Skip to content
2000
Volume 4, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Radiation has been a well-established modality in cancer treatment for several decades. Significant improvements have been achieved in radiotherapy over the years due to technological advances and development of facilities for delivery of charged particles such as protons. Nonetheless, the potential for tumor control with radiotherapy must always be carefully balanced with the risk for normal tissue damage. In addition, tumor cells outside the immediate field of radiation exposure or that have metastasized to distant sites are not destroyed. Gene therapy offers many exciting possibilities by which the overall efficacy of radiotherapy may be improved, while minimizing unwanted side effects. This review highlights several of the most promising gene transfer approaches that are currently being evaluated in combination with radiation in the treatment of cancer. Results from studies utilizing genes encoding molecules that function in apoptosis, radiosensitization, immune up-regulation, angiogenesis, DNA repair, normal tissue protection from radiation damage, and tumor targeting are discussed. The evidence indicates that many of these innovative gene-based strategies have great potential to augment radiotherapy, as well as other established forms of cancer treatment, in the near future.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/1566523043346318
2004-09-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/1566523043346318
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test