Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background: To date, the significant osteoinductive potential of bone morphogenetic protein 2 (BMP-2) non-viral gene therapy cannot be fully exploited therapeutically. This is mainly due to weak gene delivery and brief expression peaks restricting the therapeutic effect. Objective: Our objective was to test the application of minicircle DNA, allowing prolonged expression potential. It offers notable advantages over conventional plasmid DNA. The lack of bacterial sequences and the resulting reduction in size, enables safe usage and improved performance for tissue regeneration. Methods: We inserted an optimized BMP-2 gene cassette with minicircle plasmid technology. BMP-2 minicircle plasmids were produced in E. coli yielding plasmids lacking bacterial backbone elements. Comparative studies of these BMP-2 minicircles and conventional BMP-2 plasmids were performed in vitro in cell systems, including bone marrow derived stem cells. Tests performed included gene expression profiles and cell differentiation assays. Results: A C2C12 cell line transfected with the BMP-2-Advanced minicircle showed significantly elevated expression of osteocalcin, alkaline phosphatase (ALP) activity, and BMP-2 protein amount when compared to cells transfected with conventional BMP-2-Advanced plasmid. Furthermore, the plasmids show suitability for stem cell approaches by showing significantly higher levels of ALP activity and mineralization when introduced into human bone marrow stem cells (BMSCs). Conclusion: We have designed a highly bioactive BMP-2 minicircle plasmid with the potential to fulfil clinical requirements for non-viral gene therapy in the field of bone regeneration.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/1566523220666200427121350
2020-02-01
2025-10-21
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/1566523220666200427121350
Loading

  • Article Type:
    Research Article
Keyword(s): alkaline phosphatase; BMSCs; bone engineering; bone morphogenetic protein 2; C2C12; DNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test