Skip to content
2000
Volume 17, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Hemoglobinopathies, including severe β-thalassemia and sickle cell disease, represent the most common monogenic disorders worldwide. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is the only approved curative option for these syndromes, albeit limited to patients having a suitable donor. Gene therapy, by making use of the patient's own hematopoietic stem cells to introduce a normal copy of the β-globin gene by viral vectors, bridged the gap between the need for cure of patients with hemoglobinopathies and the lack of a donor, without incurring the immunological risks of allo-HSCT. However, gene therapy for hemoglobinopathies proved a difficult and elusive goal for decades and only recently, lenti-viral vector gene therapy was successfully transferred to the clinic. Importantly, during the last years, additional curative options for patients with thalassemia and sickle cell disease are being developed, based on the ability to manipulate the genome by employing programmable nucleases and next-generation genome-modifying tools, thus providing the exciting prospects of targeted in-situ gene correction. In this review, we will summarize current developments in the new era of treatment for hemoglobinopathies, elaborate on lessons gained from gene therapy trials and discuss the exciting prospects and challenges of genome editing.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/1566523218666180119123655
2017-10-01
2025-09-06
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/1566523218666180119123655
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test