Current Gene Therapy - Volume 19, Issue 4, 2019
Volume 19, Issue 4, 2019
-
-
Effects of Huangkui Capsule on the Expression of SPARC in the Kidney Tissue of a Rat Model with Diabetic Nephropathy
Authors: Xiaoyao Yang, Meng Luo, Qinghua Jiang and Yiwei WangObjective: The objective of the research is to investigate the effects of Huangkui capsule on the expression of SPARC in the kidney tissues of diabetic nephropathy. Methods: SD rats were divided into three groups: normal control group, untreated DN group and HKC-treated DN group. The therapeutic effects and underlying molecular mechanism of HKC on DN rats induced by streptozotocin were evaluated by the levels of serum creatinine, blood urea nitrogen, 24-hour urinary protein and the expression of SPARC. Pathological changes in kidney tissues were observed through hematoxylin-eosin (HE) staining. Moreover, western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to detect the variation of SPARC. Results: This study was performed to investigate the effects of HKC on DN in SD rats model and its molecular mechanism. Our results showed that the rats treated with HKC had an improved general state and reduced creatinine, blood urea nitrogen and 24-hour urinary protein levels. The deterioration of renal function was delayed due to treatment with HKC. HE staining was utilized to observe that HKC can improve histopathological findings in the kidney tissues of DN rats, including kidney fibrosis. Results of western blot and qRT-PCR showed that HKC can inhibit the expressions of SPARC in the rat model of DN. Conclusion: The present findings demonstrated that HKC inhibited SPARC level and had significant therapeutic effects on DN.
-
-
-
Identifying Alzheimer’s Disease-related miRNA Based on Semi-clustering
Authors: Tianyi Zhao, Donghua Wang, Yang Hu, Ningyi Zhang, Tianyi Zang and Yadong WangBackground: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.
-
-
-
A Mendelian Randomization Study on Infant Length and Type 2 Diabetes Mellitus Risk
Authors: He Zhuang, Ying Zhang, Shuo Yang, Liang Cheng and Shu-Lin LiuObjective: Infant length (IL) is a positively associated phenotype of type 2 diabetes mellitus (T2DM), but the causal relationship of which is still unclear. Here, we applied a Mendelian randomization (MR) study to explore the causal relationship between IL and T2DM, which has the potential to provide guidance for assessing T2DM activity and T2DM- prevention in young at-risk populations. Materials and Methods: To classify the study, a two-sample MR, using genetic instrumental variables (IVs) to explore the causal effect was applied to test the influence of IL on the risk of T2DM. In this study, MR was carried out on GWAS data using 8 independent IL SNPs as IVs. The pooled odds ratio (OR) of these SNPs was calculated by the inverse-variance weighted method for the assessment of the risk the shorter IL brings to T2DM. Sensitivity validation was conducted to identify the effect of individual SNPs. MR-Egger regression was used to detect pleiotropic bias of IVs. Results: The pooled odds ratio from the IVW method was 1.03 (95% CI 0.89-1.18, P = 0.0785), low intercept was -0.477, P = 0.252, and small fluctuation of ORs ranged from -0.062 ((0.966 - 1.03) / 1.03) to 0.05 ((1.081 - 1.03) / 1.03) in leave-one-out validation. Conclusion: We validated that the shorter IL causes no additional risk to T2DM. The sensitivity analysis and the MR-Egger regression analysis also provided adequate evidence that the above result was not due to any heterogeneity or pleiotropic effect of IVs.
-
-
-
Prediction of Disease Comorbidity Using HeteSim Scores based on Multiple Heterogeneous Networks
Authors: Xuegong Chen, Wanwan Shi and Lei DengBackground: Accumulating experimental studies have indicated that disease comorbidity causes additional pain to patients and leads to the failure of standard treatments compared to patients who have a single disease. Therefore, accurate prediction of potential comorbidity is essential to design more efficient treatment strategies. However, only a few disease comorbidities have been discovered in the clinic. Objective: In this work, we propose PCHS, an effective computational method for predicting disease comorbidity. Materials and Methods: We utilized the HeteSim measure to calculate the relatedness score for different disease pairs in the global heterogeneous network, which integrates six networks based on biological information, including disease-disease associations, drug-drug interactions, protein-protein interactions and associations among them. We built the prediction model using the Support Vector Machine (SVM) based on the HeteSim scores. Results and Conclusion: The results showed that PCHS performed significantly better than previous state-of-the-art approaches and achieved an AUC score of 0.90 in 10-fold cross-validation. Furthermore, some of our predictions have been verified in literatures, indicating the effectiveness of our method.
