Skip to content
2000
image of Foxp3+ Tregs Promote M2 Macrophage Polarization via Sirt1-ERK1/2-STAT3 Pathway in Ovarian Cancer Progression

Abstract

Introduction

Epithelial Ovarian Cancer (EOC) is a highly aggressive gynecological malignancy with a high mortality rate primarily due to late-stage diagnosis and metastatic dissemination. Regulatory T cells (Tregs) have emerged as critical mediators of immune evasion, yet the role of Foxp3+ Tregs in modulating Tumor-Associated Macrophage (TAM) polarization and the underlying molecular mechanisms in EOC remains unclear.

Methods

An orthotopic EOC mouse model and co-culture systems were employed to investigate the effects of Foxp3+ Tregs on TAM polarization. Quantitative Real-Time PCR (qRT-PCR), flow cytometry, Western blotting, wound healing, and transwell assays were performed to assess gene expression, immune cell infiltration, and tumor cell migration/invasion. Foxp3 knockdown was achieved using Adeno-Associated Virus (AAV)-mediated delivery to evaluate its effects .

Results

Foxp3+ Tregs induced macrophage polarization toward the M2 phenotype, characterized by downregulation of M1 markers (IL-1β, iNOS) and upregulation of M2 markers (IL-10, Arg-1). Mechanistically, Foxp3+ Tregs activated the Sirt1-ERK1/2-STAT3 signaling pathway while suppressing NF-κB activity. , Foxp3+ Tregs enhanced the migratory and invasive capacities of ovarian cancer cells, whereas Foxp3 knockdown significantly reduced tumor growth and M2 macrophage infiltration.

Discussion

These findings suggest that Foxp3+ Tregs play a pivotal role in shaping the immunosuppressive tumor microenvironment in EOC by promoting M2 macrophage polarization through Sirt1-ERK1/2-STAT3 signaling and NF-κB suppression, ultimately facilitating tumor progression.

Conclusion

Foxp3+ Tregs drive immunosuppressive macrophage polarization and ovarian cancer progression, highlighting Foxp3 as a potential therapeutic target for EOC treatment.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232417125251021114250
2025-10-29
2025-12-14
Loading full text...

Full text loading...

