivo .J. Biochem. Mol. Toxicol.2015291255255810.1002/jbt.2172626184785
    [Google Scholar]
  50. MohamedA.S. Echinochrome exhibits antitumor activity against ehrlich ascites carcinoma in swiss albino mice.Nutr. Cancer202173112413210.1080/01635581.2020.173715232151164
    [Google Scholar]
  51. Alamgeer ul AinQurut. Habiba HasanUmme. AsifHira. Antithrombotic activity of Mentha longifolia in animal model.Bangladesh J. Pharmacol.20181313324310.3329/bjp.v13i1.33243.
    [Google Scholar]
  52. JiangY.H. JiangP. YangJ. MaD.F. LinH.Q. SuW. WangZ. LiX. Cardiac dysregulation and myocardial injury in a 6-hydroxydopamine-induced rat model of sympathetic denervation.PLoS One2015107e013397110.1371/journal.pone.013397126230083
    [Google Scholar]
  53. KitzenbergD. ColganS.P. GloverL.E. Creatine kinase in ischemic and inflammatory disorders.Clin. Transl. Med.201651e3110.1186/s40169‑016‑0114‑527527620
    [Google Scholar]
  54. FowlerE.D. BenoistD. DrinkhillM.J. StonesR. HelmesM. WüstR.C.I. StienenG.J.M. SteeleD.S. WhiteE. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension.J. Mol. Cell. Cardiol.2015861810.1016/j.yjmcc.2015.06.01626116865
    [Google Scholar]
  55. HanD.G. KwakJ. ChoiE. SeoS.W. VasilevaE.A. MishchenkoN.P. FedoreyevS.A. StonikV.A. KimH.K. HanJ. ByunJ.H. JungI.H. YunH. YoonI.S. Physicochemical characterization and phase II metabolic profiling of echinochrome A, a bioactive constituent from sea urchin, and its physiologically based pharmacokinetic modeling in rats and humans.Biomed. Pharmacother.202316211458910.1016/j.biopha.2023.11458937004327
    [Google Scholar]
  56. EcklyA. HechlerB. FreundM. ZerrM. CazenaveJ.P. LanzaF. ManginP.H. GachetC. Mechanisms underlying FeCl3-induced arterial thrombosis.J. Thromb. Haemost.20119477978910.1111/j.1538‑7836.2011.04218.x21261806
    [Google Scholar]
  57. ZhaoY. ChuX. PangX.B. WangS.H. DuG.H. Antithrombotic effects of the effective components group of Xiaoshuantongluo formula in vivo and in vitro.Chin. J. Nat. Med.20151329910710.1016/S1875‑5364(15)60013‑925769892
    [Google Scholar]
  58. SindhuraS. Chinna EswaraiahM. Effect of Dalechampia indica wight extract fractions on behavioral and biochemical abnormalities following ischemia-reperfusion insult in rats.Pharmacogn. J.2018101
    [Google Scholar]
  59. TousoulisD. KampoliA.M. Tentolouris Nikolaos PapageorgiouC. StefanadisC. StefanadisC. The role of nitric oxide on endothelial function.Curr. Vasc. Pharmacol.201210141810.2174/15701611279882976022112350
    [Google Scholar]
  60. NaseemK. The role of nitric oxide in cardiovascular diseases.Mol. Aspects Med.2005261-2336510.1016/j.mam.2004.09.00315722114
    [Google Scholar]
  61. FreedmanJ.E. LoscalzoJ. Nitric oxide and its relationship to thrombotic disorders.J Thromb Haemost2003161183810.1046/j.1538‑7836.2003.00180.x.
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257332064241104114546
Loading
/content/journals/chamc/10.2174/0118715257332064241104114546
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test