-
-
-
A Recurrent Rare SOX9 Variant (M469V) is Associated with Congenital Vertebral Malformations
Objective: The genetic variations contributed to a substantial proportion of congenital vertebral malformations (CVM). SOX9 gene, a member of the SOX gene family, has been implicated in CVM. To study the SOX9 mutation in CVM patients is of great significance to explain the pathogenesis of scoliosis (the clinical manifestation of CVM) and to explore the pathogenesis of SOX9-related skeletal deformities. Methods: A total of 50 singleton patients with CVM were included in this study. Exome Sequencing (ES) was performed on all the patients. The recurrent candidate variant of SOX9 gene was validated by Sanger sequencing. Luciferase assay was performed to investigate the functional changes of this variant. Results: A recurrent rare heterozygous missense variant in SOX9 gene (NM_000346.3: c.1405A>G, p.M469V) which had not been reported previously was identified in three CVM patients who had the clinical findings of congenital scoliosis without deformities in other systems. This variant was absent from our in-house database and it was predicted to be deleterious (CADD = 24.5). The luciferase assay demonstrated that transactivation capacity of the mutated SOX9 protein was significantly lower than that of the wild-type for the two luciferase reporters (p = 0.0202, p = 0.0082, respectively). Conclusion: This SOX9 mutation (p.M469V) may contribute to CVM without other systematic deformity, which provides important implications and better understanding of phenotypic variability in SOX9-related skeletal deformities.
-
-
-
Partial Reprogramming As An Emerging Strategy for Safe Induced Cell Generation and Rejuvenation
Background: Conventional cell reprogramming involves converting a somatic cell line into induced pluripotent stem cells (iPSC), which subsequently can be re-differentiated to specific somatic cell types. Alternatively, partial cell reprogramming converts somatic cells into other somatic cell types by transient expression of pluripotency genes thus generating intermediates that retain their original cell identity, but are responsive to appropriate cocktails of specific differentiation factors. Additionally, biological rejuvenation by partial cell reprogramming is an emerging avenue of research. Objective: Here, we will briefly review the emerging information pointing to partial reprogramming as a suitable strategy to achieve cell reprogramming and rejuvenation, bypassing cell dedifferentiation. Methods: In this context, regulatable pluripotency gene expression systems are the most widely used at present to implement partial cell reprogramming. For instance, we have constructed a regulatable bidirectional adenovector expressing Green Fluorescent Protein and oct4, sox2, klf4 and c-myc genes (known as the Yamanaka genes or OSKM). Results: Partial cell reprogramming has been used to reprogram fibroblasts to cardiomyocytes, neural progenitors and neural stem cells. Rejuvenation by cyclic partial reprogramming has been achieved both in vivo and in cell culture using transgenic mice and cells expressing the OSKM genes, respectively, controlled by a regulatable promoter. Conclusion: Partial reprogramming emerges as a powerful tool for the genesis of iPSC-free induced somatic cells of therapeutic value and for the implementation of in vitro and in vivo rejuvenation keeping cell type identity unchanged.
-
-
-
The Therapeutic Potential and Role of miRNA, lncRNA, and circRNA in Osteoarthritis
Authors: Yuangang Wu, Xiaoxi Lu, Bin Shen and Yi ZengBackground: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.
-
-
-
Hemophilia Gene Therapy: New Development from Bench to Bed Side
Authors: Xiao-Lu Guo, Tsai-Hua Chung, Yue Qin, Jie Zheng, Huyong Zheng, Liyuan Sheng, Tung Wynn and Lung-Ji ChangNovel gene therapy strategies have changed the prognosis of many inherited diseases in recent years. New development in genetic tools and study models has brought us closer to a complete cure for hemophilia. This review will address the latest gene therapy research in hemophilia A and B including gene therapy tools, genetic strategies and animal models. It also summarizes the results of recent clinical trials. Potential solutions are discussed regarding the current barriers in gene therapy for hemophilia.
-
-
-
Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector
Background: Polyrotaxane, a macromolecular interlocked assembly, consisting of cyclodextrin has excellent inclusion capabilities and functionalization capacity, which makes it a versatile material as a vector for gene delivery applications. Objective: A biodegradable linear aliphatic polyester axle composed of Polyethylene Glycol (PEG) and Sebacic Acid (SA) was used to fabricate the β-Cyclodextrin (β-CD) based polyrotaxane as a cationic polymeric vector and evaluated for its potential gene silencing efficiency. Methods: The water-soluble aliphatic polyester was synthesized by the solvent esterification process and characterized using viscometry, GPC, FT-IR and 1H NMR spectroscopy. The synthesized polyester was further evaluated for its biodegradability and cellular cytotoxicity. Hence, this water-soluble polyester was used for the step-wise synthesis of polyrotaxane, via threading and blocking reactions. Threading of β-CD over PEG-SA polyester axle was conducted in water, followed by end-capping of polypseudorotaxane using 2,4,6-trinitrobenzenesulfonic acid to yield polyester-based polyrotaxane. For gene delivery application, cationic polyrotaxane (PRTx+) was synthesized and evaluated for its gene loading and gene silencing efficiency. Results and Discussion: The resulting novel macromolecular assembly was found to be safe for use in biomedical applications. Further, characterization by GPC and 1H NMR techniques revealed successful formation of PE-β-CD-PRTx with a threading efficiency of 16%. Additionally, the cellular cytotoxicity assay indicated biosafety of the synthesized polyrotaxane, exploring its potential for gene delivery and other biomedical applications. Further, the biological profile of PRTx+: siRNA complexes was evaluated by measuring their zeta potential and gene silencing efficiency, which were found to be comparable to Lipofectamine 3000, the commercial transfecting agent. Conclusion: The combinatory effect of various factors such as biodegradability, favourable complexation ability, near zero zeta potentials, good cytotoxicity properties of poly (ethylene glycol)-sebacic acid based β-Cyclodextrin-polyrotaxane makes it a promising gene delivery vector for therapeutic applications.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