References

  1. Lheureux S. Braunstein M. Oza A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 2019 69 4 280 304 10.3322/caac.21559 31099893
    [Google Scholar]
  2. Kuroki L. Guntupalli S.R. Treatment of epithelial ovarian cancer. BMJ 2020 371 m3773 10.1136/bmj.m3773 33168565
    [Google Scholar]
  3. Lheureux S. Gourley C. Vergote I. Oza A.M. Epithelial ovarian cancer. Lancet 2019 393 10177 1240 1253 10.1016/S0140‑6736(18)32552‑2 30910306
    [Google Scholar]
  4. Webb P.M. Jordan S.J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 2024 21 5 389 400 10.1038/s41571‑024‑00881‑3 38548868
    [Google Scholar]
  5. Sato S. Matsushita H. Shintani D. Association between effector-type regulatory T cells and immune checkpoint expression on CD8+ T cells in malignant ascites from epithelial ovarian cancer. BMC Cancer 2022 22 1 437 10.1186/s12885‑022‑09534‑z 35449092
    [Google Scholar]
  6. Tavira B. Iscar T. Manso L. Analysis of tumor microenvironment changes after neoadjuvant chemotherapy with or without bevacizumab in advanced ovarian cancer (GEICO-89T/MINOVA study). Clin. Cancer Res. 2024 30 1 176 186 10.1158/1078‑0432.CCR‑23‑0771
    [Google Scholar]
  7. Wang R. Liang Q. Zhang Q. Ccl2‐induced regulatory T cells balance inflammation through macrophage polarization during liver reconstitution. Adv. Sci. 2024 11 45 2403849 10.1002/advs.202403849 39352304
    [Google Scholar]
  8. Li F. Liu D. Liu M. Tregs biomimetic nanoparticle to reprogram inflammatory and redox microenvironment in infarct tissue to treat myocardial ischemia reperfusion injury in mice. J. Nanobiotechnology 2022 20 1 251 10.1186/s12951‑022‑01445‑2 35659239
    [Google Scholar]
  9. Xiao M. Li X. The impact of the tumor microenvironment on macrophages. Front. Immunol. 2025 16 1572764 10.3389/fimmu.2025.1572764 40453088
    [Google Scholar]
  10. Witalisz-Siepracka A. Klein K. Zdársky B. Stoiber D. The multifaceted role of STAT3 in NK-cell tumor surveillance. Front. Immunol. 2022 13 947568 10.3389/fimmu.2022.947568 35865518
    [Google Scholar]
  11. Avila-Ponce de León U. Vázquez-Jiménez A. Matadamas-Guzman M. Pelayo R. Resendis-Antonio O. Transcriptional and microenvironmental landscape of macrophage transition in cancer: A boolean analysis. Front. Immunol. 2021 12 642842 10.3389/fimmu.2021.642842 34177892
    [Google Scholar]
  12. Salaroglio I.C. Mungo E. Gazzano E. Kopecka J. Riganti C. ERK is a pivotal player of chemo-immune-resistance in cancer. Int. J. Mol. Sci. 2019 20 10 2505 10.3390/ijms20102505 31117237
    [Google Scholar]
  13. Liu H Yao S Dann SM Qin H Elson CO Cong Y ERK differentially regulates T h17‐ and T reg‐cell development and contributes to the pathogenesis of colitis. Eur. J. Immunol. 2013 43 7 1716 1726 10.1002/eji.201242889 23620016
    [Google Scholar]
  14. Liu L. Li Y. Li B. Interactions between cancer cells and tumor-associated macrophages in tumor microenvironment. Biochim. Biophys. Acta Rev. Cancer 2025 1880 3 189344 10.1016/j.bbcan.2025.189344 40345263
    [Google Scholar]
  15. Sharma V.K. Bayry J. Restoration of established systemic inflammation and autoimmunity by Foxp3+ regulatory T cells. Cell. Mol. Immunol. 2022 19 2 133 135 10.1038/s41423‑021‑00831‑4 34992284
    [Google Scholar]
  16. Li C. Jiang P. Wei S. Xu X. Wang J. Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 2020 19 1 116 10.1186/s12943‑020‑01234‑1 32680511
    [Google Scholar]
  17. Ma H.Y. Yamamoto G. Xu J. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J. Hepatol. 2020 72 5 946 959 10.1016/j.jhep.2019.12.016 31899206
    [Google Scholar]
  18. Xia Y. Rao L. Yao H. Wang Z. Ning P. Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv. Mater. 2020 32 40 2002054 10.1002/adma.202002054 32856350
    [Google Scholar]
  19. Chen S. Saeed A.F.U.H. Liu Q. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 2023 8 1 207 10.1038/s41392‑023‑01452‑1 37211559
    [Google Scholar]
  20. Yousefi M. Dehghani S. Nosrati R. Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles. Cell. Oncol. 2020 43 4 515 538 10.1007/s13402‑020‑00513‑9 32418122
    [Google Scholar]
  21. Lin X. Fang Y. Jin X. Zhang M. Shi K. Modulating repolarization of tumor-associated macrophages with targeted therapeutic nanoparticles as a potential strategy for cancer therapy. ACS Appl. Bio Mater. 2021 4 8 5871 5896 10.1021/acsabm.1c00461 35006894
    [Google Scholar]
  22. Guan X. Chen B. Malhotra D.K. Gohara A.F. Dworkin L.D. Gong R. Hematopoietic-specific melanocortin 1 receptor signaling protects against nephrotoxic serum nephritis and mediates the beneficial effect of melanocortin therapy. Kidney Int. 2023 103 2 331 342 10.1016/j.kint.2022.09.025 36374665
    [Google Scholar]
  23. Han B. Zhang H. Tian R. Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling. Theranostics 2022 12 9 4127 4146 10.7150/thno.72404 35673569
    [Google Scholar]
  24. Guo Y. Chi X. Wang Y. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res. Ther. 2020 11 1 245 10.1186/s13287‑020‑01704‑9 32586355
    [Google Scholar]
  25. Wu K.K. Xu X. Wu M. MDM2 induces pro-inflammatory and glycolytic responses in M1 macrophages by integrating iNOS-nitric oxide and HIF-1α pathways in mice. Nat. Commun. 2024 15 1 8624 10.1038/s41467‑024‑53006‑w 39366973
    [Google Scholar]
  26. Guo J. Tang X. Deng P. Interleukin-4 from curcumin-activated OECs emerges as a central modulator for increasing M2 polarization of microglia/macrophage in OEC anti-inflammatory activity for functional repair of spinal cord injury. Cell Commun. Signal. 2024 22 1 162 10.1186/s12964‑024‑01539‑4 38448976
    [Google Scholar]
  27. Mai H.N. Nguyen L.T.T. Shin E.J. Astrocytic mobilization of glutathione peroxidase-1 contributes to the protective potential against cocaine kindling behaviors in mice via activation of JAK2/STAT3 signaling. Free Radic. Biol. Med. 2019 131 408 431 10.1016/j.freeradbiomed.2018.12.027 30592974
    [Google Scholar]
  28. He F. Chen Y. He D. He S. USP14-mediated deubiquitination of SIRT1 in macrophage promotes fatty acid oxidation amplification and M2 phenotype polarization. Biochem. Biophys. Res. Commun. 2023 646 19 29 10.1016/j.bbrc.2022.12.076 36701891
    [Google Scholar]
  29. Gou Y. Wang H. Wang T. Ectopic endometriotic stromal cells‐derived lactate induces M2 macrophage polarization via Mettl3/Trib1/ERK/STAT3 signalling pathway in endometriosis. Immunology 2023 168 3 389 402 10.1111/imm.13574 36069580
    [Google Scholar]
  30. Barnabei L. Laplantine E. Mbongo W. Rieux-Laucat F. Weil R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol. 2021 12 716469 10.3389/fimmu.2021.716469 34434197
    [Google Scholar]
  31. Ding Z. Cai T. Tang J. Setd2 supports GATA3+ST2+ thymic-derived Treg cells and suppresses intestinal inflammation. Nat. Commun. 2022 13 1 7468 10.1038/s41467‑022‑35250‑0 36463230
    [Google Scholar]
  32. Rebrova L.A. Sex chromatin in immunogenetic conflict. Tsitol. Genet. 1974 8 2 161 163 4209703
    [Google Scholar]
  33. Xu J. Gao Y. Ding Y. Correlation between Tregs and ICOS-induced M2 macrophages polarization in colorectal cancer progression. Front. Oncol. 2024 14 1373820 10.3389/fonc.2024.1373820 39104717
    [Google Scholar]
  34. Mortezaee K. Majidpoor J. Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell. Oncol. 2022 45 3 333 353 10.1007/s13402‑022‑00667‑8 35587857
    [Google Scholar]
  35. Gyori D. Lim E.L. Grant F.M. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight 2018 3 11 120631 10.1172/jci.insight.120631 29875321
    [Google Scholar]
  36. Riaz F. Huang Z. Pan F. Targeting post-translational modifications of Foxp3: A new paradigm for regulatory T cell-specific therapy. Front. Immunol. 2023 14 1280741 10.3389/fimmu.2023.1280741 37936703
    [Google Scholar]
  37. Szylberg Ł. Karbownik D. Marszałek A. The role of FOXP3 in human cancers. Anticancer Res. 2016 36 8 3789 3794 27466478
    [Google Scholar]
  38. Yang S. Liu Y. Li M.Y. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer 2017 16 1 124 10.1186/s12943‑017‑0700‑1 28716029
    [Google Scholar]
  39. Asaka S. Yen T.T. Wang T.L. Shih I.M. Gaillard S. T cell-inflamed phenotype and increased Foxp3 expression in infiltrating T-cells of mismatch-repair deficient endometrial cancers. Mod. Pathol. 2019 32 4 576 584 10.1038/s41379‑018‑0172‑x 30401949
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232417125251021114250
Loading
/content/journals/cgt/10.2174/0115665232417125251021114250
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: tregs ; Ovarian cancer ; Foxp3 ; Sirt1-ERK1/2-STAT3 ; immunosuppressive macrophage ; macrophages
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test